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ON SKEW LINEAR GROUPS ASSOCIATED 
WITH CERTAIN SOLUBLE-BY-FINITE GROUPS 

BY 

B. A. F. WEHRFRITZ AND M. SHIRVANI 

ABSTRACT. Let 0\ denote the class of groups G such that every group 
ring of G (over a field) is an Ore domain. Several approaches to the 
correction of the proof of a result concerning subrings generated by certain 
0\ -groups are given. 

In our book [4] on skew linear groups the proof of 4.4.6 is incorrect, or more 
precisely the proof is a correct proof, but not quite of what is claimed. Specifically 
in the notation of [4] we assume only that the group G/A G 0\, the class of groups 
whose group algebras over fields are Ore domains, while the proof requires slightly 
more. For example it would suffice to assume that G/A G O, the class of groups 
whose crossed products over division rings are Ore domains. Since the results of [4] 
Section 4.4 have not appeared in print in full elsewhere, we feel the need to publish 
a correction. 

We give three approaches to repairing the error. The first is the most economical 
but it uses a non-trivial and as yet unpublished theorem of Kropholler, Linnell and 
Moody (see [2]), which is turn based on the recent remarkable induction theorem of 
Moody (for an accessible proof of the latter result see [1]). The second is the simplest 
but fails to keep tight control of the matrix degree, and the third uses only material 
from [4] and ultimately depends on the very elementary result [4], 1.4.3. 

In [4] the result 4.4.6 is applied only to groups in the class X, where a group lies 
in the class X if and only if it has a normal series 

(*) (l) = Go£Gx û-.^Gm^G 

of finite length such that G/Gm is torsion-free, polycyclic-by-finite, each G/+i/G/ 
is abelian, and each G/Gi is residually torsion-free polycyclic-by-finite. All three 
approaches depend on utilizing a little more about the class X to get by with some 
weakened verison of [4], 4.4.6. In particular both 1. and 5. below are weakened variants 
of this. The question remains whether the original formulation of [4], 4.4.6 is correct. 
Since we know of no 0\ -group that is not also an O -group, the question seems rather 
academic to us at present. We choose not to state the basic lemmas below in terms of 
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the classes 0\ and O. In this way some of our results theoretically gain in generality. 
Whether they do in practise is far from clear and possibly the form of the formulation 
in [4] is all that will ever be required. In any event the proofs are not lengthened. 

The following implies [4] 4.4.6 with G/A G O. 

1. Let F be a field and G a group with an abelian normal subgroup A such that the 
group algebras FG and F • G/A are Ore domains, say with division rings of quotients 
D and D\ respectively. Suppose any skew group ring of G/A over afield extension of 
F is a domain. Let a denote the augmentation ideal of A in FA and set Q — FG\aG. 
Then the natural map of F G onto F G/A extends to a homomorphism (p of the subring 
FG[Q-l] ofD ontoDx. 

PROOF. Necessarily A is torsion-free. There is a discrete valuation domain / with 
maximal ideal m lying between FA and its quotient subfield of D that is normalized 
by G and satisfies FA H m = a, see [4], 4.4.2. Set R = J[G] S D and p = mG. Then 
R is a crossed product of J by G/A and p is an ideal of R. 

Now R is an Ore domain, e.g. by [4], 4.4.3. Also R/p is a skew group ring of 
G J A over the field extension J /m of F, so by hypothesis R/p is a domain. Then the 
set CR(P) of elements regular modulo p is Ore by [4] 4.4.5 and we can form the ring 
S — RCR(P)~~1 of quotients, regarding it as a subring of D. It follows that D2 = S/pS 
is the division ring of quotients of R/p. 

Clearly Q Ç R\p = G(p), so FG[Q~l] C S. Also F • G/A is naturally embedded 
in R/p and hence D\ is embedded in D2 in an obvious way. It is easy to see that the 
natural projection 6 of S onto D2 maps FG onto F • G/A, and hence maps FG[Q~l] 
onto D\. Let ip denote the restriction of 6 to FG[Q~1]. 

2. Assume the notation of the proof of 1. Then 0°l0(pSy = {0}. In particular 

n,(ker^)' = {0}. 

It follows from 2. that GL(n,S)n(\n + (pS)nxn) are residually torsion-free nilpotent 
if char F = 0 and residually nilpotent /^-groups if char F = p > 0, cf. [4], 4.4.7. 

PROOF. Certainly p |m' = {0} and G normalizes m, so f]pl = {0}. Now pS 
is an ideal of S and hence (pS)1 = plS for / = 1,2,... . By [4] 4.4.4 we have 
CR(p) = CR(P1) and consequently R f| plS = pf. Therefore R H f| p*S = f] pi = {0} 
and f](pS)1 = R PlS = (* H fi PlS)S = {0}. 

3. With the notation above 6 maps the group U(S) of units of S onto D | . In particular 
ifN is a normal subgroup of D* then (N DU(S))6nD* is a normal subgroup of D*. 

PROOF. U(S)0 D (CR(P) • CR(P)'1)6 = ((R/p)\{0})((R/p)\{0}Tl = D2*. 

