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Abstract

We consider families of exponential sums indexed by a subgroup of invertible classes
modulo some prime power q. For fixed d, we restrict to moduli q so that there is a unique
subgroup of invertible classes modulo q of order d. We study distribution properties of these
families of sums as q grows and we establish equidistribution results in some regions of the
complex plane which are described as the image of a multi-dimensional torus via an explicit
Laurent polynomial. In some cases, the region of equidistribution can be interpreted as the
one delimited by a hypocycloid, or as a Minkowski sum of such regions.

2020 Mathematics Subject Classification: 11L05, 11L15, 11J71 (Primary)

1. Introduction
1·1. Equidistribution of complete sums: the example of Kloosterman sums

Let q = pα , where p is an odd prime and α ∈ Z�1. The classical Kloosterman sums are
the real numbers defined by

Kq(a, b) :=
∑

x∈(Z/qZ)×
e

(
ax + bx−1

q

)

for any integers a and b. Throughout this paper, we use the notation e(z) for exp (2iπz) and
x−1 for the inverse of x modulo q. These sums satisfy the bound1:∣∣Kq(a, b)

∣∣� 2
√

q for all a, b ∈ (Z/qZ)×, (1·1)

which is a consequence of Weil’s work on the Riemann hypothesis for curves over finite
fields when α = 1, and elementary computations when α � 2 (see [13, corollary 1]). This
raises the question of the distribution of the sets of sums{

1√
q

Kq(a, b); a, b ∈ (Z/qZ)×
}

in the interval [−2, 2] as q goes to +∞. A result due to Katz asserts that the sets of sums

1 Here one really needs to assume that p is an odd prime. When q = 2α with α � 5, the upper bound (1·1)
needs to be replaced by

∣∣Kq(a, b)
∣∣� (2

√
2)

√
q (see the corrigendum [9] to the article [8]).
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(a) (b)

Fig. 1. Distribution of normalised Kloosterman sums modulo a prime and modulo a prime
power.

{
(1/

√
p)Kp(a, 1); a ∈ F×

p

}
become equidistributed with respect to the Sato–Tate measure

on [−2, 2]:

dμST(x) = 1

2π

√
4 − x2dx

as p → +∞ through primes (see [12, example 13·6] for this specific statement). This relies
on Deligne’s equidistribution theorem and involves deep notions of algebraic geometry.

In the case where q = pα is a non-trivial prime power (i.e. α � 2), one can prove via
elementary methods an equidistribution result for the sets

{
(1/

√
q)Kq(a, 1); a ∈ (Z/qZ)×

}
as q goes to infinity, see [13, remark 1·1]. In this case, the measure with respect to which the
sums become equidistributed is the measure μ defined as follows:

dμ(x) = 1

2
δ0(x) + 1

2π

1√
4 − x2

dx.

The Fig. 1 illustrates these two different behaviours.

1·2. Equidistribution of sums indexed by a subgroup

The aim of this work is to study the question of the distribution of sums indexed by a
subgroup of (Z/qZ)×. This question is motivated by the equidistribution results already
known for complete sums, such as the ones presented in the previous section, as well as the
appealing figures shown in the articles [4, 7, 10]. In the latter, the authors fix an integer d
and introduce the restricted geometric sums:

Sq(a, d) :=
∑

x∈(Z/qZ)×
xd=1

e

(
ax

q

)
. (1·2)
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Then, the equidistribution of the sets
{
Sq(a, d); a ∈ Z/qZ

}
as q tends to infinity is investi-

gated. In order to avoid degenerate cases in the index set of the sum defining Sq(a, d) and
other sums in the remainder of this paper, we make the following definition.

Definition 1·1. An integer q will be called d-admissible if it is of the form pα for some
odd prime number p congruent to 1 modulo d, and some integer α � 1. We denote by Ad

the set of d-admissible integers.

If q is d-admissible, then the group (Z/qZ)× has a unique subgroup of order d, explicitly
described as

{
x ∈ (Z/qZ)×; xd = 1

}
. Thus, the sum in (1·2) can be interpreted as the one

indexed by the unique subgroup of order d of (Z/qZ)×.
In order to state the equidistribution result proved in [7, 10], we need one last definition.

Definition 1·2. Let d � 1. For all k ∈ {0, . . . , d − 1}, we denote by (cj,k)0�j<ϕ(d) the coef-
ficients of the remainder in the euclidean division of Xk by φd, the dth cyclotomic polynomial
over Q; precisely, these coefficients are defined by the property

Xk ≡
ϕ(d)−1∑

j=0

cj,kXj mod φd.

Then, we define the Laurent polynomial

gd : T
ϕ(d) −→ C

(z1, . . . , zϕ(d)) �−→
d−1∑
k=0

ϕ(d)−1∏
j=0

z
cj,k
j+1.

With these notations, the main theorem of [7, 10] on the asymptotic behaviour of sums of
type (1·2) can be stated as follows. In loc. cit. the theorem is stated as a density result, but the
proof actually shows that equidistribution holds with respect to the appropriate pushforward
measure.

THEOREM 1·3 ([7, Theorem 6·3] and [10, Theorem 1]). Let d � 1. The sets{
Sq(a, d); a ∈ Z/qZ

}
become equidistributed in the image of gd with respect to the pushfor-

ward measure of the probability Haar measure λ on T
ϕ(d) via gd, as q goes to infinity among

the d-admissible integers. In other words, for any continuous map F : gd
(
T

ϕ(d)
)→ C,

1

q

∑
a∈Z/qZ

F
(
Sq(a, d)

) −→
q→∞
q∈Ad

∫
Tϕ(d)

(F ◦ gd)dλ.

Besides, it was proved in [4, Theorem 7 and Theorem 10] that when d is a prime number
or d = 9, the same equidistribution result holds for the sets of restricted Kloosterman sums{
Kq(a, b, d); a, b ∈ (Z/qZ)2

}
, where

Kq(a, b, d) :=
∑

x∈(Z/qZ)×
xd=1

e

(
ax + bx−1

q

)
. (1·3)
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Fig. 2. Some hypocycloids (image extracted from [4]).

Finally, for some specific values of the integer d such as primes and prime powers, one
can give a geometric interpretation of the image of gd in terms of hypocycloids.

Definition 1·4. The d-cusp hypocycloid is the curve given by the image of:

R −→ C
θ �−→ (d − 1) exp (iθ) + exp ((1 − d)iθ)

It is a curve described by a point of a circle of radius 1 rolling inside a circle of radius d (see
Fig. 2).

Definition 1·5. For all d � 2, we denote by Hd the closed region of the plane delimited
by the d-cusp hypocycloid.

Note that the 2-cusp hypocycloid is just the interval [−2, 2], so it does not really enclose
an area of the complex plane. Thus H2 is simply the interval [−2, 2] as well.

When d is a prime, an explicit computation of gd leads to [10, proposition 1], which states
that the image of gd is the region Hd. This yields a more concrete form of Theorem 1·3.

THEOREM 1·6 ([4, theorem 7 and p. 243, 244] and [7, proof of theorem 1·1]). Let d be
a prime number. Then the sets of sums

{
Sq(a, d); a ∈ Z/qZ

}
become equidistributed in Hd

with respect to the pushforward measure of the probability Haar measure on T
d−1 via the

map

gd : (z1, . . . , zd−1) �−→ z1 + · · · + zd−1 + 1

z1 · · · zd−1

as q goes to infinity among the d-admissible integers. The same statement holds for the sets
of sums

{
Kq(a, b, d); a, b ∈ (Z/qZ)2

}
.

The Fig. 3 illustrate the asymptotic behaviour predicted by this theorem in the case of
Kloosterman sums.

The aim of this paper is to generalise Theorems 1·3 and 1·6 to more general families of
exponential sums, and to study the question of restricting the parameters a, b indexing the
sums Kq(a, b, d), or generalisations of these, to certain specific subsets of (Z/qZ)2, while
preserving the equidistribution result.

