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Abstract

Digital twins are a new paradigm for our time, offering the possibility of interconnected virtual representations of the
real world. The concept is very versatile and has been adopted by multiple communities of practice, policymakers,
researchers, and innovators. A significant part of the digital twin paradigm is about interconnecting digital objects,
many of which have previously not been combined. As a result, members of the newly forming digital twin
community are often talking at cross-purposes, based on different starting points, assumptions, and cultural practices.
These differences are due to the philosophical world-view adopted within specific communities. In this paper, we
explore the philosophical context which underpins the digital twin concept. We offer the building blocks for a
philosophical framework for digital twins, consisting of 21 principles that are intended to help facilitate their further
development. Specifically, we argue that the philosophy of digital twins is fundamentally holistic and emergentist. We
further argue that in order to enable emergent behaviors, digital twins should be designed to reconstruct the behavior
of a physical twin by “dynamically assembling” multiple digital “components”. We also argue that digital twins
naturally include aspects relating to the philosophy of artificial intelligence, including learning and exploitation of
knowledge. We discuss the following four questions (i) What is the distinction between a model and a digital twin?
(i1) What previously unseen results can we expect from a digital twin? (iii) How can emergent behaviours be
predicted? (iv) How can we assess the existence and uniqueness of digital twin outputs?

Impact Statement

Creating digital twins (or the process of digital twinning) is a concept of growing importance in a wide range of
industries and technology sectors. Digital twins can be used as a method to obtain value from data and as
deployment platforms for Al and data-science techniques such as machine learning and statistical analysis. In
many applications, digital twins offer the means to integrate together multiple previously separate components in
order to achieve a specified objective(s). This type of integration of digital components is based on a
fundamentally holistic philosophy. This paper presents a conceptual framework for digital twins that considers
how such a holistic integration can be achieved, including current questions of interest, and challenges for future
research.
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1. Introduction

A digital twin is a virtual representation of a natural, engineered, or social system' (called the physical
twin) that enables a two-way coupling between the digital and physical domains, using some form of
network-based connectivity (that is bidirectional flow of information typically across the Internet). The
digital twin evolves over time and is constructed from digitized information such as recorded data and the
output of computational models.

The origins of digital twinning are usually attributed to the work of NASA during the Apollo program,
where physical duplicates were used to help mission control support their astronauts respond to a critical
failure with their oxygen tanks and engine (Rosen et al., 2015). However, the term “digital twin” itself first
appears in work relating to product lifecycle management (see Grieves 2019 and discussion therein). The
idea has received considerable attention since then in a wide range of areas including product design,
manufacturing, civil infrastructure, medicine, asset management, health/condition monitoring, energy
networks, space structures, and nuclear fusion.”

Digital twins have been promoted as a way to accelerate our ability to understand engineering (and
other) systems at previously unmatched levels of performance. This vision and aspiration were captured in
the quote from Eric Tuegel and his coauthors (in the context of structural life prediction) in 2011 who
stated that:

“The digital twin is a reengineering of structural life prediction and management. Is this science
fiction? It is certainly an audacious goal that will require significant scientific and technical
developments. But even if only a portion of this vision is realized, the improvements in structural
life prediction will be substantial”—Tuegel et al. (2011).

This is certainly a very exciting prospect. However, it is important to always maintain a healthy level of
skepticism when dealing with such claims. The aspiration for digital twins, particularly from commercial
vendors, seems to imply that the new technology will somehow capture and contain “the best of
everything” in some optimal way (e.g. efficient assemblage and federation between models, data,
machine learning methods, processes, controls, decision, etc.). In addition, it is often implied that digital
twins will somehow overcome the fundamental challenges and limitations related to modeling that we
already have (e.g. limited computational resources, epistemic gaps), enabling benefits such as improved
fidelity, trust, and insight. But how exactly might that happen? When such questions are not satisfactorily
answered, the conclusion for some is that the whole idea is over-hyped, skepticism can become cynicism,
and genuine scientific and technological progress can become stalled.

We believe that part of the underlying issue stems from the fact that the concept of a digital twin is so
versatile and universally applicable, and so it is open to a very wide range of interpretations—as evidenced
by recent reviews (Korenhof et al., 2021). Those interpretations come from a large number of different
research and practitioner communities, which themselves have very wide-ranging cultures and practices.
However, a significant part of the digital twin paradigm is about interconnecting these previously
unconnected domains. For example, building socio-technical digital twins is a major ambition in this
field (Okita et al., 2019; Wang et al., 2020; Zhang et al., 2021a; Savage et al., 2022; Yossef Ravid and

! See Committee on Foundational Research Gaps and Future Directions for Digital Twins et al. (2024) for a more in-depth
discussion of these different types of systems, and their incorporation into a comprehensive definition.

2 For those readers that might be interested in the history, development and applications of digital twins there are multiple detailed
descriptions of these (and many other) topic areas in the growing number of review papers on the topic of digital twins including Rios
et al. (2015); Negri et al. (2017); Kritzinger et al. (2018); Cimino et al. (2019); Enders and HoBbach (2019); Boje et al. (2020);
Errandonea etal. (2020); Jones etal. (2020); Liu etal. (2020); Melesse et al. (2020); Wagg et al. (2020); Wanasinghe etal. (2020); He
and Bai (2021); Huang et al. (2021); Jiang et al. (2021); Lo et al. (2021); Semeraro et al. (2021); Shahat et al. (2021); Korenhof et al.
(2021); Botin-Sanabria et al. (2022); Purcell and Neubauer (2022); Singh et al. (2022); Somers et al. (2022); Tao et al. (2022); Jafari
et al. (2023); Liu et al. (2023); Sepasgozar et al. (2023); Thelen et al. (2023); Dale et al. (2023); Xames and Topcu (2024);
Katsoulakis et al. (2024); Piras et al. (2024); Wang et al. (2024); Jin et al. (2024).
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Aharon-Gutman, 2022). As a result, when conversations happen, people are often talking at cross-
purposes, because they have different starting points, cultural assumptions, biases, and motivations.

Therefore, in this paper, we seek to understand the philosophical context (or foundations) that underpin
the concept of a digital twin. We will argue that the philosophy of digital twins is fundamentally based on
the idea of holism. In short, certain properties represented by a digital twin apply only to wholes formed
out of assemblies of more basic parts, such that it is conceptually incoherent to apply these properties to
lower-level components of the system. Furthermore, a key (and related) aspiration for digital twins is that
they can capture emergent phenomena. However, as we will describe, these are not the only philosophies
that relate to digital twinning. Little has been previously published on the philosophy of digital twins,
specifically, with some notable exceptions, such as the work of Korenhof et al. (2021), who have proposed
that digital twins are “steering representations”—something we discuss later on.

It is important to note that, because holism and emergentism are typically at odds with the reductionist
paradigm used in the majority of current mainstream science and engineering models, the approach is neither
well established nor well understood. To support our argument, we will review several aspects related to the
philosophy of modeling. In the second half of the paper, we present a set of principles for digital twinning
along with some examples that are intended to support the development of a more complete philosophical
framework—an exercise we leave for further research. Some readers may wish to jump ahead to these
principles prior to reading the first half of the paper, to get an idea of our destination. Others may wish to
review the foundational context set out in the first half. We leave this as a choice for the reader.

The paper is structured as follows. In Section 2, we present the philosophical context for the concept of
digital twins. The concept of modeling will be key to this discussion, and we will explore related
philosophical topics and issues that will help the reader understand the motivation behind the principles
presented in Section 4. In Section 3, we then turn to consider the types of complexity that occur in
engineering systems, and how this might be represented in a digital twin. With the context set, in
Section 4, we then introduce a series of principles that we argue could form a conceptual framework
for digital twins, or the process of digital twinning. This framework is then used to suggest answers to four
key questions relating to digital twins. Finally, in Section 5, we conclude and suggest several open
questions and future directions for research.

2. Philosophical issues and concepts for digital twins

Although there has been much discussion on the potential definitions relating to digital twins (Semeraro
et al., 2021; Committee on Foundational Research Gaps and Future Directions for Digital Twins et al.,
2024), one area that has not received much attention is the philosophical underpinnings of digital twinning
as a distinct concept and practice.® In this section, we seek to address this gap.

We begin by reviewing key topics in the philosophy of modeling as applied to a wide range of scientific
and engineering domains, before turning to related concerns (e.g. epistemic issues). Models are very
important for digital twins because they are one of the key components that make up a digital twin.*
However, the relationship between models and digital twins can also be a common source of confusion
(e.g. what distinguishes a digital twin from a mere model or simulation).> Therefore, it is helpful to first
unpack some key issues that will help us in our later discussions.

? Though see Korenhof et al. (2021) for a notable exception.

“ Throughout this paper, we will deal primarily with computational models, because of our focus on digital twins. However, there
is a significant number of different model types that are relevant in the context of digital twins (e.g. statistical models, data-driven &
machine learning (ML) models, hybrid models, finite element models, computational fluid dynamics models, agent-based models,
behavioural models, discrete event simulation models, process models, analytical models, empirical models, black-box/white-box
models, Markov models, graphical models, multi-physics models, geospatial models, fuzzy logic models, neurosymbolic models,
etc.). These types of models will overlap with one another due to a common set of “family resemblances”, such as their “ability to
represent”, the fact that they are “idealised” in some sense (e.g. toy models), or because they can aid in increased knowledge and
understanding.

