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A METHOD FOR CONSTRUCTING SQUARE ROOTS IN 
FINITE FULL TRANSFORMATION SEMIGROUPS 

BY 

PETER M. HIGGINS 

ABSTRACT. Let T„ denote the full transformation semigroup on the set 
X = {\,2,. . . ,n}, that is the set of all mappings from X to X, the semi­
group operation being composition of mappings. The aim of this paper is 
to provide a method for the construction of all square roots of an arbitrary 
element a E Tn, by employing a representation of the members of Tn as 
special directed graphs. 

1. Preliminaries. Square roots of members of T„ have been characterized by Snow-
den and Howie [2]. However, the criterion established there for the existence of a 
square root of a E Tn is "disappointingly complicated". Indeed the authors suggest the 
alternative approach adopted here: to visualise the elements of Tn as digraphs and 
discover a method for constructing square roots by inspection of the digraph of a typical 
member a E Tn and its square. 

The following graph theoretic definitions and results come from [1]. For more 
background on digraphs the reader is referred to Chapter 16 in particular. A digraph is 
weak if it is connected when viewed as a graph. Afunctional digraph is a weak digraph 
in which every point has outdegree 1. An in-tree is a digraph with a sink (point of 
outdegree 0) which is a tree when regarded as a graph. 

RESULT 1 ([1], Theorem 16.5). The following are equivalent for a weak digraph D. 
1. D is functional. 
2. D has exactly one cycle, the removal of whose arcs results in a digraph in which 

each component is an in-tree with its sink in the cycle. 
3. D has exactly one cycle Z, and the removal of any arc of Z results in an in-tree. 

RESULT 2 ([1], Theorem 16.4). A weak digraph is an in-tree if and only if exactly 
one point has outdegree 0 and all others have outdegree 1. 

A tree is rooted if it has a distinguished point, called the root. An in-tree has a natural 
root in its sink. 

We associate with a E T„ a digraph (which we shall also call a) on n labelled points, 
where ij is an arc if ia = j . Every point of a has outdegree 1 so that the components 
of a are functional. Each component A of a can be pictured as a cycle ZA, together with 
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a family of in-trees rooted at the points of ZA. For two points on a digraph, / and j , the 
distance between / and j , denoted by d(ij), is the length of a minimal directed path 
from / toy (if such exists). For an in-tree T, the radius of T is the greatest distance from 
a point of T to the sink. It is easy to prove by induction on the radius that the direction 
on the arcs of an in-tree are implicitly defined once the sink has been specified. Hence 
if we adopt the convention that the cycles of a E T„ are directed counterclockwise, then 
the arrows may be deleted from the picture of a with the exception that the picture must 
provide indication of all cycles of order one in order to avoid ambiguity. For example, 
for the member of T]5 

4 2 3 4 5 6 7 9 10 11 12 13 14 15\ 

\2 3 4 5 6 4 2 9 10 11 12 13 14 11 10y 

the corresponding digraph is 

B 

15 

14 

13 

Although we aim to find a method of constructing square roots in Tn, we first 
consider a2 in order to discover how to recognize squares. The graph of a2 is 

1 1 0 0 0 13 

B 1 B. 

Observe that the component A, whose cycle is of odd order, has given rise to one 
component in a2 whose cycle is of the same odd order. The tree T has given rise to a 
pair of trees T0, T\, each rooted on the cycle of A\. The tree T0 has the same root as T 
and its points are the points of T whose distance from the root is even. Similarly T{ has 
as its points all the points of T an odd distance from the root, plus another point of the 
cycle as root. We shall not spell out the precise relationship between T0 and T\ yet, but 
note that the radius of the "odd" tree T, will always be equal to, or one greater than, 
the radius of the corresponding "even" tree T0. 
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In contrast the component B, upon squaring, gives rise to a pair of components 
BUB2. This occurs because the cycle of B has even order. The tree S "splits" into an 
even—odd pair of trees in a similar fashion to T, but the even and odd trees lie on 
different components. 