Another motivation for studying exponential sums restricted to multiplicative subgroups
comes from [17], where considerations on sums over subgroups of F×

p lead to a new upper
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(a) (b) (c)

Fig. 3. The sets
{
Kq(a, b, d); a, b ∈ (Z/qZ)2} for d = 5 and three 5-admissible values of q.

bound on Heilbronn’s exponential sums. However, in the latter the size of the subgroups
grows with p, so our problem will be quite different since we will be working with sums
indexed by a subgroup of fixed cardinality.

1·3 Statement of the main result

The study of the equidistribution of sets of sums of type (1·2) and (1·3) can be seen as
a particular case of the following question: given a sequence

(Fq
)

q∈Ad
indexed by the d-

admissible integers (Definition 1·1), where each Fq is a set of Laurent polynomials with
coefficients in Z/qZ, what can be said about the distribution of the sets of sums⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∑

x∈(Z/qZ)×
xd=1

e

(
f (x)

q

)
; f ∈Fq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (1·4)

as q goes to infinity among the d-admissible integers? In (1·2), it is the case where Fq =
{aX; a ∈ Z/qZ} whereas (1·3) corresponds to the case where

Fq =
{

aX + b

X
; (a, b) ∈ (Z/qZ)2

}
.

As Theorem 1·6 shows, both cases surprisingly lead to the same regions of equidistribution,
at least in the case where d is a prime number. Thus, it is natural to ask whether these results
extend to more general Laurent polynomials.

Our main result (Theorem A) generalises these known cases. In order to state it we first
define a few extra quantities.

Definition 1·7. Let d � 1 be an integer, and let m = (m1, . . . , mn) ∈ Zn. We say that m is
coprime with d if all the mi are coprime with d.

Definition 1·8. Given m = (m1, . . . , mn) ∈ Zn and q � 1, we denote by Fm,q the following
set of Laurent polynomials with coefficients in Z/qZ:

Fm,q := {
a1Xm1 + a2Xm2 + · · · + anXmn ; (a1, . . . , an) ∈ (Z/qZ)n} .
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In case (b) of Theorem A and Proposition B, we will see that the key argument which
explains why sums of type (1·2) and (1·3) become equidistributed in the same regions of the
complex plane is that the corresponding m is coprime with d, for any d. Indeed, in case (1·2)
we have m = (1) ∈ Z and in case (1·3) we have m = (1, −1) ∈ Z2.

Even though we will also treat the case where m is not coprime with d, this observation
is the starting point that led us to the generalisations that we prove in the current work.
Precisely we focus on the distribution of the following sets of sums:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∑

x∈(Z/qZ)×
xd=1

e

(
a1xm1 + · · · + anxmn

q

)
; (a1, . . . , an) ∈ (Z/qZ)n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (1·5)

In other words, these are sets of exponential sums of the form (1·4) with Fq equal to Fm,q

for some m ∈ Zn.
In fact we prove a more general result by showing that it is possible to impose strong

restrictions on the set of parameters and still obtain equidistribution. Our main result is
indeed concerned with sets of sums of the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∑

x∈(Z/qZ)×
xd=1

e

(
a1xm1 + · · · + anxmn

q

)
; (a1, . . . , an) ∈ H(1)

q × · · · × H(n)
q

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , (1·6)

where the H(i)
q are sufficiently large subgroups of (Z/qZ)×.

We finally define the relevant Laurent polynomials that will come into play in the descrip-
tion of the region of equidistribution of sets of type (1·5) and (1·6) in the case where m is
not coprime with d.

Definition 1·9. Let d � 1 and let m = (m1, . . . , mn) ∈ Zn. For all i ∈ {1, . . . , n}, we denote
by

di := d

(d, mi)

and by
(

c(i)
j,k

)
0�j<ϕ(di)

the coefficients that appear in the reduction modulo φdi of Xk for each

k in {0, . . . , d − 1}. In other words, these are the unique integers such that:

∀k ∈ {0, . . . , d − 1}, Xk ≡
ϕ(di)−1∑

j=0

c(i)
j,kXj mod φdi .

Then we define the Laurent polynomial fd,m as follows:

fd,m : T
ϕ(d1)+···+ϕ(dn) −→ C

((z1,j)0�j<ϕ(d1), . . . , (zn,j)0�j<ϕ(dn)) �−→
d−1∑
k=0

n∏
i=1

ϕ(di)−1∏
j=0

z
c(i)

j,k
i,j .

(1·7)
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We can now give the statement of the main result.

THEOREM A. Let d � 1 be an integer and let m = (m1, . . . , mn) ∈ Zn. For all
d-admissible integers q, we fix subgroups H(1)

q , . . . , H(n)
q of (Z/qZ)×. Then we have the

following equidistribution results:

(a) The general case.
If there exists δ > 0 such that the subgroups H(1)

q , . . . , H(n)
q satisfy the growth

condition:

∀i ∈ {1, . . . , n}, |H(i)
q |� qδ , (1·8)

then the sets (1·6) become equidistributed in the image of the Laurent polynomial
fd,m (Definition 1·9) with respect to the pushforward measure via fd,m of the probabil-
ity Haar measure λ on T

ϕ(d1)+···+ϕ(dn), as q goes to infinity among the d-admissible
integers. In other words, if we denote by Id,m the image of fd,m and by μ := (fd,m)∗λ,
then for all continuous function F : Id,m → C,

1∏n
i=1 |H(i)

q |
∑

a1∈H(1)
q

· · ·
∑

an∈H(n)
q

F

⎛
⎜⎜⎜⎝

∑
x∈(Z/qZ)×

xd=1

e

(
a1xm1 + · · · + anxmn

q

)⎞⎟⎟⎟⎠
−→
q→∞
q∈Ad

∫
Id,m

Fdμ.

(b) When m is coprime with d.
If there exists δ > 0 such that the subgroups H(1)

q , . . . , H(n)
q satisfy the growth

condition:

∀q ∈Ad, ∃i ∈ {1, . . . , n}, |H(i)
q |� qδ , (1·9)

then the sets (1·6) become equidistributed in the image of the Laurent polynomial
gd (Definition 1·2) with respect to the pushforward measure via gd of the probability
Haar measure on T

ϕ(d), as q goes to infinity among the d-admissible integers.

For instance, if one takes m = (1, −1), the second case of this theorem states that
the sets {

Kq(a, b, d); (a, b) ∈ H(1)
q × H(2)

q

}
(1·10)

satisfy the same equidistribution result as the sets of Fig. 3, as soon as the H(i)
q satisfy

the growth condition (1·9). In other words, restricting the parameters a, b to large enough
multiplicative subgroups does not introduce any bias in the distribution of the restricted
Kloosterman sums, and still ensures equidistribution with respect to the same measure as in
Theorem 1·6. We give an illustration of this fact in Section 5·2.

Remark 1·10. We will also discuss the possibility to fix some of the parameters, while letting
the other vary. For instance, this means that we will consider sets of the form (1·6) but with
the condition (a1, . . . , an) ∈ H(1)

q × · · · × H(n)
q replaced by (ai1 , . . . , ais) ∈ H(i1)

q × · · · × H(is)
q

for some s < n, while the other parameters aj are fixed integers (see Remark 4·2).
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Finally, the equidistribution result of Theorem A, concerning sets of type (1·6), admits an
analogue for sets of type (1·5), via a simple adaptation of the proof. Precisely, we will obtain
the following proposition, which generalizes [4, theorem 7] and [7, theorem 6·3].

PROPOSITION B. Let d � 1, and let m = (m1, . . . , mn) ∈ Zn.

(a) The general case.
The sets of sums (1·5) become equidistributed in the image of the Laurent polynomial
fd,m (from Definition 1·9) with respect to the pushforward measure via fd,m of the prob-
ability Haar measure on T

ϕ(d1)+···+ϕ(dn), as q tends to infinity among the d-admissible
integers.