> We will discuss this in more detail in Section 4.2.
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Figure 1. Schematic diagram showing the typical method of making a model of a physical system. The
physical system can be a process or a material object.

2.1. Some key concepts in the philosophy of modeling

The history of philosophical approaches to modeling as a concept and practice goes back as least as far as
ancient periods of Greek, Chinese, and Indian thought (Curd et al., 2014). It is not our goal to rehearse or
review this entire history.® Rather, our goal is simply to understand key parts of the philosophical context
of digital twinning in order to motivate the presentation of the principles for digital twinning set out in
Section 4. Therefore, we identify and discuss some key concepts that underpin how a model of a physical
system is typically made in a science and engineering context—with an emphasis on drawing out certain
implicit assumptions. To support this goal, an idealized example of such a model-making process is
shown schematically in Figure 1.

The process starts with a series of “observations” (or measurements) of some physical system. This
presumes that there is already a physical system in existence, which may not be the case in engineering
when we are asked to design something not previously built. Some discussion on this is given in Wagg
et al. (2020), but for now, we assume that a physical system is available for observation. These
observations are then used to construct a model based on a set of “assumptions”. Next, the “output(s)”
ofthe model (e.g. predictions) are then interpreted, and in many cases, this leads to “improvements” being
made to the model (e.g. optimizing the performance of predictions), and the process is repeated as often as
deemed necessary.

The idealized process of model making (or abstraction) shown in Figure 1 allows us to locate and
separate some key philosophical concerns: natural laws, determinism, reductionism, and holism &
emergence.

In science and engineering, a “physical system” is typically assumed to be mechanistic in nature. This
mechanistic worldview is characterized by a beliefin a set of “natural laws” that govern physical systems.
And, science seeks to discover these laws or rules, relies upon them to apply “universally,” and then
utilizes them within subsequent processes of model-making. The value of such a belief is articulated well
by Descartes, who said that:

“...reliable rules which are easy to apply, and such that if one follows them exactly, one will never
take what is false to be true or fruitlessly expend one’s mental efforts, but will gradually and
constantly increase one’s knowledge till one arrives at a true understanding of everything within
one’s capacity.”—René Descartes: Rules for the Direction of the Mind (see reprint: Descartes,
1985, first published 1701).

® Readers are referred to Oberkampf and Roy (2010) and Curd et al. (2014) for comprehensive overviews of modelling in the
scientific and engineering domains. Note also that the word “model” in this context is used to mean a “representation”, e.g. an
abstraction, of the physical system on interest. It could be any type of model used in the context of engineering practice depending on
the context. However, a point we return to later is that models can be made of both processes and material objects.
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Natural laws, such as those of physics, biology, and chemistry, provide a foundational set of “rules”
describing how real-world systems operate. Because digital twins aim to represent these real-world
systems in a virtual environment, an understanding of these laws allows researchers and developers to
ensure that their models accurately reflect these fundamental rules (e.g. incorporating Newton’s laws of
motion into a digital twin of a spaceship).

“Determinism” connects to this concept of natural laws insofar as it is assumed that if natural laws are
strictly followed, then future states of a system can be precisely predicted’. And, if the physical world is
deterministic, then digital twins should, in theory, be able to predict the future states of a system given
accurate input data. These beliefs (among others) are the first set of assumptions that cascade through
the typical model-making process and affect our “observations”—assumptions that we will later
challenge.

A belief in a law-governed, deterministic world, however, does not preclude the possibility of a
complex world. Physical systems can be highly complex (e.g. economies or ecologies)®, and so it is
common to (conceptually) decompose (or reduce) physical systems into “simpler” parts to be more
effectively represented and studied. By studying this reduced version, it is assumed, useful information
about the complete system can be obtained (Heylighen et al., 2007).

For the purpose of this discussion, we can consider two forms of reductionism. The first is component-
based reductionism which involves dividing the physical system into separate physical (e.g. geometric or
process) components, and if required dividing these components into smaller and/or simpler parts, as
required. The second is physics-based reductionism, which is to simplify, approximate, or even neglect
entirely some part of the physics. Physics-based reductionism can be applied to the whole system or sub-
components of the whole system after component-based reductionism has been carried out. In Figure 1,
these reductions are encoded as a further set of assumptions. The reductionist philosophical approach has
come to dominate scientific and engineering practices over time, and is associated with a Newtonian
world-view—Newton himself said:

“We are to admit no more causes of natural things than such as are both true and sufficient to explain
their appearances. To this purpose, the philosophers say that Nature does nothing in vain, and more
is in vain when less will serve; for Nature is pleased with simplicity and affects not the pomp of
superfluous causes.” — Isaac Newton, Principia: The Mathematical Principles of Natural
Philosophy (Newton, 1686, emphasis added).

Here the idea of avoiding “superfluous causes” and the idea that “Nature is pleased with simplicity” has
been taken as an argument for reduction to enable simplification.

Classical mechanics has been built on these beliefs and assumptions, with huge success, and the
plethora of law-governed, deterministic, and reduced models are typically defined with a high degree of
mathematical rigor. But experience also tells us that much about the physical world still cannot be
predicted or modeled to high levels of precision. Reductionist models, by definition, cannot capture the
holistic behavior of the physical system, and they also struggle to account for emergent behaviors.

Roughly, “emergence” refers to “phenomena that arise from and depend on some more basic
phenomena yet are simultaneously autonomous from that base” (Bedau and Humphreys, 2008, p. 1).
However, as is evident from the ongoing debates in the philosophy of science, we should not presume that
a single type of emergence exists, nor that a single definition will always and everywhere suffice’. This is
also true for the emergence of digital twins, given the myriad uses and phenomena that digital twins can

" This idea is generally attributed to Laplace (see reprint: Laplace, 2012, first published 1795).

8 The distinction between complicated and complex systems will be discussed in Section 3.

° For instance, we could distinguish “weak” forms of emergence that reflect epistemological limitations from “strong” forms that
seek to defend ontological commitments. Or, we could distinguish synchronic from diachronic forms of emergence, based on
whether the high-order phenomena or properties emerge over time or not. See the edited collection by Bedau and Humphreys (2008)
for further discussion of these debates.
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represent and affect. However, a key aspect of emergence that will be important later on, is that complex
systems often exhibit properties or behaviors that cannot be fully explained or predicted by understanding
the individual components of the system alone. Often such interacting systems contain intricate hier-
archies or interdependencies, and emergence (e.g. self-organization) can happen within a part, or across
the entire system (see e.g. Bedau and Humphreys 2008). The existence of such behaviors supports the idea
of holism, which we can describe as the assumption that systems should be viewed as wholes, not just as
collections of parts. In terms of model-making, this approach requires studying (and modeling) the
interdependencies and interactions within a system, rather than isolating and analyzing individual
components—in contrast to the reductionist approach.

But emergence and holism also place pressure on the notions of determinism and natural laws, as
emergent behaviors cannot typically be anticipated or predicted. This raises the question of whether such a
barrier is metaphysical or epistemic in nature (that is something about the fundamental nature of the
physical system or our knowledge of the system). Let us look at the epistemic issues first.

2.2. The role of knowledge in model making

To start, two distinctions can be drawn between objectivism and subjectivism, and between epistemic
uncertainty and aleatory uncertainty.

Very briefly, objectivism holds that the “model making” process in Figure 1 is an attempt to objectively
describe and represent reality. Models, then, are seen as tools that aim to accurately capture the underlying
structures, laws, and relationships that exist in the natural world, in a manner that is independent of human
perception or interpretation. In contrast, subjectivism holds that models are information constructs that
reflect or encode human perspectives, interpretations, and choices. As such, the process of observing a
physical system is contingent on factors such as the goals of the study.'” The distinction between aleatory
and epistemic uncertainty relates to this first distinction.

On the one hand, aleatory uncertainty (sometimes known as “stochastic uncertainty”) refers to any
uncertainty that arises from inherent randomness or variability in a system (see e.g. Hughes and Hase
(2010)). Such uncertainty (or chance) is considered irreducible because it is linked to the natural
variability of phenomena. An objectivist, therefore, would take this uncertainty to be real and to exist
independently of our knowledge or beliefs.

On the other hand, epistemic uncertainty refers to uncertainty that arises from a lack of knowledge or
incomplete information about a system. The missing knowledge (or model error/inadequacy) can arise
due to many factors (e.g. inadequate measurement or sensors, incomplete theories). In the context of
subjectivism, uncertainty is, therefore, not just a feature of the external world but crucially depends on the
observer’s knowledge and perspective. For instance, if we are uncertain about the parameters of a model
due to insufficient data (that is observations), this uncertainty is epistemic in nature and could in principle
be reduced by gathering more data.

In practice, the distinction between objectivism and subjectivism, and between aleatory/epistemic
uncertainty is not always as clear-cut as presented here.!! Some uncertainties may exhibit characteristics
of both aleatory and epistemic uncertainty—but saying more about this is beyond the scope of the current

19 This relates to the idea of relativism and also perspectivism (Giere, 2019) in the sense that the “truth” (or experience) is affected
by and/or not the same for all observers. For example, as was famously shown to be the case in the early 20™ century physics—see for
example Greiner (1994); Rovelli (2016).