The foregoing casual analysis does contain all the ideas involved in the solution of 
the problem. Indeed we can already say that the map a as given above has no square 
root by arguing as follows. Suppose that (3 E T[5 and (32 = a. The component A of a 
must have arisen from the squaring of a component of (3 with a 3-cycle, as the only other 
way a 3-cycle could be introduced is by squaring a 6-cycle, which of course would 
create two 3-cycles. The tree T would then be half of an even—odd pair of trees whose 
partner would also lie on the cycle (456). In the absence of this partner, we conclude 
no such p exists. The argument is even quicker if we focus our attention on the 
component B, for in a square the components with cycles of even order must occur in 
pairs. Hence a is not a square as it has but one component with a 4-cycle. 

As another example consider the member a of T]3 given by 

We can state immediately that a is not a square, as there are an odd number of trees 
rooted on its cycle, and so they may not be associated in even—odd pairs (we must be 
a little more careful, a tree with one arrow gives rise, upon squaring, to a pair in which 
the "even tree" has no arrows, however, this is not a possibility here as a has no 
single-arrowed trees). This example first appears in [2], where the Snowden-Howie 
characterisation requires a page of ancillary calculation in order to show that a has no 
square root. 

2. The construction of parent trees. For a component A [tree T] of a (a E Tn) we 
shall write A2[T2] for the corresponding subgraph in a2. 

To examine the relationship between a tree T and its square, we introduce the idea 
of even—odd offspring. Let T be a tree with sink 0 and other points 1, 2 , . . . , m say. 
We define the even—odd offspring of T as an ordered pair of trees (T0,T\). The points 
of T0 (the even tree) are the points of T an even distance from the sink (including the 
sink) and jk is an arc of T0 if d(j, k) = 2 (in T). The points of the odd-tree Tx are the 
points of T an odd distance from the sink, together with a new point 0', and jk is an 
arc of 71, if d(j, k) = 2 (in T) or k = 0' and d(j, 0) = 1 (in T). We call T a parent tree 
of the pair (T0,T\). 
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One of the constructions that will need to be performed in order to find all square 
roots of a given a E Tn will be the construction of all parent trees (if any) of a given 
pair of trees (T0,T\). To this end we investigate the relationship between a tree T and 
its offspring. 

Take a maximal directed path P of T from an endpoint u of T to the sink and label 
the points of P by k, k — 1 , . . . , 0 where d(u,0) — k> 1. The path P corresponds to 
maximal directed paths (P0,P\) in (T0, T\) respectively, in which either \P} \ = \PQ\ or 
l^i I = \Po\ + 1 according as k is even or odd (\P\ denotes the length of the path P). 
Now consider a sub-tree T of T rooted at the point 2r on P (0 < 2r < k — 1). Now 
T corresponds to a pair of trees (TÔ,T[) rooted on (P0,P\) respectively. The pair 
(To, T\) is the even-odd offspring of T, each member of the pair is rooted at a distance 
r from the sink of P0 and P, respectively. On the other hand a tree T rooted at a point 
2r + 1 of P (1 < 2r + 1 < k - 1) gives rise to a pair of trees (To, T\) rooted on (P,, P0) 
respectively. Furthermore TQ is rooted a distance r + 1 from the sink of P, while T\ is 
rooted a distance r from the sink of P0; the pair (TQ, T[) is again an even—odd offspring 
pair of T. 

These observations allow us to construct all parent trees of a given pair (T0,T\) of 
trees with no common points. We assume inductively that we may construct all parent 
trees of any such pair (TQ, T[) for which the total number of points is less than that of 

(T0,T\). (There is no difficulty starting this induction for the pair (Oo, 0 0 ) n a s a 

T 
unique parent in O 0 .) 