(b) When m is coprime with d.
Let s ∈ {1, . . . , n} and let {i1, . . . , is} ⊆ {1, . . . , n}. We fix n − s integers ai for i ∈
{1, . . . , n} \ {i1, . . . , is}. Then the sets of sums⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∑

x∈(Z/qZ)×
xd=1

e

(
a1xm1 + · · · + anxmn

q

)
; (ai1 , . . . , ais) ∈ (Z/qZ)s

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

become equidistributed in the image of gd (with respect to the pushforward measure
via gd of the probability Haar measure on T

ϕ(d)) as q goes to infinity among the
d-admissible integers.

If one takes m to be equal to (1) ∈ Z or (1, −1) ∈ Z2, then the second case of this propo-
sition allows one to recover Theorem 1·3 as well as Theorem 1·6 extended to values of d
which are not prime. In particular, the asymptotic behaviour shown in Fig. 3 is an illustration
of Proposition B (b) in the case of Kloosterman sums. We give other examples of application
in Section 5·3.

Remark 1·11. Let us stress that in case (b), equidistribution holds as soon as some param-
eters vary in Z/qZ (namely the ones denoted by ai1 , . . . , ais) while the other ai (for
i /∈ {i1, . . . , is}) are fixed integers. For instance, this proposition shows that in the case of
the restricted Kloosterman sums of equation (1·3), one can fix an arbitrary integer b, and
only parametrize the sums by a varying in Z/qZ, and still obtain the same equidistribution
result as the one illustrated by Fig. 3.

Remark 1·12. The Laurent polynomial gd does not depend on m, as long as m is coprime
with d. This implies that the region of equidistribution almost does not depend on the shape
of the numerators in the exponentials: it will be the same for any m coprime with d. This
explains why [4, theorem 7] and [7, theorem 6·3] give rise to the same kind of figures, and
this leads to many other examples. Similarly, the Laurent polynomial fd,m only depends on
m through the list of the gcd’s (d, mi).

1·4. Strategy of the proof of Theorem A.

The first step consists in reducing both cases to two statements about the equidistribution
modulo 1 of some sets of arithmetic nature: Propositions 2·2 and 2·5. These two propositions
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can be seen as a generalisation of Myerson’s lemma2, which asserts that the sets{
a

q

(
1, wq, . . . , wϕ(d)−1

q

)
; a ∈ Z/qZ

}
, (1·11)

where wq is a primitive dth root of unity modulo q, become equidistributed modulo 1 as q
goes to infinity among the d-admissible integers. This lemma is proved using a version of
Weyl’s equidistribution criterion and thus reduces to the following exponential sum estimate:

LEMMA 1·13 (Myerson’s lemma, [7 lemma 6·2]). Let d � 1 be an integer, and let f ∈
Z[X] \ {0} be a polynomial of degree strictly less than ϕ(d). Then there exists an integer mf

such that for all d-admissible integers q such that q > mf , for any element wq of order d in
(Z/qZ)×, ∑

a∈Z/qZ

e

(
f (wq)

q
a

)
= 0.

Propositions 2·2 and 2·4 essentially amount to generalising the equidistribution of sets of
type (1·11) to sets of the form{

a

q

(
1, wq, . . . , wϕ(d)−1

q

)
; a ∈ Hq

}
, (1·12)

where Hq is a large enough subgroup of (Z/qZ)×. Precisely, a particular case of
Proposition 2·5 is the following corollary which generalises [7, lemma 6·2].

COROLLARY 1·14. Let d � 1 and let δ > 0. For all q ∈Ad, let wq be an element of order
d in (Z/qZ)×. For each of these values of q, we also fix a subgroup Hq of (Z/qZ)×. If the
following growth condition is satisfied:

|Hq|� qδ ,

then the sets (1·12) become equidistributed modulo 1 as q tends to infinity among the d-
admissible integers.

The crucial input in order to obtain convergence towards zero when applying Weyl’s
criterion is the following exponential sum estimate, which relies on a deep result due to
Bourgain and stated in Theorem 3·1.

PROPOSITION 1·15. Let d � 1 and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less
than ϕ(d).

Let δ > 0. Then, there exists ε = ε(δ) > 0, depending only on δ, such that for all d-
admissible integers q large enough, for all subgroups Hq of (Z/qZ)× satisfying |Hq|� qδ ,
and for any element wq of order d inside (Z/qZ)×, we have∣∣∣∣∣∣

∑
a∈Hq

e

(
af (wq)

q

)∣∣∣∣∣∣�f ,δ
|Hq|
qε

· (1·13)

2 The name comes from the fact that this is an adaptation of an argument that is used in the proof of [16,
theorem 12].
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This estimate allows us to complete the proofs of Propositions 2·2 and 2·5, thus proving
Theorem A. Let us stress that the application of Bourgain’s theorem is not straightforward,
and the second main ingredient in the proof of Proposition 1·15 is a good understanding of
the p-adic valuation of f (wq) (see Proposition 3·2).

Structure of the paper. Section 2 is devoted to reducing the proof of the main result to
statements about equidistribution modulo 1. In Section 3, we prove the key exponential sum
estimate (Proposition 1·15) which allows us to obtain the convergence towards zero in the
applications of Weyl’s criterion of Section 4. In the latter, we establish the needed properties
of equidistribution modulo 1 and conclude the proof of Theorem A. Finally in Section 5, we
give examples and illustrations.

1·5 Notation

(i) The number of elements of a finite set X is denoted by |X|.
(ii) If a, b ∈ Z, we denote by (a, b) their gcd (greatest (positive) common divisor).

(iii) If a ∈ Z and p is a prime number, we denote by vp(a) the p-adic valuation of a.

(iv) If d is a positive integer, φd denotes the dth cyclotomic polynomial over Q and ϕ(d)
its degree.

(v) If x ∈ R, we denote by {x} := x − �x� its fractional part. If x = (x1, . . . , xm) ∈ Rm, we
denote by {x} := ({x1}, . . . , {xm}) the fractional part of x taken componentwise.

(vi) Let (X, A) and (Y , B) be two measurable spaces, and let λ be a measure on the former.
If f : X → Y is (A, B)-measurable, then we denote by f∗λ the pushforward measure
of λ via f . It is defined as the measure on (Y , B) such that (f∗λ)(B) = λ(f −1(B)) for
all B ∈ B.

(vii) T denotes the group of complex numbers of modulus 1.

The Jupyter Notebook which was written to obtain most of the figures of this
article is available in html format at the URL: http://perso.eleves.ens-rennes.fr/people/
theo.untrau/sumssubgroups

2. Reduction to statements on equidistribution modulo 1

In this section, we prove that the two cases of Theorem A are implied by two lemmas on
the equidistribution modulo 1 of certain sequences of sets of arithmetic nature. The idea is
that the exponential sums we are considering, which are sums of d particular roots of unity,
can in fact be expressed as a Laurent polynomial in a smaller number of roots to unity. We
start this section by stating a lemma which is the main ingredient to perform this reduction.

2·1. Reduction modulo prime powers of cyclotomic polynomials

LEMMA 2·1. Let d � 1 be an integer and let q = pα be a d-admissible integer. Let x ∈
(Z/qZ)× be an element of order d. Then we have:

φd(x) = 0 in Z/qZ,

where φd stands for the reduction of φd modulo q.
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Proof. We consider the polynomial P(X) := Xd − 1, seen as an element in Zp[X], where
Zp is the ring of p-adic integers. Let x̃ be a lift in Z of the class x modulo q. Then we have

P(x̃) ≡ 0 mod q

since x has order d. Therefore |P(x̃)|p � 1/pα , where we denoted by | · |p the standard p-adic
absolute value on the field of p-adic numbers Qp. On the other hand, we have P′(x̃) = dx̃d−1,
which has p-adic valuation zero since (d, p) = 1 (because d divides p − 1) and (x̃, p) = 1
since x is invertible modulo pα . Thus, |P′(x̃)|p = 1 and so:

|P(x̃)|p � 1

pα
= 1

pα
|P′(x̃)|2p.