"!'Nor have we said anything of how the the subjectivist or objectivist would handle cases that are common in digital twinning,
such as “what-if” forms of modelling and simulation (e.g. scenario testing) where there is no reality, because the digital twin is
“representing” some future state. In such cases, the objectivist could argue that although the various future scenarios have not
occurred, the underlying laws and principles governing the system (including those latent in data-driven approaches, such as
machine learning) are objective and can be applied to predict future states. Insofar as their model captures these laws or principles,
therefore, it serves as a formal or empirical extension of known facts or laws. In contrast, the subjectivist could claim that modelling
already involves myriad subjective choices, such as the selection of parameters, features or variables, and future (or counterfactual)
scenario testing only serves to further exacerbate these sources of uncertainty (e.g. multiple plausible futures or scenarios). Our
thanks to an anonymous reviewer for raising this point to allow us to clarify.
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discussion. A related issue in both the philosophy of science, but also moral philosophy and the social
sciences is the impact of human bias on the myriad value judgments that intersect with science and
engineering (e.g. model selection and design choices).

Firstly, human interpretations are problematic, and it is difficult for us to be objective when construct-
ing models and interpreting the results. Humans tend to adopt worldviews that suit them (e.g. techniques
or methods that are familiar to a specific community of practice), and we are all subject to cognitive biases
(e.g. confirmation bias). In addition, poor research practices can mean that models are not properly
validated, calibrated, or tested once they are built, leading to claims that many published research results
may in fact be false (loannidis, 2005; Marques, 202 1). Furthermore, groups and communities are subject
to negative group dynamic effects, such as those that may stem from a lack of diversity or inclusivity,
combined with entrenchment and groupthink that can exacerbate negative views of other groups and their
associated philosophies. For example, those working in the “hard sciences” often fail to understand the
approach and values of those working in social sciences or humanities and vice versa (see reprint: Snow,
2012, first published 1964). There are multiple other types of philosophical tribalism and dogmatic
behavior!'? that can impede the adoption of useful model-making practices. For example, researchers and
practitioners are often philosophically aligned to either guantitative or qualitative methodologies, where
in many circumstances, mixed methods (e.g. a combination of quantitative and qualitative methodologies,
see e.g., Varga 2018) would be more beneficial. This will be an important point for digital twins, where
both quantitative and qualitative functions are often required.

So far, these initial philosophical concepts have addressed only the top row of Figure 1. However, the
schematic is cyclical in nature, with improvements feeding back in after the interpretation of a model’s
output(s). Therefore, let us focus on this stage next.

2.3. Defining a purpose for a model

In 1982, British statistician George Box published the now-famous adage, “All models are wrong, some
are useful. ” Box’s central point was that no (statistical) model can ever be “correct” in the sense that there
is a “perfect” match with the physical system. But Box’s statement also emphasizes the idea of model
usefulness (or utility'*). We can capture the idea that models can have a useful purpose, even though they
can never be perfect, with the concept of utility. But we can also ask, “useful for what?”

An obvious response would be that the primary purpose of a model is to gain (or enhance, extend,
and/or clarify) knowledge. Such a view seems to be captured by the idea of “model-dependent realism,”
expressed by Hawking & Mlodinow’s Grand Design (Hawking and Mlodinow, 2010), which claims that
the value of models lies in their ability to make accurate predictions and provide useful explanations, not
in any claim to absolute truth (that is realism). As Hawking & Mlodinow state:

“According to model-dependent realism, it is pointless to ask whether a model is real, only if it
agrees with observation.”—Hawking and Mlodinow (2010) .

This pragmatic perspective has a rich history in both philosophy and philosophy of science'*. A common
emphasis of pragmatic perspectives is how knowledge gained from scientific models ultimately leads to
additional explanatory capability or insight—noting, again, the cyclical nature of Figure 1.'°

12 French philosopher, Simone Weil captured this sentiment with the quotation: “The villagers seldom leave the village; many
scientists have limited and poorly cultivated minds apart from their specialty”—Weil (1968).

13 A concept developed in economic and game theoretic models in the 20th Century (Heylighen et al., 2007) and also extended to
other contexts including, for example, structural health monitoring (Hughes et al., 2021).

14 See (Dennett, 1991) for a highly accessible discussion of the central issues that also relates to the topic of emergence.

15 Once additional knowledge is gained, it can be used (exploited) to create further utility (or practical value), for example by
supporting decisions. We will say more about this broader notion of practical value (e.g. as it relates to social or ethical
considerations of digital twins) in section 5.2
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Both insight and utility depend on a final key concept, trust. As Harlow Shapley, the American
astronomer said,

“No one trusts a model except the man who wrote it; everyone trusts an observation except the man
who made it.”

The first part of this quote acknowledges that models are often, and rightfully, viewed skeptically by those
who did not create them. For instance, whereas the creators of a model may be intimately familiar with its
strengths and limitations, leading to greater trust or confidence in the model’s utility and ability to generate
insights, others may be more critical or cautious about accepting its predictions or conclusions due to a
lack of familiarity with the assumptions that went into its development. But as the second part of the
quotation emphasizes, the creators of the model who actually made the initial observations will also be
more aware of potential errors, biases, or limitations in their methodology, and thus may be more cautious
about the reliability of their own observations.

With Shapley’s quote in mind, if we cycle through the process depicted in Figure | we can begin to see
how the various assumptions and values we have identified so far would become increasingly concealed,
leading to greater uncertainty and potential sources of distrust. It is perfectly possible, for instance, for
people to be working on a model for which they did not do any of the original model makings, and
therefore be unaware of the philosophical context used in developing the original version of the model, or
the encoded assumptions within the model that are inherited by successive generations of practitioners
(e.g. a choice to use one “standardized” measurement scale over another). And, in many domains
(engineering being one) the separation of practitioners from the model-making process (and the associ-
ated assumptions) is increasingly common as modeling becomes more frequently integrated into
sophisticated software tools or packages.

To take just one example of how this separation could affect notions such as utility, insight, or trust,
consider the choice about how to delineate and demarcate the boundaries of the modeled system when
dealing with complex physical systems.

In his book, “Seeing Like a State”, James Scott provides a compelling account of how such choices
about delineation or demarcation—choices that are inseparable from the process of modeling—can have
significant societal impacts. Scott’s account deals with non-computational models, and focuses on the
emergence of scientific agriculture (Scott, 2020) in 18" and 19™ Germany. However, it is still instructive
for our paper, because Scott provides evidence of how foresters began to view forests primarily in terms of
their commercial timber yield, leading to a model of forests that were orderly, regimented, predictable, and
controllable, but also fundamentally mono-cultural and antithetical to the inherent diversity of the real
forests. To put it another way, the utility of this scientific (but non-computational) model, optimized the
production of a single commodity (timber) while ignoring other aspects of the forest’s ecosystem, such as
undergrowth, soil health and nutrient cycles, wildlife habitats, and impacts on local communities who
used trees for additional purposes (e.g. sap)—a myopic set of insights.

Initially, this approach led to increased timber yields and was seen as a success. But, because so much
of the real-world (or physical system) fell outside of the scope of the model, over time these “simplified”
forests became more vulnerable to diseases, pests, and environmental stresses due to how they were
managed (or controlled). In summarizing his example, Scott provides a persuasive argument against
modeling that is fundamentally reductionistic:

“The metaphorical value of this brief account of scientific production forestry is that it illustrates the
dangers of dismembering an exceptionally complex and poorly understood set of relations and
process in order to isolate a single element of instrumental value.”— (Scott, 2020, p.21, emphasis
added).

While some may wish to dismiss such concerns as falling beyond the scope of science, and instead falling
within the jurisdiction of ethicists or policy-makers, this would be a naive position to hold.
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In contrast, the claim we wish to defend here is that utility, trust, and insight are three key generic
requirements (or properties) of models that should also extend to digital twins'®. This should not be read as
a dismissal of other important scientific values like fidelity, parsimony, cost, or optimality. Rather, we
would argue that these characteristics will depend on the specific context of the model (or digital twin)
(that is in contrast with the previous generic requirements). Parsimony, however, requires a further
comment as it relates to one of the key principles to be discussed later in Section 4.

Essentially the parsimony principle for models means that a simpler model with fewer parameters is
regarded as better than more complex models with more parameters, assuming that both models fit the
observations similarly well. However, in recent years, and particularly in research related to living
systems, cognitive science, and Al there is a growing amount of evidence that does not favor parsimony.
For example:

“Al researchers were beginning to suspect—reluctantly, for it violated the scientific canon of
parsimony—that intelligence might very well be based on the ability to use large amounts of diverse
knowledge in different ways,”—Pamela McCorduck, (McCorduck, 2004).

See also discussions in Marsh and Hau (1996); Huelsenbeck et al. (2008); Hastie et al. (2009) (for
example) relating to nonparsimonious models'”.

In summary, this section has explored a range of philosophical topics and concepts related to an
idealized process of modeling. This will serve as an important context for the principles we set out in
Section 4. However, the discussion has been based on an idealized model, with an emphasis on scientific
representation. As such, it is important that we provide a more realistic account of the true complexity of
such a process, as well as addressing some of the specifics of engineering practice.

3. Complexity in engineering systems

“Engineering is the art of modeling materials we do not wholly understand, into shapes, we cannot
precisely analyze, to withstand forces we cannot properly assess, in such a way that the public has
no reason to suspect the extent of our ignorance”—Dr. A. R. Dykes, from the British Institution of
Structural Engineers President’s Address, 1978.