If (T0, T\) is an even—odd offspring pair of some tree T, it must be possible to choose 
maximal paths P0,P\ to the sinks 0 and 0' of T0 and T\ respectively, such that \PX\ = 
|P0| or |P| | = |P0| + 1 • Furthermore it must be possible to make this choice so that the 
rooted trees of (P0,Pi) can be listed in even—odd offspring pairs so that for any such 
pair (T'o,T\) either T'0 is rooted on P0, T[ is rooted on Px at a distance r from the 
respective roots (r > 0), or T'o is rooted on Px at a distance r + 1 from 0' and T\ is rooted 
on P0 at a distance r from 0 (r > 0). 

We then construct a path P from (P0,Pi) as follows: label the points of P0 by 
0, 1,2,. . . ,k (where k = |P0|) and those of P, by 0', Y,... , up to either k' or (it + 
1)' as the case may be. The points of P from the sink outwards are then 
0, 1', 1,2', 2 , . . . ending either k' ,k or k', k, (k + 1)' as the case may be. The trees of 
P0 and Pi have been paired in offspring pairs according to the criterion of the previous 
paragraph. For each such pair (TQ, T[) construct a parent tree T'2 which will then have 
its sink on P at either the point r or r' as the case may be. The tree T so constructed 
is then a parent of (T0,T\) and all such parent trees can be so constructed. 

The theory developed will be illustrated by means of the following example. Let a 
E r20 be defined by the digraph: 
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We shall find all square roots of a, but for now let us calculate the parent trees of 
(To, 7 )̂ and (T2,T3) beginning with the former pair. 

There are two choices for a maximal path P\ from 7V 

9 7 6 5 8 7 6 5 
O~*~0""**-"0-*"M0 or O"**-O-*~-O"**-0 • If w e choose the latter then the only 

1 2 3 
possible choice for P0 is 0"*"~0~*h '~0 • There is only one non-trivial tree on P, or 

9 7 
P0, the tree 0"*~"0 occurring at the point of Px labelled 7, which can be paired with 

1 9 7 
the trivial tree at the point of P0 labelled 1, to give an even—odd pair ( O » 0 - * " - 0 ) 
in accord with the criteria laid down above. Our parent tree is then 

8 n 

i u—O 9 

where the root 3 is shaded. This parent tree is unique as the other choice for Px leads 
also to T. 

For the pair (T2, T3) from the components C and B respectively of our example, we 

14 13 12 10 
choose the path 0"**"0 » 0"* - "0 f° r o u r P\ ( m e other choice leads to the same 

19 18 16 
set of parents). There are two possible choices for P0, we choose Q - ^ - Q - ^ — Q 

15 13 20 18 
We may now regard ( O ^ O » (^ > Q ) as an even -odd pair positioned at the 
second point of Px and the first of P0, whence our parent tree is 
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14 

19 

13 
T 

18 

12 

16 

19 15 13 13 20 18 
Alternatively, we may regard ( O ' O ^ ^ O ) anc* ( O ' O"**""0 ) a s even-odd pairs 
giving the parent tree 

14 Q 

19 A—O 15 

13 A—O20 

18 (J) 

12 (S 

16 4 
The alternative choice for P0 gives another two parent trees, making four in all. 

3. The construction of square roots. Let a E T„. We shall say that a component 
A of a is odd (even) if its cycle, which we denote by ZA7 is of odd (even) order. We 
examine the relationship between the components of a and those of a2. 

Let A be an odd component of a. As observed before, A2 is also an odd component 
of a2. Each tree T rooted on ZA gives rise to an even-odd offspring pair (T0y Tx) on A2. 
The remaining question is to determine the point 0', the sink of Tx. Clearly, if we label 
the sink of T by 0, then 0' is the point of ZA adjacent to 0, travelling counterclockwise. 
If ZA has It — 1 points (t > 1) then 0 and 0' will be t points apart on ZAi (travelling 
counterclockwise). We shall call such a positioning of the roots of T0 and T, around ZA2 
consistent. 