Therefore, by Hensel’s lemma (see [5, chapter II, appendix C]) there exists a unique z̃ ∈ Zp

such that {
P(z̃) = 0

|z̃ − x̃|p � 1
pα .

(2·1)

We deduce that:

0 = z̃d − 1 =
∏
m|d

φm(z̃) in Zp. (2·2)

Now since Zp is an integral domain, at least one of the factors φm(z̃) must be zero.
Assume for a contradiction that this happens for an m which is not equal to d. Then this

would imply that z̃m = 1 in Zp, hence:

|x̃m − 1|p = |x̃m − z̃m|p � |x̃ − z̃|p � 1

pα

by the second condition in (2·1). Thus, x̃m ≡ 1 mod pα for an m < d, contradicting the fact
that x has order exactly d in (Z/pαZ)×. Therefore, in the product (2·2), it is the term φd(z̃)
which equals zero. Now, since |x̃ − z̃|p � 1/pα we have:

|φd(x̃)|p = |φd(x̃) − φd(z̃)|p � 1

pα

and this is equivalent to φd(x̃) ≡ 0 mod pα , that is: φd(x) = 0 in Z/pαZ.

In the remainder of this section, we state two lemmas on the equidistribution modulo 1 of
some particular sets, and prove that they imply Theorem A.

2·2. Reduction step for the main result: case (a)

First, let us state the proposition which will turn out to imply case (a) of Theorem A.

PROPOSITION 2·2. (Equidistribution modulo 1 case (a)) Let d � 1 be an integer and m =
(m1, . . . , mn) ∈ Zn. For all i ∈ {1, . . . , n}, the notation di stands for d/(d, mi). Let δ > 0. For
all d-admissible integers q, let wq be an element of order d in (Z/qZ)×. For each such q, we

also choose subgroups of (Z/qZ)×: H(1)
q , . . . , H(n)

q . Then, provided the subgroups satisfy the
growth conditions:

∀i ∈ {1, . . . , n}, |H(i)
q |� qδ ,
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the sets of (ϕ(d1) + · · · + ϕ(dn))-tuples

{ =:x(a1,...,an,q)︷ ︸︸ ︷((
a1(wm1

q )j

q

)
0�j<ϕ(d1)

, . . . ,

(
an(wmn

q )j

q

)
0�j<ϕ(dn)

)
; (a1, . . . , an) ∈ H(1)

q × · · · × H(n)
q

}

become equidistributed modulo 1 as q goes to infinity among the d-admissible integers.
In other words, for any continuous map G : [0, 1]d → C,

1∏n
i=1 |H(i)

q |
∑

a1∈H(1)
q

...
an∈H(n)

q

G({x(a1, . . . , an, q)}) −→
q→∞
q∈Ad

∫
[0,1]d

G(x1, . . . , xd)dx1 . . . dxd.

Proof. See Section 4.1.

Remark 2·3. There is a little abuse of notation here, since the ai and wq are classes modulo
q, and the fractions above may depend on the choice of a representative. However, since we
are only interested in the distribution properties modulo 1, we sometimes allow ourselves to
keep on writing classes modulo q at the numerator of fractions with denominator equal to q.

This lemma on equidistribution modulo 1 translates into a result on equidistribution of
exponential sums restricted to a subgroup via the Laurent polynomials fd,m introduced in
equation (1·7) of Definition 1·9.

PROPOSITION 2·4. Proposition 2·2 implies case (a) of Theorem A.

Proof. Let d � 1 and m = (m1, . . . , mn) ∈ Zn. Let us denote by Id,m the image of
T

ϕ(d1)+···+ϕ(dn) via fd,m and by μ := (fd,m)∗λ the pushforward measure of the probability
Haar measure λ on T

ϕ(d1)+···+ϕ(dn).
For all d-admissible integers q, let

Ym,q := H(1)
q × · · · × H(n)

q

be a product of subgroups of (Z/qZ)× as in case (a) of Theorem A (that is: satisfying the
growth condition (1·8)) and let θm,q : Ym,q → C be the map defined by

(a1, . . . , an) �−→
∑

x∈(Z/qZ)×
xd=1

e

(
a1xm1 + · · · + anxmn

q

)
. (2·3)

We want to show that, assuming Proposition 2·2, we have

1

|Ym,q|
∑

(a1,...,an)∈Ym,q

F
(
θm,q (a1, . . . , an)

) −→
q→∞
q∈Ad

∫
Id,m

Fdμ, (2·4)

for any F : Id,m → C continuous.
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Let wq be an element of order d in (Z/qZ)×. Then the unique subgroup of order d inside

(Z/qZ)× can be described as
{

wk
q; k ∈ {0, . . . , d − 1}

}
, so that for all (a1, . . . , an) ∈ Ym,q,

θm,q (a1, . . . , an) =
d−1∑
k=0

n∏
i=1

e

(
ai(w

mi
q )k

q

)
.

Now,

∀i ∈ {1, . . . , n}, ∀k ∈ {0, . . . , d − 1}, (wmi
q )k =

ϕ(di)−1∑
j=0

c(i)
j,k(wmi

q )j.

This comes from using Lemma 2·1 after having evaluated the polynomial congruences defin-
ing the c(i)

j,k (see Definition 1·9) at wmi
q . The lemma applies since wmi

q has order di in (Z/qZ)×.
Replacing this in the expression of θm,q (a1, . . . , an) obtained above, we get:

θm,q (a1, . . . , an) =
d−1∑
k=0

n∏
i=1

ϕ(di)−1∏
j=0

e

(
ai(w

mi
q )j

q

)c(i)
j,k

.

Therefore, if we define for all i ∈ {1, . . . , n} and for all j ∈ {0, . . . , ϕ(di) − 1},

zi,j = zi,j(a1, . . . , an, q) := e

(
ai(w

mi
q )j

q

)

we have

θm,q (a1, . . . , an) = fd,m
(
(z1,j)0�j<ϕ(d1), . . . , (zn,j)0�j<ϕ(dn)

)
(2·5)

with the Laurent polynomial fd,m from Definition 1·9, and the zi,j being elements of T.
This already shows that θm,q (a1, . . . , an) belongs to the image of fd,m.

Now, let us prove that the equidistribution statement. Let F : Id,m → C be a continuous
function. Thanks to (2·5), the left-hand side of (2·4) may be rewritten as

1

|Ym,q|
∑

(a1,...,an)∈Ym,q

F
(
fd,m

(
(z1,j)0�j<ϕ(d1), . . . , (zn,j)0�j<ϕ(dn)

))

and this converges to ∫
T

ϕ(d1)+···+ϕ(dn)

(
F ◦ fd,m

)
dλ =

∫
Id,m

Fdμ

by Proposition 2·2 and because μ = (fd,m)∗λ. This finishes the proof of (2·4). Thus,
Theorem A (a) indeed follows from Proposition 2·2.

2·3. Reduction step for the main result: case (b)

As in the previous case, let us begin with the statement of the proposition which will
imply case (b) of Theorem A.
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PROPOSITION 2·5 (Equidistribution modulo 1 case (b)). Let d � 1 be an integer and m =
(m1, . . . , mn) ∈ Zn be a vector coprime with d. Let δ > 0. For all d-admissible integers q, let
wq be an element of order d in (Z/qZ)×. For each q, we also choose subgroups of (Z/qZ)×:

H(1)
q , . . . , H(n)

q . Then, provided for all q, there exists i ∈ {1, . . . , n} such that

|H(i)
q |� qδ ,

the sets of ϕ(d)-tuples

{(
a1(wm1

q )0 + · · · + an(wmn
q )0

q
, . . . ,

a1(wm1
q )ϕ(d)−1 + · · · + an(wmn

q )ϕ(d)−1

q

)
;

(a1, . . . , an) ∈ H(1)
q × · · · × H(n)

q

}
become equidistributed modulo 1 as q goes to infinity among the d-admissible integers.