By the mid 20™ Century, many researchers were identifying that complex behaviors occurred that could
not be modeled using the reductionist paradigm. This included a diverse range of applications such as the
long-established field of life sciences (see e.g. Weaver (1948)), and new areas like information theory
(Shannon, 1948), cybernetics (see e.g. Ashby (1956)), operations research (see e.g. Churchman et al.
(1957)), and artificial intelligence (see e.g. Turing (1950)). Within these fields, many researchers were
interested in studying emergent behaviors, and so were attracted to holistic philosophies for building
models. All of these topics would become large fields of research in their own right, but they also all
contributed to the three important current fields of study. The first is complexity science'®, which primarily
focuses on emergent and adaptive behaviors (see e.g. Waldrop 1993; Mitchell 2009; Jensen 2022). Second
is systems research which is focused on managing large-scale socio-technical systems (see for example
Meadows (2008)) and the related field of systems engineering. Lastly is artificial intelligence (see Russell
and Norvig (2010)), which has been very influential in developing new approaches to learning from data,
knowledge modeling, and intelligent agents (amongst many other things).

16 These have some similarity with “purpose, trust and function” from the Gemini Principles (Bolton et al., 2018).

"7 Note also the recent advance in hyperdimensional computing Thomas et al. (2021).

'8 Complexity science (including complex adaptive networks) has primarily been developed through the study of life and
information sciences and sociology with an emphasis on the interaction that occurs between “agents” in networks or other interactive
frameworks (Waldrop, 1993; Mitchell, 2009; Jensen, 2022). There are a range of emergent behaviours, for example, self-
organisation (Gershenson, 2007).
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When considering complex system behavior, it is possible to distinguish between different categories
of a system based on linear versus nonlinear, ordered versus disordered, deterministic versus non-
deterministic'?, reduced versus holistic, etc, and combinations of these categories. Here we will adopt
the broad distinction that complex relates to a system that can have emergent behavior (i.e. “more is
different”) whereas complicated relates to a system that is not “simple” but does not have interacting
components that could lead to emergent behaviors.”’ These distinctions will be important when we
discuss the principles related to digital twins in Section 4. We also note here that complexity techniques are
already being promoted for digital twins of cities see for example Rozenblat and Fernandez-Villacanas
2023; Caldarelli et al. 2023.

3.1. Types of complexity in engineering systems

Engineers are expected to design, build, commission, operate, maintain, manage, and decommission a
huge range of different systems. The quote from A. R. Dykes at the start of this section gives a sense of the
engineering process. Multiple categories of complex and uncertain factors (in this case materials, shapes,
forces, and public expectations) need to be brought together to achieve the required task. Table 1 lists
some of the types of complex (and/or complicated) phenomena that can arise in, or influence, physical
systems.

It is typical for engineering applications to have multiple types of complexity contained within them
from the list in Table 1. For example, geometric complexity and joints are used extensively in a wide range
of manufactured products, as are sophisticated materials, such as composites. These different aspects of
the manufactured product are often designed, modeled, and tested separately before being integrated into
the final version of the product.

As the format of Table 1 Indicates, our usual method for dealing with mixed complexity is to separate it
and consider each type independently. Usually, this is mapped onto our siloed (e.g. reduced) set of
divisions within subject areas (and education system). Roles and specialisms are also then aligned with
these divisions, creating teams of experts in each separate topic area.

Furthermore, unlike scientific inquiry, where the focus is on understanding and explaining the behavior
we observe (as in complexity science), engineering is often required to create something new or deal with
a socio-technical system that is highly complex/uncertain and is changing over time?!. In order to try to
address some of the related challenges, the field of systems engineering has developed some method-
ologies based on a holistic approach, which we discuss next.

3.2. Systems engineering

Systems engineering was developed during the 20™ Century alongside the related other fields of systems
research and complexity already described above®> (Schlager, 1956). The underlying philosophy of
systems engineering is that of holism, and the field has now matured into an established methodology for
managing complex engineering projects (see e.g. Walden etal. 2015; Hirshorn etal. 2017). At the heart of
current-day systems engineering is the role of processes, to enable the design, implementation, and
management of the engineering application or project.

Systems engineering processes have evolved from being document-based to being model-based
(Estefan et al., 2007), as technologies have improved to allow information to be captured with more
automation and presented graphically. This approach underpins the diagrammatic approach to enterprise
architecture (Dandashi et al., 2006) and could be regarded as a predecessor to digital twinning. Indeed, digital

' Note that the use of non-deterministic can be interpreted in different ways by different communities. There is also
indeterminism which is generally taken to mean non-causal e.g. not caused in a deterministic way.

20 The interested reader is directed to discussion in Ladyman et al. (2013), Van Beurden et al. (2013) and Grieves and Vickers
(2017) for further comments on the notion of complexity.

2! Added to which there is also the complexity of cooperation (Axelrod, 1997).

221t has also incorporated multiple other influences that we have not described, most notably aspects of management research.
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Table 1. Examples of complex (and/or complicated) phenomena that can influence physical systems

Type Examples (not an exhaustive list)

Environmental Temperature, pressure humidity & climatic effects; physical location
Geometric Multiple components of varied shape & geometries; joints

Material The physical & chemical properties of matter; wear, ageing & damage
Behavioural Mechanistic behavior of solids & fluids; vibrations & time-dependence
Operational Control & feedback; updates; faults; failures; connectivity

Computational Time & memory requirements; processing resources; data sizes

Processes Design; decisions & interventions; sequencing & workflow; behaviour
Organizational Structure & hierarchies; practices & organisation culture; rewards & incentives
Social Attitudes; motivations; culture; education level; religion; beliefs; gender etc.

twins that enable planning and design may be considered examples of model-based systems engineering as
they facilitate the exchange of information, alignment of design, and management of programmatic
complexity in the same way as now-traditional systems engineering documentation processes do.

The ethos of systems engineering is to give a framework that enables multiple uncertainties and
complexities to be managed simultaneously, and for the technical processes to be aligned with the
decision, management, and wider related business processes. It is important to make a clear distinction
between working with “engineered systems” and the practice of engineering in complex systems.
Confusingly, both can be called systems engineering, but the key distinction is that engineered systems
can be controlled/optimized whereas complex systems typically cannot.

The systems engineering community has given a considerable amount of time and thought to the
philosophical and pragmatic frameworks needed to deal with complex/complicated engineering appli-
cations. For example, in recent papers (Watson, 2019; Watson et al., 2019) 3 hypotheses for systems
engineering were articulated:

HI. If a solution exists for a specific context, then there exists at least one ideal systems engineering
solution for that specific context.

H2. System complexity is greater than or equal to the ideal system complexity necessary to fulfil all
system outputs.

H3. Key stakeholders’ preferences can be represented mathematically.

We shall discuss these hypotheses further in Section 4.2, in the context of digital twins. But to mention
just briefly, H1 relates to the concepts of existence & uniqueness. H2 is related to the idea of counter-
parsimony, by which we mean choosing not the simplest model that fits the data, but the model with
sufficient complexity?®. And, H3 is anticipating the stakeholders preference for quantitative solutions.

Other important concepts that are emphasized in systems engineering are the idea of the /ifecycle of a
system, requirements analysis, and hierarchies of systems that lead to systems-of-systems (see e.g Adams
and Meyers (2011))*4.

Although the subject borrows from and integrates, several of the concepts and methodologies from
systems research and complexity science, it should be noted that some researchers have been critical of the
systems theory ethos. For example, Micheal Grieves expresses reservations about treating everything as a
process;

23 This has an interesting connection to the concept of requisite complexity in cybernetic systems—see Beer (1985).
24 Note there is also the extension of hierarchies to more complex structures such as holarchies—see for example Calabrese et al.
(2010); Cardin et al. (2018) and references therein.
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“We like to think that what we do in our organizations is process. Under systems theory, the process
is a deterministic way of linking inputs to outputs. In a systems view of the world, we have inputs,
processes, and outputs. For any given set of inputs, we get a well-specified and consistent set of
outputs. It is all very neat and well defined.” (Grieves, 2005, page 19).

Grieves argues instead that not everything can be made a deterministic process, and that engineers need to
make extensive use of practices as well, with results that lead to satisficing”> instead of optimization
(Grieves, 2005).

The broader point is that engineering contains some form of “art” (alluded to in the A. R. Dykes quote
above) typically encoded in the form of attributes like engineering judgments and design choices®®. As
much as many practitioners would like, these creative activities cannot be entirely turned into repeatable
processes. It is interesting to note that some in the social science community, who have adapted systems
thinking, have extended the concepts to include dialogue and create an architecture of evolution—see for
example Christakis (2006)>7.

Using more philosophical arguments, Weinbaum (2015) describes systems theories as based on a
“black box dogma” with unresolved clarity on issues relating to the role of feedback, evolutionary
adaption, and causality.

In response to the criticisms, it is certainly true that the systems engineering approach favors defining
multiple processes with associated inputs and outputs, and that in itself could be an over-constraining
structural format for some applications. It is also true that the role of reductionism and deterministic
modeling was strongly used in some of the early systems research fields, and some of that thinking has
been inherited by the modern version of the field. Finally, creative activities cannot always be turned into
processes, and we should recognize that.>®

As pragmatists, engineers often have little concern for this type of philosophical subtlety, but it should
be borne in mind when these approaches are used in digital twins. Despite the limitations, systems
engineering offers some useful tools for constructing digital twins, and the connections have already
begun to be discussed in the literature—e.g. by Heber and Groll (2017); Schluse et al. (2018); Madni et al.
(2019); Jinzhi et al. (2022); Michael et al. (2022); Olsson and Axelsson (2023). However, we are seeking
to simulate emergent behaviors, of the kind discussed in Section 2, which we will now return to.