Finally, let A be an even component of a with ZA of order 2t(t> 1 ). Then A2 consists 
of two components A0,A\ each of whose cycles has order t. A tree T of A gives rise 
to even—odd offspring (T0,T\) situated in different components. Note that given the 
roots of T0 and Tx, the cycle ZA can be uniquely reconstructed: if T0 and T, are rooted 
at 0,0 ' on ZAo andZAx respectively with ZAo = (0, 1 , . . . ,t),ZAl = (0', T , . . . ,r'),then 
ZA = (0,0 ' , 1 , 1 ' , . . . , t, t'). Hence all the offspring pairs of the trees of A must be 
rooted on A0 and A\ so as to determine the same cycle ZA. We call a list of pairs of the 
trees of A0,A\ consistent if each pair determines the same cycle ZA. 
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THEOREM. Let a G T„. Then a is a square if and only if the components of a can be 
grouped in pairs, (A0,A\) such that either: 

(Ï) A0 = A\ = A say, A is odd and the trees of A can be consistently listed in offspring 
pairs; or 

(ii) AQ 41 Ax, \ZA\ = \ZA]\, and the trees ofA0,A\ can be grouped consistently in 
offspring pairs. Furthermore each such grouping allows construction of a square root 
and all square roots can be so constructed. 

PROOF. It remains to check that given a and such a grouping of its components we 
may construct a square root. Suppose an odd component is paired with itself as in 
condition (i). The cycle ZA of A, which we take as (1 2 3 . . . 2t — 1), has a unique 
square root in ZA — (1 t + 1 2 t + 2 . . . t It — 1). For each pair of trees (T0, T\) 
construct a parent tree T. We then construct the component A with cycle ZA and one 
parent tree for each offspring pair. The consistency of the pairing guarantees that the 
reconstructed component A is such that A2 = A. 

Finally suppose A0,A\ are paired in accordance with (ii). Take an offspring pair 
(T0, Tx) and construct the unique cycle ZÂ whose square is ZA and such that the roots 
of T0 and T} are counterclockwise adjacent on ZA. Consistency of the pairing allows 
construction of a component A with cycle Z~A whose square is the pair (A0,A|). 

Therefore a square root of a may be constructed, and we get distinct roots for each 
choice of pairings of components and of trees. 

We calculate all the square roots of a as given in Section 2. The only possible pairing 
of components is (A, A) and (B,C). For the (A, A) case the only possible pairing of 
the trees of A is (T0, T}). Note that this pairing is consistent (if T0 was rooted at the point 
4, the pairing would be inconsistent and we would conclude that a was not a square). 
The unique parent tree was calculated in Section 2. For the (B,C) pairing the only 
possible pairing of the trees is (T2,T3). Since there is just one pair to consider, 
consistency is automatic. The four parent trees of (T2, T3) were calculated in Section 
2, giving 1 x 4 = 4 square roots of a in all, one of which is 

14 

i9 r 

13 Ç 

18 Ç 

12 0 

16 O 

io à 

20 

i—Q n 

>—O 17 

where we have chosen the tree labelled T in Section 2 as the parent tree of (T2, T3). 
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Our characterisation makes it relatively easy to calculate the number of squares in Tn 

for small n. Write down all possible forms for the digraph of a E Tn, and decide which 
forms represent squares. The number of members of Tn with a given form of digraph 
can be calculated by elementary combinatorial arguments. 

Our results can be used to construct all square roots of a E PTn (where PTn is the 
semigroup of all partial maps of { 1 , 2 , . . . , «} under composition). As is well known, 
PTn is isomorphic to the subsemigroup of T{0, \ „} consisting of all maps which fix 0. 
Therefore to calculate the square roots of a E PT„, we calculate the square roots of a, 
regarding it as a member of T^, i „}, but only roots which fix 0 need be considered. 

The method described here for extracting square roots for members of Tn can be 
extended to the problem of finding all pth roots for any prime p, which would then 
allow mth roots to be found for any positive integer m. 
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