Proof. See Section 4·2.
Corollary 1·14, which generalises the classical Myerson’s lemma stated in the introduc-

tion, is obtained as the special case where m = (1).
The Laurent polynomials gd introduced in Definition 1·2 will carry the equidistribution

result of Proposition 2·5 to the equidistribution theorem for exponential sums we are aiming
at. This is the content of the following proposition.

PROPOSITION 2·6. Proposition 2·5 implies case (b) of Theorem A.

Proof. We still denote by Ym,q := H(1)
q × · · · × H(n)

q and by θm,q the map defined in (2·3).

We assume that the subgroups H(i)
q satisfy the growth condition (1·9) instead of (1·8). Thanks

to the proof of Proposition 2·4 we have that

θm,q (a1, . . . , an) =
d−1∑
k=0

n∏
i=1

ϕ(di)−1∏
j=0

e

(
ai(w

mi
q )j

q

)c(i)
j,k

for all (a1, . . . , an) ∈ Ym,q, where the integers c(i)
j,k are defined as in Definition 1·9. However,

in the case where m is coprime with d, all the di are equal to d. This implies that for all
i, the list of integers (c(i)

j,k)0�j<ϕ(di), 0�k<d is always equal to the list (cj,k)0�j<ϕ(d), 0�k<d of
Definition 1·2. Therefore,

θm,q (a1, . . . , an) =
d−1∑
k=0

ϕ(d)−1∏
j=0

e

(
a1(wm1

q )j + · · · + an(wmn
q )j

q

)cj,k

.

So if we define for all j ∈ {0, . . . , ϕ(d) − 1},

zj = zj(a1, . . . , an, q, j) := e

(
a1(wm1

q )j + · · · + an(wmn
q )j

q

)
, (2·6)

we have

θm,q (a1, . . . , an) = gd(z0, . . . , zϕ(d)−1), (2·7)
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with the Laurent polynomial gd defined at Definition 1·2 and the zj being elements of T.
This shows that θm,q (a1, . . . , an) belongs to the image of gd.

Now, let us prove that the sums θm,q (a1, . . . , an) become equidistributed in the image of
gd with respect to the pushforward measure of the probability Haar measure λ on T

ϕ(d). We
denote by Id := gd

(
T

ϕ(d)
)

the image of gd and by μ := (gd)∗λ the pushforward measure.
Then what we have to prove is that for any continuous function F : Id → C, we have:

1∏n
i=1 |H(i)

q |
∑

a1∈H(1)
q

· · ·
∑

an∈H(n)
q

F
(
θm,q (a1, . . . , an)

) −→
q→∞
q∈Ad

∫
Id

Fdμ.

As in the proof of Proposition 2·4, we first use (2·7) to write:

1∏n
i=1 |H(i)

q |
∑

a1∈H(1)
q

· · ·
∑

an∈H(n)
q

F
(
θm,q (a1, . . . , an)

)

= 1∏n
i=1 |H(i)

q |
∑

a1∈H(1)
q

· · ·
∑

an∈H(n)
q

F
(
gd
(
z0, . . . , zϕ(d)−1

))

with the notation zj from (2·6) (let us stress that the zj depend on a1, . . . , an). Since F ◦ gd

is continuous and the tuples
(
z0, . . . , zϕ(d)−1

)
become equidistributed modulo 1 (thanks to

Proposition 2·5), we obtain that

1∏n
i=1 |H(i)

q |
∑

a1∈H(1)
q

· · ·
∑

an∈H(n)
q

F
(
gd
(
z0, . . . , zϕ(d)−1

)) −→
q→∞
q∈Ad

∫
Tϕ(d)

(F ◦ gd)dλ.

Finally, the integral on the righ-hand side equals
∫
Id

Fdμ by definition of the pushforward
measure, and this concludes the proof.

In the next section, we prove the key exponential sum estimate which will allow us to
prove Proposition 2·2 and Proposition 2·5 using Weyl’s equidistribution criterion.

3. Improved versions of Myerson’s lemma

In the previous section, we proved that Theorem A (b) reduces to a statement on the
equidistribution modulo 1 of some specific sets of ϕ(d)-tuples. For instance when m = (1),
Proposition 2·5 reduces to the study of the distribution modulo 1 of sets of the form{

a

q

(
1, wq, . . . , wϕ(d)−1

q

)
; a ∈ Hq

}
, (3·1)

where Hq is a sufficiently large subgroup of (Z/qZ)× and wq is an element of order d in
(Z/qZ)× (see Corollary 1·14). This can be seen as a generalisation of [7, lemma 6·2], which
concerns sets of the form {

a

q

(
1, wq, . . . , wϕ(d)−1

q

)
; a ∈ Z/qZ

}
· (3·2)

If one wants to go from the equidistribution modulo 1 of sets of the form (3·2) to that
of sets of the form (3·1), this can become quite technical when the subgroup Hq is small.
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More precisely, the equidistribution modulo 1 of sets of the form (3·1) can be proved by
elementary means as long as the subgroups Hq satisfy the growth condition (see [19])

√
q

|Hq| −→
q→∞ 0. (3·3)

However, as explained in [15], improving upon the range |Hq| grows faster than
√

q
requires more difficult techniques, and the best known bounds come from deep results
from additive combinatorics. In this section, we will prove the key exponential sum estimate
which allows us to prove the equidistribution modulo 1 of the sets (3·1) for very small sub-
groups Hq. Precisely, it will give us the fact that the growth condition (3·3) can be replaced
by

|Hq|� qδ

for any fixed δ > 0, which represents a huge improvement. This relies on a theorem due to
Bourgain, that we state in the next subsection.

3·1. Bourgain’s theorem

In a series of articles, Bourgain, Chang, Glibichuk and Konyagin proved very strong esti-
mates on sums of additive characters modulo q over subgroups of (Z/qZ)×, for different
forms of factorisation of q. The case where q is prime is proved in [3], while the case of
prime powers with bounded exponent is settled in [2]. This series of works culminated with
the following theorem, which treats the general case, and includes in particular the case of
small primes raised to very high powers. Notice that since we are only dealing with moduli
which are prime powers, the proof of the result we really use is contained in part I of [1].

THEOREM 3·1 (Bourgain). For any δ > 0, there exists ε = ε(δ) > 0 such that for any
integer q � 2, and any subgroup H of (Z/qZ)× such that |H|� qδ ,

max
a∈(Z/qZ)×

∣∣∣∣∣∑
x∈H

e

(
ax

q

)∣∣∣∣∣� C
|H|
qε

, (3·4)

where C is a constant depending at most on δ.

Proof. See [1, theorem].

3·2. The crucial control of the p-adic valuation

In order to apply the previous theorem in our specific context, the following proposition
plays an important role.

PROPOSITION 3·2. Let d � 1 and let f ∈ Z[X] \ {0} be a polynomial of degree strictly less
than ϕ(d). For all d-admissible integers q, we choose an element wq of order d in (Z/qZ)×,
and an arbitrary lift w̃q in Z. Then there exist two constants Cf , nf � 1 such that for all
q = pα ∈Ad such that q > nf :

(a) q does not divide f (w̃q);

(b) pvp(f (w̃q)) � Cf .
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Proof. As in the proof of [7, lemma 6·2], we use the fact that there exist two polynomials
a, b ∈ Z[X] and an integer n � 1 such that

a(X)φd(X) + b(X)f (X) = n, (3·5)

since f and φd are coprime in the euclidean domain Q[X]. Now, let q = pα be a d-admissible
integer. Reducing equation (3·5) modulo q and evaluating it at wq leads to

a(wq)φd(wq) + b(wq)f (wq) ≡ n mod pα

hence

b(wq)f (wq) ≡ n mod pα (3·6)

by Lemma 2·1. Now, if q = pα > n, then n is non-zero modulo q, hence f (wq) �≡ 0 mod q.
This precisely means that q does not divide f (w̃q). This shows that nf := n is a suit-
able constant for assertion (a). This part of the lemma actually completes the proof of
Lemma 1·13.