3.3. Emergent behaviours

In the context of digital twins, the basic idea is to join components together to reconstruct the dynamic
behavior of the combined system. The simplest case is joining two components.

In engineering, we make extensive use of numerical simulation tools that essentially reduce (e.g. break
up) complex geometries and behaviors into an assemblage of simpler elements for which the behavior can
be defined. These techniques, such as the finite element method, have evolved into sophisticated tools that
are widely used to simulate the behavior of complex/complicated systems that cannot be captured using
simpler modeling techniques (see e.g. Crisfield 1997). The outputs from element-based methods are, in
fact, emergent behaviors. This usually relates to field quantities such as stress, displacement, flow rate, or
temperature, which are approximated as a form of “self-organization” between the elements, acting within

25 A decision-making strategy (or heuristic) in which an agent selects the first option that meets some pre-defined criteria or
threshold, regardless of whether it is the optimal one. See also regret minimisation.

26 There is a similar quotation from Ove Arup, who is quoted to have said that: “Engineering problems are under-defined, there are
many solutions, good, bad and indifferent. The art is to arrive at a good solution. This is a creative activity, involving imagination,
intuition and deliberate choice.”

27 Note that we are not distinguishing here between the different facets of systems theory such as “hard” and “soft” systems
thinking. For a more in-depth discussion of these topics, the interested reader can find more information in Checkland (1999).

28 In fact, creative process such as design have been explored using qualitative research methodologies, such as activity theory,
see e.g. Barthelmess and Anderson (2002); Cash et al. (2015); Lu et al. (2018).
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the overall element-based model. Essentially, the overall behavior arises from local interactions between
the multiple elements.

In addition to self-organization, there are other types of emergent behavior, and multiple authors have
described how the various types might be categorized—see for example Ashby (1956); Holland (2007);
Frei and Serugendo (2012); Fernandez et al. (2014); Holland (2018); Tadi¢ (2019); Jensen (2022) and
references therein. Broadly speaking, the types of emergent behaviors range from relatively simple types,
such as self-organization and synchronization, (Jensen, 2022), through to evolutionary forms of emer-
gence (Kauffman, 2000). The ability to make predictions for emergent behaviors is a significant capability
that is seen as a very desirable functionality (Gershenson, 2013), including for digital twins. We will return
to discuss how digital twins might be expected to produce such behaviors, especially for very complicated
applications in Section 4.3. Next, we consider the role of artificial intelligence for digital twins.

3.4. Artificial intelligence

The quest for artificial intelligence (Al) (as described, for example, by Nilsson (2009)) is multi-faceted,
and has been driven by several different motivations. Those motivations include inspiration from human
intelligence and other biological examples, the desire to create intelligent machines, and the application of
Al to solve complex applied problems. There are multiple other facets, implementations, and deploy-
ments of Al, which we leave to the interested reader to explore—see for example Minsky (1988); Nilsson
(2009); Russell and Norvig (2010); Haenlein and Kaplan (2019); Marcus (2020) and references therein.

Russell and Norvig (2010) use the unifying theme of intelligent agents in their comprehensive
textbook on artificial intelligence. A current topic of interest is deep reinforcement learning, where
agents are used (for example) to solve sequential decision-making problems, such as autonomous driving
vehicles (see e.g. Kiran et al. (2021)). Sequential decision-making problems are also highly relevant to
digital twins, which by their nature are time evolving, and are also required to support a sequence of
decision-making tasks.

Importantly for the digital twin paradigm, the Al work on agent-based methods has enabled more
sophisticated multi-agent methods than previously developed either in complexity science or systems
engineering (although there is now some cross-over between these topics (Vrabi¢ et al., 2021). For
example, techniques such as multi-agent reinforcement learning where the agents take actions and receive
feedback in a highly adaptive manner (Graesser and Keng, 2019; Kiran et al., 2021).

In very general terms, it could be said that symbolic Al (such as logical reasoning) was the earliest to
mature, but despite the success of some aspects, such as expert systems (Krishnamoorthy and Rajeev,
2018), it has more recently been overtaken by sub-symbolic Al which has become the dominant force in
Al in recent years, particularly deep learning (LeCun et al., 2015; Goodfellow et al., 2016) and most
recently large language models (Teubner et al., 2023). In the past few years, some Al experts have been
pointing out the limitations of connectionism, (Marcus, 2018), and there is a revised interest in the
possibility of combining the two approaches in the form of neurosymbolic AT*° (Belle, 2022).

For the purposes of our discussion, we note the following points regarding Al for digital twins. Firstly,
both learning and reasoning are highly desirable functions that we often want to build into our digital twin
applications, meaning that Al techniques are very important in this respect. In addition, digital twins can
be viewed as a method of deployment for Al and it is associated techniques’. There are multiple examples
of this type of deployment—see for example DebRoy et al. (2017); Farhat et al. (2020); Kapteyn et al.
(2020); Ritto and Rochinha (202 1); Tripura et al. (2023); Siyaev et al. (2023)—and this is a topic we will
return to later on. Finally, just like digital twins, Al still has no formally agreed overarching definition. In

29 This is a overly simplistic summary, but readers who are interested can find more detail in the associated references. See also
recent work on hyperdimensional computing Thomas et al. (2021).

30 Digital twins can be considered as a “method of deployment” of other technologies too. More broadly digital twins are also a
“method of integration” for a range of technologies and also a form of “technological convergence” Bainbridge and Roco (2016).
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large part, this is because of the philosophical breadth of the topic—something which hopefully is
described by the preceding discussion’.

3.5. Other methods

Lastly in this section, we would like to mention that there are multiple other communities of researchers
and practitioners that have developed sophisticated methods for modeling highly complex and uncertain
applications. Some overlap with Al and other fields mentioned above, and others have developed their
own areas of endeavor. For example (with just a few selected references) dynamical systems theory
(Kuznetsov, 2004; Strogatz, 2019), data assimilation (Evensen et al., 2009; Kutz, 2013), Bayesian
statistics (Barber, 2012; Sarkkd, 2013; Gelman et al., 2014; Kruschke, 2014), data mining (Hastie
et al., 2009; Han and Kamber, 2022), game theory (Jones, 2000), ensemble modeling (Zhou, 2019),
spatiotemporal modeling (Banerjee et al., 2014), agent-based modeling (Abar et al., 2017; Zhang et al.,
2021D), statistical relational learning (Getoor and Taskar, 2007; Belle, 2022), asymptotic theory (Van der
Vaart, 2000), time series analysis (Hamilton, 2020), adaptive & nonlinear control (Astrém and Witten-
mark, 1995; Fradkov et al., 1999; Barlow, 2002; Wagg and Neild, 2015), information theory (MacKay,
2003), network science, (Baker, 2013), and optimization methods (Boyd and Vandenberghe, 2004) to
name just a few.

4. Towards a philosophical framework for digital twins

“It ought to be remembered that there is nothing more difficult to take in hand, more perilous to
conduct, or more uncertain in its success than to take the lead in the introduction of a new order of
things.”—Niccol Machiavelli, The Prince, 1532.

As we discussed in Section 1, the ambitions for digital twins are set very high across a very wide spectrum
of possible applications. In practice, we need to manage these high expectations and make clear what are
the possibilities and limitations to using digital twins. To this end, in this section we develop the
foundations for a philosophical framework within which we can build, evaluate, and better understand
specific instances of digital twins.

As noted by Machiavelli, introducing something new is fraught with potential difficulties, and we
argue that a firm philosophical foundation is an essential part of the process. However, it is important
to note that we are not the first to attempt this goal. For instance, Korenhof et al. (2021) reviewed and
critically analyzed the dominant conceptualizations of digital twins in the academic literature. In
doing so, they raise the question, “If a digital twin is expected to actively intervene in a physical entity,
is it really only a representation?.” Their answer is that DTs should be treated as “steering
representations” that are used to “direct a physical entity towards certain goals by means of multiple
representations.” Their proposal has considerable merit, and should likely figure (in some form) in a
fully articulated and developed philosophical framework—one that can also be used to support
ethical reasoning and decision-making about the societal impacts of digital twins. However, we do
not wish to take this argument as our starting point without first considering the fundamental purpose
of a digital twin ourselves. In Section 2.3 we argued that utility, trust, and insight are the three key
generic properties we want for digital twins. These three characteristics form the basis of our
characterization of purpose.

Specifically, we take utility to mean context-specific usefulness that relates to the application at hand,
and is expressed as a set of functional requirements within the contextual setting that the digital twin
operates—here, the contextual setting relates to the specific properties of the physical twin, such as its
geometry, materials, the environment in which it is located or deployed and so forth. The functional

31t is also due to the universality and versatility of the digital twin concept.
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requirements could be, for example, to support decisions, to learn patterns of behavior, or to develop more
efficient ways of operation.

The attribute of (unbiased) frust is related to the uncertainty within the digital twin and is also
connected to security, openness, and quality (Bolton et al., 2018). Trust is therefore essential for
supporting the functional requirements of the digital twin. Lastly, the role of insight is related to
knowledge, but not just lists of facts, insight relates to enhanced understanding of the physical twin
within the contextual setting. The insight(s) gained from the use of a digital twin could be some
measurable improvement in understanding the behavior of the physical twin, or the learning acquired
via the successful completion of a sequential decision-making problem(s) over time (such as mentioned in
Section 3.4.)