The first approach. In our notation, in [2] Kropholler, Linnell and Moody prove 
the following 

4. (Kropholler, Linnell, Moody). ( F , L ) 9 I $ n $ ~ s Ç O. 
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In particular torsion-free, soluble-by-finite groups are O -groups. Therefore X C O 
and consequently the whole of [4] stands after replacing [4] 4.4.6 by 1. above, or 
more economically after replacing G/A € 0\ in [4] 4.4.6 by G/A E O and leaving 
subsequent proofs unchanged. This includes [4] 4.5.8 where one uses the remark 
3. above and [4] 4.4.8c) and d) where one uses 2. above. Note that the subclass 
(5$ HR(& D $~s n 91) of X considered by Lichtman in [3] is contained in O by the 
elementary result 1.4.3 of [4], so for this class [2] is not involved. 

The second approach. Let G be an X -group and consider the series (*) above. 
Then G/Gm contains a poly-Coo normal subgroup H jGm of finite index. Then H € 
(P,L)Coo Ç O by [4], 1.4.3, a result very much more elementary than either [2] or [4], 
1.4.23. More generally if K is a normal subgroup of G with G/K torsion-free and if 
A — G\ C\K, then also H /A £ (P,L)Coo Ç O. Hence we can apply [4] 4.4.6, or more 
strictly 1. above, but to H rather than G. We have then only to lift our conclusions up 
from a normal subgroup of finite index. Our second approach is just a simple-minded 
way of carrying out this lifting. 

Thus let F be a field, D the division ring of quotients of FG and E the subring 
of D of quotients of FH. Then G normalizes E and the subring E[G] of D has finite 
dimension over E. Specifically E[G] = ®teT tE for T any transversal of H to G and 
(E[G] : E) = (G : / / ) . In particular E[G] is a division subring of D containing FG 
and therefore D = E[G] = <g)r tE = GE = FG(F//\{0})"1. 

Since 1. above applies to / / , induction on m in (*) gives information about the 
subgroups of GH(n,E), exactly as in Section 4.4 of [4]. But if d — (G : H) then 
GL(n,D) is isomorphic to a subgroup of GL(nd,E) and we obtain information about 
the subgroups of GL(n,D). This is fine for qualitative results (for example the residual 
finiteness of the finitely generated subgroups of GL(AZ,D), see [4] 4.4.8b), but does 
not produce the full conclusion in quantitative results (such as [4] 4.4.8a) that involve 
n. 

The third approach. Here we generalize 1. above to cover arbitrary X -groups, 
but not to the extent claimed in [4], 4.4.6. 

5. Let F be afield and G a group with an abelian normal subgroup A and a normal 
subgroup H D A of finite index. Suppose that the four group algebras FG D FH and 
F • G/A D F - H /A are Ore domains with, respectively, division rings of quotients 
DDE and D\ D E\. Assume that every skew group ring of H /A over afield extension 
of F is a domain. Let a denote the augmentation ideal of A in FA and set Q = FH\aH. 
Then the natural map of F G onto F G jA extends to a homomorphism ip of the subring 
FG[Ql] ofD ontoDx. 

This, and also (^.(ker^)1 = {0}, see 6. below, can be proved directly from the 
statement of 1., but for the proof of 7. below it will be clearer if we work from the 
proof of 1. from the start. 
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PROOF. Let T be a transversal of H to G, and let x —•» x denote the natural projection 
of G onto GI A. Then as above D = E[G] = ®t^TtE = FG(FH\{0}yl and D{ = 
E\[G] = @tlEx = FG(FH\{0}y[. Choose/ as in the proof of 1. and set R0 = / [G], 
R = / [ / / ] , p0 = tnG and p = m//. As in 1. the set CR(p) is Ore in R and, cf. [4] 
4.5.3, we can form the rings of quotients S — ROCR(P)~1 and Si = (Ro/po)- G?/p(0)_1. 
Further there is a natural map 6 of S onto Si and ker 0 = pS — 0 , ^pG(p) - 1 . 

Clearly EG C 7?0 and tf/p is a domain with p D EH = a//, so g Ç G(P) and 
FGtQ-1] Ç S. Further F-G/AC R0/p0 and (F • / / / M M C (tf/p)\{0} = &/p(0), 
so Di is embedded in Si. Finally 9 maps FG onto F • G/A in the obvious way and 
hence maps FG[Q~{] onto D\. Let (/? be the restriction of 6 to FG[Q - 1]. 

6. Mr/î f/œ wotor/on afcove ( X o ^ ) ' = {°} ^ J nSo(k e r (^) z = W -

PROOF. As in the proof of 2. we have (pG^p)"1)'' = p ,'&(p)"1 and fl/CP&Cpr1)' = 
{0}. Also G normalizes p and &(p), so PliCPS')'" = 0 , ' ( f l / O ^ P r 1 ) ' = {0}-

7. /« f/z£ notation above 6 maps the group U(S) of units of S onto U(S\). In particular 
ifN is a normal subgroup ofD* then (N nU(S))6nD* is a normal subgroup of D\. 

We are not claiming that (U(FG[Q-l]))(p = D*. 

PROOF. By [4] 4.5.3, see final paragraph on page 157, we have U(S)6 = U(S\). 
The result follows. 

8. Let G G X. Choose H as in the second approach above. Then G and H satisfy 5. 
above for any field F. Since D = FG • (FH\{0})~1 we can choose the denominator 
r of [4], page 147, to lie in FH\{0} instead of just in FG\{0}. Choose K and A as 
on page 147 of [4]. Then FH HaG = AH, r G Q = FH\aH, and [4], 4.4.1 follow 
from 5. above. The remaining results of [4] involving X follows exactly as in [4] , 
with [4], 4.4. 8c and d) using 6. and [41, 4. 5. 8 using 7. 
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