Another way of phrasing what we just proved is that as soon as q > n, the p-adic valuation
of f (w̃q) is strictly less than α. Let us denote by γ < α the p-adic valuation of f (w̃q). Then,
if we reduce the congruence (3·6) modulo pγ , we get n ≡ 0 mod pγ . Thus,

γ = vp(f (w̃q)) � vp(n),

hence

pvp(f (w̃q)) � pvp(n) � n.

Therefore, we proved that with the choice Cf := n, assertion (b) holds.

Now, let us use this proposition, together with Theorem 3·1, to deduce the key exponential
sum estimate which will be used in the proofs of Proposition 2·2 and Proposition 2·5.

3·3. Proof of the key exponential sum estimate: Proposition 1·15

Let q = pα be a d-admissible integer, and let Hq and wq be as in the statement. Let
w̃q be any lift in Z of the class wq. Assume further that q > nf for any constant nf as in
Proposition 3·2.

One cannot directly apply Bourgain’s theorem to the sum on the left-hand side of (1·13)
because f (wq) could be non-invertible modulo q. In order to reduce to a situation where
Bourgain’s theorem applies, let us introduce the notation βq for the p-adic valuation of f (w̃q),
and write f (w̃q) := pβqrq. By Proposition 3·2 (a), βq < α. Then we have

∑
a∈Hq

e

(
af (wq)

q

)
=
∑
a∈Hq

e

(
arq

pα−βq

)
. (3·7)

Now, each of the terms e
(
arq/pα−βq

)
only depends on the class of a modulo pα−βq . Let us

denote by q′ := pα−βq and by π the group homomorphism (Z/qZ)× → (Z/q′Z)× induced
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by the reduction modulo q’. The latter induces a group homomorphism π̃ : Hq → π(Hq) =
:H′

q. We denote by k := | ker π̃ |. Then we have the following equality:

∑
a∈Hq

e

(
arq

pα−βq

)
= k

∑
a∈H′

q

e

(
arq

q′

)
.

Indeed, any element of H′
q has exactly k preimages in Hq under the reduction modulo q’.

Since ker π̃ ⊆ ker π , we have that k � | ker π | = pβq . Therefore,∣∣∣∣∣∣
∑
a∈Hq

e

(
arq

pα−βq

)∣∣∣∣∣∣� pβq

∣∣∣∣∣∣
∑
a∈H′

q

e

(
arq

q′

)∣∣∣∣∣∣ . (3·8)

In order to apply Theorem 3·1 to the sum on the right-hand side, we first need to check that
the subgroup H′

q of
(
Z/q′Z

)× is large in the following sense: |H′
q|� (q′)δ′

for some δ′ > 0.
Using the fact that |Hq|� qδ , we have

|H′
q| =

|Hq|
k

� |Hq|
pβq

� qδ

pβq
= (q′)δ(

pβq
)1−δ

� (q′)δ

C1−δ
f

,

where the last lower bound comes from the inequality pβq � Cf given by Proposition 3·2 (b).

This inequality also ensures that q’ tends to infinity as q goes to infinity, so that (q′) δ
2 /C1−δ

f
eventually becomes greater than 1 as q becomes large. Therefore,

|H′
q|� (q′)

δ
2 (3·9)

for all q large enough. Thanks to (3·9), Theorem 3·1 applies to the sum on the right-hand
side of (3·8), because we also have that rq is invertible modulo q’. So there exists a constant
ε = ε(δ/2) > 0 and a constant C depending at most on δ such that∣∣∣∣∣∣

∑
a∈H′

q

e

(
arq

q′

)∣∣∣∣∣∣� C
|H′

q|
(q′)ε

·

Thanks to (3·7) and (3·8), this implies the following upper bound:∣∣∣∣∣∣
∑
a∈Hq

e

(
af (wq)

q

)∣∣∣∣∣∣� C
pβq |H′

q|
(q′)ε

� C
pβq |Hq|(
pα−βq

)ε = C
|Hq|pβq(1+ε)

qε
� CC1+ε

f

|Hq|
qε

�f ,δ
|Hq|
qε

which concludes the proof.

4. Proofs of the propositions on equidistribution modulo 1
4·1. Proof of Proposition 2·2 (Equidistribution modulo 1 case (a))

We are interested in the equidistribution modulo 1 of the following sets of (ϕ(d1) + · · · +
ϕ(dn))-tuples (with the slight abuse of notation underlined at Remark 2·3):

{ =:x(a1,...,an,q)︷ ︸︸ ︷((
a1(wm1

q )j

q

)
0�j<ϕ(d1)

, . . . ,

(
an(wmn

q )j

q

)
0�j<ϕ(dn)

)
; (a1, . . . , an) ∈ H(1)

q × · · · × H(n)
q

}
,
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where the H(i)
q are subgroups of (Z/qZ)× satisfying the following growth condition:

∀q ∈Ad, ∀i ∈ {1, . . . , n}, |H(i)
q |� qδ

for some δ > 0. By Weyl’s criterion (see [14, theorem 6·2]), these sets become equidis-
tributed modulo 1 if and only if for any y = (y0, . . . , yϕ(d1)+···+ϕ(dn)−1

) ∈ Zϕ(d1)+···+ϕ(dn) \
{0}, we have the following convergence towards zero:

1∏n
i=1 |H(i)

q |
×

∑
a1∈H(1)

q

...
an∈H(n)

q

e (x(a1, . . . , an, q) · y) −→
q→∞
q∈Ad

0. (4·1)

Let us denote by y1 the vector extracted from y by taking the first ϕ(d1) entries, y2 the
vector formed by the next ϕ(d2) entries and so on:

y1 = (y0, . . . , yϕ(d1)−1), y2 = (yϕ(d1), . . . , yϕ(d1)+ϕ(d2)−1), y3 = · · ·
so that y = (y1, . . . , yn). We also introduce the following notations to decompose the vector
x(a1, . . . , an, q) in a parallel way:

x1(a1, q) :=
(

a1(wm1
q )j

q

)
0�j<ϕ(d1)

, . . . , xn(an, q) :=
(

an(wmn
q )j

q

)
0�j<ϕ(dn)

.

Then we have

1∏n
i=1 |H(i)

q |
×

∑
a1∈H(1)

q

...
an∈H(n)

q

e (x(a1, . . . , an, q) · y) =
n∏

i=1

⎡
⎢⎣ 1

|H(i)
q |

∑
ai∈H(i)

q

e(xi(ai, q) · yi)

⎤
⎥⎦ . (4·2)

Now, since y �= 0, there exists at least one index i ∈ {1, . . . , n} such that yi �= 0. For such
an i, the factor

1

|H(i)
q |

∑
ai∈H(i)

q

e(xi(ai, q) · yi) (4·3)

tends to 0 as q goes to infinity among the d-admissible integers, thanks to
Proposition 1·15. Indeed, we have

1

|H(i)
q |

∑
ai∈H(i)

q

e(xi(ai, q) · yi) = 1

|H(i)
q |

∑
a∈H(i)

q

e

(
afi(w

mi
q )

q

)
,

where fi is the polynomial associated with

yi =
(
yϕ(d1)+···+ϕ(di−1), . . . , yϕ(d1)+···+ϕ(di−1)+ϕ(di)−1

)
as follows:

fi = yϕ(d1)+···+ϕ(di−1) + yϕ(d1)+···+ϕ(di−1)+1X + · · · + yϕ(d1)+···+ϕ(di−1)+ϕ(di)−1Xϕ(di)−1.
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This is a non-zero polynomial with integer coefficients and with degree strictly less than
ϕ(di), and wmi

q is an element of order di in (Z/qZ)×. Thus, we can apply Proposition 1·15
which states that there exists a rank Nfi such that for all q > Nfi such that q is d-admissible,∣∣∣∣∣∣∣

∑
a∈H(i)

q

e

(
afi(w

mi
q )

q

)∣∣∣∣∣∣∣�δ,fi
|H(i)

q |
qε(δ)

,

and this suffices to prove the convergence of (4·3) towards zero. As all the other factors of
(4·2) have absolute value bounded above by 1, the whole product converges to zero, and this
concludes the proof.