Since the concept of digital twins was first suggested there has been lots of discussion and debate over
what exactly the definition of a digital twins actually is—see for example Negri et al. (2017); Miller et al.
(2018); Wright and Davidson (2020); Wagg et al. (2020); Arthur et al. (2020). This is natural when the
idea is new, but can be unhelpful to the overall debate at times. Therefore, in an attempt to give some
additional clarity about digital twins, but without getting overly restricted by a technical definition (at least
for now), a set of principles for digital twins is proposed here, based in part on the discussion above. While
these principles fall short of establishing a full philosophical framework, they are anchored in the
philosophical concepts discussed in the previous two sections and are set out in three categories:
(a) what digital twins are, (b) what properties they should have, and (c) what they should enable.

We begin with what digital twins are. Digital twins are:

1. Holistic in nature, but may use reductionist ideas when appropriate. e.g. both the whole and the
parts are considered important, in order to capture any heterogeneity;

2. Purpose driven where the clearly articulated usefil purpose (or set of purposes) is underpinned
by a set of functional requirements;

3. Time evolving dynamic systems that can reflect changes in the physical twin that occur over time
via updating and evolution of the digital twin;

4. Context-specific representations that are bespoke to an individual physical twin, and which can
be both artefacts (objects) and/or processes within the contextual setting;

5. Counter-parsimonious, meaning not seeking simplicity for its own sake, but instead aiming to
reflect the required level of complexity—although they may make use of parsimonious concepts,
when appropriate;

6. Reconstructivist, meaning they aim to reconstruct (some or all of) the behavior of a physical twin
by assembling the components of the digital twin, including emergent behaviors; and

7. Biased, due to the philosophical worldviews of the communities that constructed them, but able to
acknowledge the limitations that this brings.

Digital twins should have:

8. A set of components, which can include agents, models, networks, data sets, and other digital
objects;
9. Access to real-world data, recorded/streamed from the physical twin, or its surrounding
environment.
10. A means of dynamic assembly, so that the components can be connected, or otherwise integrated
together in a time dependant way;
11. An operational platform, consisting of software, hardware and network infrastructure, including
a user interface, data storage and other computational resources;
12. A method for representing and updating knowledge that is shared between the users and the
digital twin;
13. A time-dependent connectivity to the physical twin, usually via an internet-of-things (IoT) network
or similar, so that data, control, and other signals can be exchanged between the twins; and

https://doi.org/10.1017/dce.2025.4 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2025.4

el2-16 David J Wagg et al.

14. An integration architecture that enables components and/or other parts of the digital twin to
interoperate and/or federate with each other, and in some cases entire other digital twins.

Digital twins should enable:

15. Outputs to be produced that relate to observed quantities of interest (Qols) in the physical twin
and to the functional requirements;

16. Trust in the outputs to be expressed through processes of assurance, including validation,
verification, and/or error detection and correction?? in order to account for relevant forms of
uncertainty>>;

17. Inheritance of (at least) some of the properties of the components within the digital twin
(e.g. object-property inheritance, described below);

18. Interaction, such that the components are able to interact with the aim of reconstructing emergent
behavior (s);

19. Learning both from data (e.g. Qols and outputs), and more broadly from the deployment of
advanced techniques such as those from Al, statistics, dynamical systems, etc;

20. Insights to be obtained that serve the purpose of the user, and maximize explainability and
interpretability of the outputs; and

21. Exploitation of the insights to provide value (e.g. improved decisions, efficiency gains, etc.)
and/or enable real-world actions to be taken such as control/scheduling actions for the
physical twin.

These 21 principles incorporate the key attributes of a digital twin and capture the holism of systems
engineering, emergent behaviors from complexity science, uncertainty analysis from statistics, time-
evolution from dynamical systems theory, techniques from Al, control actions, and decision theories—
amongst other things. We believe that such a set of principles is sufficiently versatile and universal to fita
wide range of digital twin applications, across multiple domains, whilst still capturing some of the most
important specific aspects of digital twins.

However, to help justify this belief, we now consider how these philosophical principles can be applied
to explain some common questions relating to digital twins.

4.1. Why is a digital twin, not a model?

We will offer more than a single answer to this particular question, all of which can coexist with each other.
The first is shown in Figure 2 and relates to the connectivity of the physical twin and the digital object.
Kritzinger et al. (2018) make the following distinctions between three concepts which are shown
schematically in Figure 2:

1. Digital model—no connection between virtual and physical (Figure 2a). This is the “traditional”
approach to modeling in science and engineering.

2. Digital shadow—data received from a connection (e.g. over an [oT network) with the physical twin
is used to update and “shadow” the state of the physical twin (Figure 2b). In this way, the digital
shadow will evolve over time to reflect changes that occur in the physical twin.

3. Digital twin—as for the digital shadow, but with the addition of control actions, or interventions
(in the case of a system that cannot be directly controlled) being given over the network to the
physical twin domain (Figure 2c)

32 See, for example, Chapter II of MacKay (2003).
33 Note that this form of trust depends on the inherent trustworthiness of the outputs. Trust without trustworthiness is misplaced.
Another way of stating this, therefore, is to say that digital twins should enable justified trust.
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Figure 2. Schematic diagram of a common way to interpret the distinction between a digital model and a
digital twin, showing (a) a digital model, (b) a digital shadow, and (c) a digital twin. This is a common
interpretation found within the literature and helps explain why a digital twin that is “bidirectionally
connected” with a physical is best seen as a broader “cyber-physical system” rather than two separate
components (see for example Kritzinger et al., 2018).

The 21 principles set out above relate to digital twins, but digital models and shadows could also be
represented by selecting fewer principles to apply.

However, the model/shadow/twin explanation does not capture some aspects that we have discussed
above relating to digital twins. Critics can point out that using existing terminology, Figure 2a shows a
model. Figure 2b shows an updated model, and Figure 2c shows a control system. For example, the
explanation given in relation to Figure 2 has little or no sense of timing or mechanisms. For example, when
does the digital become connected to the physical? Is the data transfer to the shadow continuous or
intermittent? Are the actions taken part of the digital twin or something separate. Another criticism is that
Figure 2 does not show (or even anticipate) connections between digital twins, via federation.

Furthermore, it is difficult to understand the ideas of holism, or emergent behavior with the model/
shadow/twin explanation. So, we believe it is useful to also suggest an additional explanation that can
complement the rationale of Figure 2. This additional explanation relates to the use of models in digital
twins, as we have described in this paper (e.g. as a combination of multiple digital objects). As a result,
digital twins will have the property of object-property inheritance. Therefore, digital twins include
models among their components, such that digital twins are more than just models (and models are not
digital twins). In other words, a digital twin is something more than a model but can be used to perform
functions that have been previously carried out using models, because it inherits the properties of the
model. In general, object-property inheritance relates to all the components within a digital twin and will
be explained in further detail in the next section.

4.2. What previously unseen results can we expect from a digital twin?

“It is the mark of an educated mind to rest satisfied with the degree of precision which the nature of

the subject admits and not to seek exactness where only an approximation is possible”—Aristotle
(384 BC-322 BC).

It will be fundamental to the purpose of a digital twin to establish whether the digital twin can produce an
output that suits our particular purpose(s). As the quote from Aristotle reminds us, every output from a
digital twin will most likely include (multiple) approximations, and we should be wary of seeking
exactness beyond that which is possible. The “degree of precision,” as Aristotle puts it, relates to the
fidelity of an output. However, before any attempt to assess fidelity can be made, we need to consider if a
viable output for our particular purpose is possible.

Grieves and Vickers (2017) have considered how the outputs from digital twins could be used to
anticipate the types of emergent behaviors that may arise. They proposed a categorization of outcomes for
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Figure 3. Schematic diagram showing (a) how the outputs from a digital twin might be able to predict
emergent behaviors proposed by Grieves and Vickers (2017), and (b) the “Rumsfeld” matrix.

the digital twin that is shown in Fig. 3(a). Here there are four categories of outcome that depend on
what the digital twin predicts and whether the predicted behavior was desirable in a design context
(meaning the intended design) or undesirable (problematic and/or unwanted designs). This frame-
work is then used iteratively to try and minimize the undesirable and unpredicted aspects as much as
possible’*.

However, this approach also suffers from the problem of the need to know in advance what to include
in the digital twin to get the desired outcome. As pointed out by Kauffman (2000) for example, this is a
particular problem in the field of emergent behavior. In fact, problems relating to prior knowledge are well
known in other fields, such as the domain of uncertainty and risk management (Okashah and Goldwater,
1994; Lanza, 2000). The “Rumsfeld” matrix captures the key issue as shown in Fig. 3(b).?”

In the Rumsfeld matrix, we create four categories based on what is known (e.g. meaning what we know
at this present moment) and what could be known (e.g. all possible knowledge, if we had a way to access
it). It should be clear that if we do not know something at the present moment, then we cannot include it in
our digital twin, and therefore we can never access the “unknown unknowns” category>°. Knowing in
advance, for example by prescribing a specific solution space, is a practical necessity for modeling, but
will exclude the more advanced behaviors, particularly evolutionary forms of emergence—see for
example Tononi et al. (2016); Kauffman (2000) and references therein.