Remark 4·1. The proof shows why it is important to ask for the growth condition (1·8)
instead of (1·9) (that will be used in the next proof). Indeed, let us fix an index j ∈ {1, . . . , n}.
Then if we take y = (y1, . . . , yn) ∈ Zϕ(d1)+···+ϕ(dn) \ {0} defined by yi = (0, . . . , 0) ∈ Zϕ(di)

for all i �= j and yj = (1, . . . , 1) ∈ Zϕ(dj), then the absolute value of the product (4·2) is equal
to the absolute value of the factor corresponding to the index j, since all the other factors
are equal to 1. Therefore, to prove the convergence towards zero in Weyl’s criterion for this
specific vector y, we have no other choice than proving that the factor corresponding to the
index j tends to 0. In order to achieve that, we really need to be able to apply Proposition 1·15
to this factor, hence we really need to require |H(j)

q |� qδ . As j was arbitrary, this shows that
the growth condition needs to be satisfied for all j ∈ {1, . . . , n}.

4·2. Proof of Proposition 2·4 (Equidistribution modulo 1 case (b))

We are interested in the equidistribution modulo 1 of the following sets of ϕ(d)-tuples:

{ =:x(a1,...,an,q)︷ ︸︸ ︷(
a1(wm1

q )0 + · · · + an(wmn
q )0

q
, . . . ,

a1(wm1
q )ϕ(d)−1 + · · · + an(wmn

q )ϕ(d)−1

q

)
;

(a1, . . . , an) ∈ H(1)
q × · · · × H(n)

q

}
,

where the H(i)
q are subgroups of (Z/qZ)× satisfying the growth condition

∀q ∈Ad, ∃i ∈ {1, . . . , n}, |H(i)
q |� qδ . (4·4)

By Weyl’s criterion, these sets become equidistributed if and only if for any y :=(
y0, . . . , yϕ(d)−1

) ∈ Zϕ(d) \ {0} we have the following convergence towards zero:

1∏n
i=1 |H(i)

q |
×
⎛
⎜⎝ ∑

(a1,...,an)∈H(1)
q ×···×H(n)

q

e (x(a1, . . . , an, q) · y)

⎞
⎟⎠ −→

q→∞
q∈Ad

0 (4·5)

But the left-hand side can be rewritten as:

n∏
i=1

⎡
⎢⎣ 1

|H(i)
q |

∑
ai∈H(i)

q

e

(
aif (wmi

q )

q

)⎤⎥⎦ , (4·6)

where f is the polynomial y0 + y1X + · · · + yϕ(d)−1Xϕ(d)−1.
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Now, since (mi, d) = 1, we have that for all i ∈ {1, . . . , n} the element wmi
q is still of order

d in (Z/qZ)×. Also, f ∈ Z[X] \ {0} and deg f < ϕ(d). Thus, we can use Proposition 1·15 to
bound the modulus of the inner sum for any index i such that |H(i)

q |� qδ (and there exists at
least one such index i thanks to the growth condition (4·4)).

We deduce that there exists an integer Nf such that for all q > Nf such that q is
d-admissible, we have:

1

|H(i)
q |

∣∣∣∣∣∣∣
∑

ai∈H(i)
q

e

(
aif (wmi

q )

q

)∣∣∣∣∣∣∣�f ,δ
1

qε
where ε = ε(δ) > 0

for at least one i ∈ {1, . . . , n}, which may vary with q. As the other factors in the product (4·6)
have absolute value bounded above by one, we may conclude that the whole product has its
modulus bounded above by 1/qε (up to multiplicative constants), hence the conclusion.

Conclusion of the proof of Theorem A. In this section, we proved Proposition 2·2 and
Proposition 2·5, and each of them implies one of the cases of Theorem A thanks to
Propositions 2·4 and 2·6. This completes the proof of our main result.

4·3. Remarks on Theorem A and connexion with previous results

Remark 4·2. There is one last refinement that we did not discuss so far but that can be
observed through the proofs: it is the fact that one can fix some of the coefficients ai when
one studies the equidistribution of the restricted sums

∑
x∈(Z/qZ)×

xd=1

e

(
a1xm1 + · · · + anxmn

q

)

in the case where the mi are coprime with d. This remark is not included in Theorem A (b)
because the statement was already quite long without it.

Let s ∈ {1, . . . , n} and let {i1, . . . , is} ⊆ {1, . . . , n}. We fix n − s integers ai for i ∈
{1, . . . , n} \ {i1, . . . , is}. Then the sets of sums:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
x∈(Z/qZ)×

xd=1

e

(
a1xm1 + · · · + anxmn

q

)
; (ai1 , . . . , ais) ∈ H(i1)

q × · · · × H(is)
q

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4·7)

(in other words, the ones where only some of the ai are free) become equidistributed in the
image of gd with respect to the same measure as in Theorem A (b) provided there exists
δ > 0 such that

∀q ∈Ad, ∃i ∈ {i1, . . . , is}, |H(i)
q |� qδ . (4·8)
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Indeed, when one reduces this question to an equidistribution result modulo 1 as in section
2·3, one needs to prove that the sets

{(
a1(wm1

q )0 + · · · + an(wmn
q )0

q
, . . . ,

a1(wm1
q )ϕ(d)−1 + · · · + an(wmn

q )ϕ(d)−1

q

)
;

(ai1 , . . . , ais) ∈ H(i1)
q × · · · × H(is)

q

}

become equidistributed modulo 1. After applying Weyl’s criterion, one gets a factor with
complex absolute value equal to 1, multiplied by the product

∏
i∈{i1,...,is}

⎡
⎢⎣ 1

|H(i)
q |

∑
ai∈H(i)

q

e

(
aif (wmi

q )

q

)⎤⎥⎦ (4·9)

which tends to zero under condition (4·8), thanks to Proposition 1·15.

Remark 4·3. If we take the subgroups H(i)
q as large as possible, Theorem A gives an

equidistribution result for the sets of sums

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
x∈(Z/qZ)×

xd=1

e

(
a1xm1 + · · · + anxmn

q

)
; a1, . . . , an ∈ (Z/qZ)×

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

However, to compare our result to the ones already proved in [4, 7, 10], we would like
to have the ai varying in Z/qZ instead of (Z/qZ)×. This is the content of Proposition B.
In order to obtain this proposition, the first step consists in following the strategy of
Section 2 to reduce to two statements on equidistribution modulo 1, corresponding to
the two cases (a) and (b) of the proposition. These two statements are the exact ana-
logues of Proposition 2·2 and Proposition 2·5, with the condition (a1, . . . , an) ∈ H(1)

q ×
· · · × H(1)

q replaced by (a1, . . . , an) ∈ (Z/qZ)n. They are proved using Weyl’s criterion, but
the convergence towards zero is easier to obtain, since Lemma 1·13 replaces the use of
Proposition 1·15. For instance, Proposition B (b) reduces to the convergence towards zero
of the following product

∏
i∈{i1,...,is}

⎡
⎣1

q

∑
ai∈Z/qZ

e

(
aif (wmi

q )

q

)⎤⎦ , (4·10)

where f is a non-zero polynomial in Z[X] with deg f < ϕ(d). This product is to Proposition B
(b) what (4·9) was to Theorem A (b), in its extended form of the previous remark. Now,
thanks to Lemma 1·13 each of the factors in (4·10) is eventually equal to zero as q ∈Ad

goes to infinity, and this finishes the proof. Proposition B (a) can be proved by a similar
adaptation of the proof of Theorem A (a).
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This proposition generalises the previous results obtained in [4, 7, 10]. In these articles,
only sums of the type

∑
xd=1

e

(
ax

q

)
or

∑
xd=1

e

(
ax + bx−1

q

)

were considered. In Proposition B (b), we prove that the equidistribution theorems obtained
in loc. cit. extend to families of sums with a more general numerator inside the exponentials,
namely Laurent polynomials of the form a1xm1 + · · · + anxmn , as soon as the exponents mi

are coprime with d. Moreover, it also explains that one can fix some of the coefficients ai.
As long as one of them varies in all Z/qZ, the equidistribution result will hold. In particular,
the equidistribution results obtained in [4] for sets of Kloosterman sums

Kq(−, −, d) :=
⎧⎨
⎩Kq(a, b, d) :=

∑
xd=1

e

(
ax + bx−1

q

)
; a, b ∈ (Z/qZ)2

⎫⎬
⎭

also hold if one fixes an integer a0, and considers the sets

Kq(a0, −, d) := {
Kq(a0, b, d); b ∈ Z/qZ

}
.