To take one example, emergent behaviors are often modeled using multiple agents that interact with
each other according to a predefined set of “rules”, typically relating to the environment and their nearest
neighboring agents (Jensen, 2022). The idea has already been explored in a digital twin context by several
authors—see for example Croatti et al. (2020); Zheng et al. (2020); Vrabi€ et al. (2021); Clemen et al.
(2021); dos Santos et al. (2022). So, although the emergent behaviors are not necessarily known in
advance, the rules for the agents have to be prescribed in advance, and so the rules are therefore known
knowns. The emergence will be a product of the prescribed rules (as was the case for Deepmind AlphaGo
algorithm (Silver et al., 2016; Chouard, 2016)), and so if we have never observed a particular type of
interaction before, it cannot be included in the digital twin. It also will not be in any of our previously
recorded data sets, or associated data-based models.

With this in mind, let us consider what can be reasonably expected from digital twins in terms of
emergent behaviors. Object-property inheritance can be interpreted as both related to individual

3* Another variation would be to replace the desirable and undesirable with “authentic” and “spurious” to try and capture when the
digital twin succeeds or fails to give a valid output.

33 Made famous by Donald Rumsfeld in 2002, this is an adaptation of the Johari window.

36 This is the category which is associated with black swans Taleb (2007); Aven (2013).
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Figure 4. Schematic diagram showing how the outputs from a digital twin might be created using a series
of digital objects (e.g. the components of the digital twin). The directly inherited properties come from
each of the components are grouped together. The relational properties, such as any reconstructed or

emergent behaviors, come from the process of dynamic assembly. Both the directly inherited and
relational properties can be used to form digital twin outputs.

direct dynamics

components (objects) in the digital twin, and relational combinations of the components.>” The relational
combinations of the components are achieved using what we can call “dynamic assembly”—an example
of which is described in the next section. Therefore, if a digital twin consists of #n objects it would be
expected to have a number (say d) of directly inherited properties that come from the n objects without any
interaction between them. In addition, the digital twin would have a combinatoric number (say r) of
relational properties, including any emergent behaviors, which are generated from the dynamic assembly.
Note also that the combinatoric metric will depend on the specific context of the digital twin.

A simplified schematic example for a series of digital objects (e.g. components) is shown in Figure 4,
where dynamic assembly methods are used to obtain interactions between the components. In Figure 4,
the directly inherited properties are shown to come from the components, and relational properties come
from the dynamic assembly of the components. Both direct and relational properties can be then used as
digital twin outputs.

It is important to emphasize that all the emergent (and non-emergent) behaviors observed in digital
twin outputs are contained in the categories of known knowns, known unknowns, and unknown knowns,
shown in Figure 3b. The unknown unknowns, shown in Figure 3b are not accessible to the digital
twin by definition, and could only be known by the addition of new information not known at the
current time.

As a result, assuming that the known knowns category is already well understood, it is the known
unknowns, and particularly the unknown knowns categories where value can be obtained from using
digital twins. Note that we would expect to see more previously unseen results from an ecosystem of
connected digital twins (Nativi et al., 2021). This is simply because of the nature of systems—the more
connections there are, the more potential there is for emergence. We now consider an example of
dynamic assembly.

37 For the purposes of this paper we use the labels “objects” and “components” to mean the same thing.
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4.3. How can emergent behaviors be predicted using a digital twin?

Emergent behavior can be reconstructed via interaction. This can be achieved using certain components in
digital twins (e.g. models, agents, etc.) which can be dynamically assembled (e.g. joined together) as was
shown schematically in Fig. 4.

We, therefore, consider a digital twin to be made up of a series of digital components that will be
combined in such a way that they can reconstruct the time-evolving behavior of the physical twin?®.
Dynamic assembly is interpreted here based on the idea of creating “connectors” such that the resulting
connections lead to interactions between the components with the aim of reconstructing emergent
behavior. More specifically we define dynamic assembly as a method for connecting the components
together such that the subsequent interactions enable emergent behaviors, including time-dependent
(e.g. dynamic) behaviors.

We are using the terminology dynamic assembly to include a range of methods via which DT
components might be able to interact. These include, but are not limited to:

* Coupling of system equations describing the behavior of the DT component. E.g. two separate
models are “coupled” via the states and parameters and/or boundary/initial conditions.

» Synchronisation of all or part of the states of two DT components. E.g. in a similar way to methods
such as hybrid testing, where synchronization is used to achieve a joining effect—see for example
Gonzalez-Buelga et al. (2005).

* Organisation of DT components. E.g. into networks and/or hierarchies or more complex structures
such as holarchies—see for example Calabrese et al. (2010); Cardin et al. (2018).

* Interoperation via a bespoke protocol to enable communication between DT components that are not
using standardized formats. For example, this is often the case when legacy systems are present.

As an example of dynamic assembly, consider the case where it is desired to create a digital twin of the
transport systems in a city. Ideally, we would include all modes of transport, but for argument’s sake, let us
assume we had separate models of the road, rail, and pedestrian traffic in a specific area of the city.
Running the models separately misses the interactions between transport modes, so we might want to
create a method for dynamically assembling the road, rail, and pedestrian traffic models together®®. In
order to do this, we create a “dynamically assembled” system, where information is passed between the
three simulations to represent the interactions between the transport modes. As a result of the interactions
between models, they are (i) more likely to represent the real world, and (ii) made lead to emergent
behaviors—see for example discussions in Ambra et al. (2019); Busse et al. (2021); Wolf et al. (2022);
Jafari et al. (2023).

4.4. How can we assess the existence and uniqueness of digital twin outputs?

As we said above it will be fundamental to the purpose of a digital twin that some type of output exists that
is relevant to the context of the physical twin.*” One example of an output is to choose a quantity of
interest. In the study of differential equations, an important underlying concept is the idea of the existence
and uniqueness of a solution to the problem (Hirsch and Smale, 1974; Guckenheimer and Holmes, 1983;
Kingetal., 2003). The concept asks the questions (1) does a solution exist?, and (2) if it does, is it a unique
solution? If the solution is nonunigue, then other solutions will exist that also satisfy the same defined
problem*!.

38 Although the reconstructed outputs still need to be validated.

39 To keep the argument simple, let us ignore the other aspects of digital twinning, such as data flow and connectivity.

40 Note the similarity between the hypothesis H1 listed above in Section 3.2 and the questions of existence and uniqueness. Firstly
H1 is prefaced with “if a solution exists”, which is an assumption of existence. Furthermore, H1 contains the phrase “at least one”,
which we interpret as the possibility that there may be many solutions, and therefore allowing for nonuniqueness.

“'Note that in the study of differential equations, even though there are many examples where solutions are nonunique,
nonuniqueness is generally seen as a situation to be avoided.
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Although the idea of existence and uniqueness is typically applied in a deterministic worldview, in the
absence of a developed theory for digital twins, we consider how questions (1) & (2) could be applied to
the case of digital twins in general. To widen the application beyond the deterministic realm instead of
“solution” (that typically implies a precise answer to a specific set of equation(s)), we will instead take the
idea of an output from the digital twin.

In practical terms, there would appear to be two potential approaches (and at least one caveat) to
determining the existence and uniqueness of digital twin outputs. The first approach is to rely on the
object-property inheritance of the digital twin, so that if the underlying objects (components) in the digital
twin have the property of existence and uniqueness, then the digital twin can also inherit those properties
(under some defined conditions). For example, if the digital twin has an ordinary differential equation
(ODE) as one component, and that ODE has solutions that exist and are unique, then the digital twin can
also inherit those properties—see for example Han et al. (2022); Area et al. (2022). The caveat is that the
philosophical framework for differential equations is (almost always) deterministic, and so this will act as
a limiting factor with this approach.

The second possible approach (either separately or in combination with the above) is to consider the
behavior of the interconnections between components in the digital twin. It might be possible that the
existence and uniqueness of digital twin outputs (e.g. the reconstructed behaviors) could be assessed
using the information at the interface of components. Further work is needed to develop a more formal
analysis relating to the existence of digital twin outputs.

Now turning to the question of uniqueness, it is perhaps obvious to state that digital twin outputs may or
may not be unique. Nonuniqueness could be a major problem for digital twin users if they are expecting
(or assuming) a unique output but do not obtain one. However, the precise nature of what is meant by the
uniqueness of an output will depend on the context and components that make up the digital twin.

Finally, we note that nonuniqueness relates to a broader issue of spurious solutions and related
problems such as missing solutions, and false emergent behaviors—this could be considered to be a
failure mode of the digital twin. We will not consider these problems explicitly here, but we would need to
consider the possibility of these outcomes when building a digital twin—see discussion in Grieves and
Vickers (2017).

5. Conclusions and future directions for research

In this paper, we have explored and discussed key philosophical concepts that apply to the concept of
digital twins—particularly, those that underpin the series of principles presented in Section 4, which could
be used as the building blocks for a more complete philosophical framework. This discussion also enabled
us to consider how the philosophical context could help define a purpose for a model, and it was concluded
that utility, trust, and insight are the three key generic requirements of models that we wanted to extend to
digital twins.

A key part of the digital twinning philosophy is representing complicated/complex systems. This was
discussed in detail in Section 3, where we considered the limitations of traditional reductionist method-
ologies. We then discussed how systems engineering and complexity science had been used to attempt to
overcome these limitations by adopting a more holistic worldview. In particular, we discussed the
importance of modeling emergent behaviors, that cannot be captured in a reductionist paradigm.
Importantly, it is interactions that lead to emergent behaviors, and these have to occur dynamically—
depending on the exact context, we note that the environment might also influence the emergent behavior.

In Section 4 of the paper, we presented 21 principles set out in three categories; what digital twins are,
what properties they should have, and what they should enable. We then used the 21 principles to consider
some common questions that arise regarding digital twins. Namely, the questions were: Why is a digital
twin not a model? What previously unseen results can we expect from a digital twin? How can emergent
behaviors be simulated using a digital twin? How can we assess the existence and uniqueness of digital
twin outputs? We do not claim to have provided definitive answers to these questions, rather we have used
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the philosophical principles to frame the questions in a way that might help provide more insight and
understanding of the questions and the associated topics they relate to.
In concluding this paper, we draw together some further comments and open research questions.

5.1. Further comments and open questions
As areflection of some of the key points raised in this paper, we offer the following further comments that
lead to some open research questions.

1. Potential limitations of model-dependent realism. In Section 2, we mentioned the concept of
model-dependent realism, which commits us to the following three beliefs/attitudes:

(a) Pragmatism: a digital twin (or model) is deemed successful if it is able to explain and predict
phenomena according to some validation criteria (e.g. making observations). The issue of
realism versus non-realism is effectively side-stepped.

(b) Utility as an over-arching value for digital twin (or model): the new emphasis is on the utility of
a digital twin output(s) rather than on finding a digital twin (or model) that is ontologically
“true” in terms of representing the behavior (s) of the physical twin.

(¢) Pluralism: as there may be multiple digital twin output(s) that adequately describe the same
phenomena, or have similar levels of utility, the choice between different twins may depend on
additional (so-called, extra-theoretic virtues)—which also links to the issue of uniqueness of
outputs.

Furthermore, model-dependent realism is developed from a scientific worldview that is focused
entirely on explaining the physical behavior of the Universe we live in. It could be considered that
the “direction-of-fit” is one-way. In other words, the definition of utility is focused primarily on
“representation” or “description”. For engineering problems, we also need to consider other
factors, such as (i) the consequences of utility on subsequent actions taken, such as decisions
and interventions in the real world, and (ii) it could be the case that there is no physical system to
represent if we are trying to engineer something completely new. In both these cases, the argument
for a philosophy built on model-dependent realism is more difficult to make, and leaves open the
question of whether there is a more appropriate philosophical approach in these cases? We note
also, that more formally the utility, trust, and insight requirements could be contextualized using a
more detailed philosophical analysis such as that proposed by Douglas (2013) which distinguishes
between internal consistency (minimal criteria) and external consistency (an ideal desiderata,
presuming general confidence in other scientific theories). While internal consistency is a min-
imum requirement for acceptance of any scientific theory, external consistency is not, as it depends
on confidence in other theories and external bodies of knowledge.

2. Emergence is counter-parsimonious. As was described in Section 4.2, a digital twin will only be
able to exhibit behaviors within the constraints of the choices and assumptions that have been made
during its construction. Therefore the less simplification in the process of constructing the digital
twin, the more likelihood there is for a wider range of emergent behaviours to be exhibited in the
subsequent digital twin outputs. The aim stated in Principle 5 (and system engineering Hypothesis
H2 from Section 3.2) is to represent the observed complexity rather than seek parsimony.
Furthermore, it is also possible that if the digital twin maker has been too parsimonious (and/or
biased in worldview), there is a possibility of creating a digital twin that is only capable of
reinforcing your own (or an inherited) prejudicial expectation. The exact relationship between
emergent behaviors and parsimony is an open question.

3. Purpose dictates your parsimony. Following on from the comments above, digital twins developed
for different purposes will enable different levels of parsimony to be used. Therefore, care should be
exercised if transferring a digital twin developed for one purpose into a new domain or purpose.
One way to help mitigate these effects is to make use of error detection and correction (EDAC)
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(MacKay, 2003). Similar comments relate to the inter-operation or federation of digital twins that
might have been constructed using different levels of assumed parsimony. It is an open question of
how such systems might be integrated systematically.

4. Validation of digital twins. Three comments can be made regarding the validation of digital twin
outputs:

(a) In general the validation of a digital twin is context-specific and will be relevant to a specific
application*?. In some cases, validation can be defined as a function of utility, where the metric
of validity relates to the output of some utility function. This situation enables a strong
connection with the model-dependent realism philosophy.

(b) In some applications, the accuracy of a digital twin output does not serve well as a universal
metric for validation. For example, from a control perspective, the stability and robustness of a
predictive model might be more important than the tracking accuracy of any particular output.

(c) In Section 4, we presented a framework for defining what potential outputs can be expected
from a digital twin. When a system is relatively “simple,” it is often possible to know in advance
what behavior to expect, and therefore validate the output quite easily**. Cases where we cannot
know what to expect in advance will obviously be more challenging to validate, and there is
ongoing research as to how this might be most effectively achieved.

Next, we propose several areas for future research development.

5.2. Future directions for research

1. Human factors. Broadly this area of research, as it applies to digital twins, includes topics, such as
(1) the role of humans in designing and building digital twins (partially discussed in Section 2.2),
(i1) how human users interface with digital twins and act on the outputs they receive, and (iii) digital
twins as instances of sociotechnical systems that include humans in some way (e.g. medicine or
social systems. Early work in this area includes Nguyen (2022); Lin et al. (2022); Sun et al. (2021);
Fan et al. (2021).

2. Ethical, legal, and societal issues. In their original context as tools for product engineering, digital
twins raised a (relatively) narrowly circumscribed set of ethical, legal, and societal issues
(e.g. safety compliance). However, as digital twins are now used increasingly to represent not just
products or objects, but living entities and systems (from the cellular level to whole ecosystems)
they enable new forms of knowledge generation (that is principles 19 and 20: learning and insights
obtained from the digital twin and means for interacting with and influencing the coupled physical
systems (principle 21: exploiting the derived value of the relevant insights). A number of papers
have already explored a variety of normative issues that arise in the context of digital twins,
especially in high-stakes and fault-intolerant environments such as health and healthcare (Kuersten,
2023; Huang et al., 2022; Tigard, 2021; Popa et al., 2021; Korenhof et al., 2021; Braun, 2021). In
combination with current and emerging frameworks for regulation, governance, and assurance,
these analyses provide significant value for identifying and mitigating possible risks that could
arise when deploying and using digital twins within society (e.g. unintended behaviors caused by
model drift, data privacy, and security violations). There is a lot to explore here, and the presence of
a robust and comprehensive philosophical framework could provide a systematic means for
grounding and evaluating the myriad normative issues associated with digital twins.

2 This is also true in the assurance of systems and technologies more generally, as claims made about some goal of a system, such
as the safety or efficacy of the system, are always contextual to some environment (e.g. an airplane may only be assured as safe when
in operation by a qualified operator and in a highly-regulated airspace).

43 Also a limitation in supervised learning techniques, also sometime referred to as an “oracle” e.g. as a source of the “correct”
solution.
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3. Methods for dynamic assembly. In practical terms, one of the most interesting areas for future
research is methods that enable dynamic assembly of digital objects within a digital twin. As we
have already noted, dynamic assembly is the method by which we can recreate interaction within
the digital twin, and thereby reconstruct emergent behaviors. There are already techniques, such as
agent-based modeling including intelligent agents, and heterogeneous multi-agents, as discussed
and reviewed in Sections 3.3 and 3.4. Such models have the potential to recreate the type of multi-
level interactions that occur in a complex system, including socio-economic systems (see for
example Yossef Ravid and Aharon-Gutman (2022); Wang et al. (2020); Okita et al. (2019); Tadi¢
(2019)). However, creating appropriate “connectors” for heterogenous sets of digital objects is an
open area of research, several of the most obvious potential methods were listed in Section 4.3. The
scope for new developments in this area is significant.

4. The role of knowledge. While this relates to the topic of human factors listed above, it is significant
enough to warrant a separate discussion point—in particular, the role of knowledge and insight, in
supporting subsequent actions taken, such as decisions. One way we can distinguish this topic from
human factors is the idea of removing the process from the human, and automating the action/
decision process, possibly using some form of artificial intelligence. From a practical perspective, a
starting point would be to establish with more rigor what knowledge means in the context of a
digital twin, particularly linking to topics such as knowledge representation, inference, and model
interpretability.** This would extend and complement much of the existing work, which primarily
focuses on ontologies (e.g. Nguyen, 2022; Akroyd et al., 2021; Singh et al., 2020; West, 2011).

5. Logic versus learning. In Section 3.4 we touched upon symbolic and neurosymbolic Al but did not
explicitly discuss the types of logical approaches that could be applied to digital twins. There has
long been a philosophical discussion about how logic, learning, and probability interrelate (see for
example the discussion in Belle (2022)). This is an interesting topic that has several relevant
questions for digital twin research. For example, is there an underlying logical methodology
relating to digital twins, or is the logic dependent on the context? How is the logic and learning
combined? How does the logic relate to a “top-down” versus “bottom-up” approach to creating a
digital twin?*> It should also be noted that statistical relational learning and hyperdimensional
computing are novel approaches that enable knowledge representation, logic, and learning to be
brought together (Getoor and Taskar, 2007; Thomas et al., 2021). These processes offer the
possibility of bringing logic more formally into the digital twin operation. The exact details of
how this might work are an open question.
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