Finally, case (a) treats the case where some of the mi may share prime factors with d,
and provides the appropriate Laurent polynomial whose image determines the region of
equidistribution.

5. Examples of application
5·1. Laurent polynomials and hypocycloids

So far, the region of the complex plane in which the sums become equidistributed has
only been described as the image of a torus via a Laurent polynomial. However, in some
cases, one can give a more explicit description of this image, as it was observed in [4, 10].
In this section, we review some cases where the regions of equidistribution can be described
in geometric terms, without referring to the Laurent polynomials gd.

The main ingredient is the following lemma, which states that the region Hd from
Definition 1·5 is precisely the image of a torus via a specific Laurent polynomial.

LEMMA 5·1. Let d � 2. The image of the map:

f : T
d−1 −→ C

(z1, . . . , zd−1) �−→ z1 + · · · + zd−1 + 1
z1...zd−1

is the region Hd from Definition 1·5.

Proof. See [6, theorem 3·2·3] or [11, section 3].

Remark 5·2. Note that this lemma tells us which complex numbers arise as the trace of a
matrix in SUd(C) (this is the point of view adopted in [11]).

The above Laurent polynomial arises in our equidistribution results in the following way:
when d is a prime number, the dth cyclotomic polynomial φd is equal to Xd−1 + · · · + X + 1,
and this explicit formula allows one to compute the coefficients cj,k which appear in the
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definition of gd (Definition 1·2). This exactly gives the Laurent polynomial of the previous
lemma, thus allowing us to have a more concrete description of the region of equidistribution
in our results. Precisely, this gives:

PROPOSITION 5·3 ([10, proposition 1]). Let d be a prime number. The polynomial gd from
Definition 1·2 is given by

gd : Tϕ(d) =T
d−1 −→ C

(z1, . . . , zd−1) �−→ z1 + · · · + zd−1 + 1

z1z2 . . . zd−1

and the image of Td−1 via gd is the region Hd from Definition 1·5. In particular, the region
of the complex plane in which the sums restricted to the subgroup of order d become
equidistributed in Theorem A (b) and Proposition B (b) is Hd.

This proposition relies mostly on the fact that when d is a prime number, we have an
explicit formula for the dth cyclotomic polynomial. As there is also an explicit formula for
the dth cyclotomic polynomial when d = rb is a prime power, namely

φrb (X) =
r−1∑
j=0

Xjrb−1
(
= φr

(
Xrb−1

))
,

it is not surprising that our understanding of the image of gd can also be improved in that
case. In fact, the explicit formula above leads to the following proposition.

PROPOSITION 5·4 ([10, corollary 1]). Let d := rb be a power of a prime number r. The
polynomial gd from Definition 1·2 is given by

gd : Tϕ(d) =T
(r−1)rb−1 −→ C

(z1, . . . , z(r−1)rb−1) �−→
(r−1)rb−1∑

j=1

zj +
rb−1∑
m=1

r−2∏
�=0

z−1
m+�rb−1

and the image of Tϕ(d) via gd is the Minkowski sum

rb−1∑
j=1

Hr := {
ξ1 + · · · + ξrb−1 ; ξ1, . . . , ξrb−1 ∈Hr

}
.

In particular, the region of the complex plane in which the sums restricted to the subgroup

of order d become equidistributed in Theorem A (b) and Proposition B (b) is
rb−1∑
j=1

Hr.

Example 5·5. For instance, as it is done in [4, theorem 10], for r = 3 and b = 2 we have:

g9(z1, . . . , z6) = z1 + z4 + 1

z1z4︸ ︷︷ ︸
∈H3

+ z2 + z5 + 1

z2z5︸ ︷︷ ︸
∈H3

+ z3 + z6 + 1

z3z6︸ ︷︷ ︸
∈H3

·

A drawing of the region of the complex plane H3 +H3 +H3 can be found in [10, figure 11].
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(a) (b) (c)

Fig. 4. The sets of the form (5·1) for three 5-admissible integers q and for the indicated choice
of subgroups H(1)

q , H(2)
q .

5·2. Illustration of Theorem A

We fix d to be equal to 5, and we consider the following sets of Kloosterman sums
restricted to the subgroup of order 5:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∑

x∈(Z/qZ)×
x5=1

e

(
ax + bx−1

q

)
; (a, b) ∈ H(1)

q × H(2)
q

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5·1)

for increasing 5-admissible values of q, and where H(1)
q and H(2)

q denote subgroups
of (Z/qZ)×. Then Theorem A (b), combined with the geometric interpretation of
Proposition 5·3, states that these sets become equidistributed in the region delimited by a
5-cusp hypocycloid, with respect to some measure (obtained as the pushforward measure,
under the Laurent polynomial g5, of the Haar measure on T

4) provided the subgroups H(1)
q

and H(2)
q of (Z/qZ)× satisfy the following growth condition:

there exists δ > 0 such that:

∀q ∈Ad, |H(1)
q |� qδ or |H(2)

q |� qδ .

In the Fig. 4, H(2)
q is always chosen to be the trivial multiplicative subgroup, and |H(1)

q |�
q1/2.

5·3. Illustrations of Proposition B

First, let us illustrate Proposition B (b) in the case where d is a prime number, with the
new insight brought by Proposition 5·3.

Let d be a prime number. For all d-admissible integers q, we consider the sums

Sq(a, d) :=
∑

x∈(Z/qZ)×
xd=1

e

(
ax

q

)
for a ∈ Z/qZ.
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(a) (b) (c)

Fig. 5. The sets Sq(−, d) for d = 3 and three 3-admissible values of q.

Since the vector m = (1) ∈ Z1 is coprime with d, Proposition B (b) states that these sums all
belong to the image of Td−1 via gd, and that the sets:

Sq(−, d) := {
Sq(a, d); a ∈ Z/qZ

}
become equidistributed in this image, with respect to the pushforward measure of the Haar
measure on T

d−1. Now, the new insight given by Proposition 5·3 is the interpretation of the
image of gd as the region Hd delimited by a d-cusp hypocycloid.

We illustrate this statement in the case d = 3. In the Fig. 5, the points are the sets Sq(−, 3)
while the delimiting curve is the 3-cusp hypocycloid from Definition 1·4.

However, Proposition B (b) covers many other families of exponential sums. For instance,
if one takes m to be the vector (1, −1) ∈ Z2, the same equidistribution phenomenon happens.
Indeed, m = ( − 1, 1) is coprime with d (for any d) and so the proposition also predicts that
the sets of sums

Kq(−, −, d) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩Kq(a, b, d) :=

∑
x∈(Z/qZ)×

xd=1

e

(
ax + bx−1

q

)
, a, b ∈ Z/qZ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

become equidistributed in Hd as q goes to infinity among the d-admissible integers (and
with respect to the same measure as in the previous example). Figure 3 of the introduction
illustrates this result in the case d = 5. In the case where d = 3, the comparison of the Figs. 5
and 6 illustrates this striking similitude of behaviour for different types of exponential sums,
when restricted to subgroups.

Proposition B (b) also states that one can fix a and let b vary in all Z/qZ, and vice-versa.
For instance, if we take the previous example of restricted Kloosterman sums and choose to
fix a = 1 and let only b vary, the sets of sums:

Kq(1, −, d) := {Kq(1, b, d); b ∈ Z/qZ}
will become equidistributed in the same hypocycloid as before, with respect to the same
measure.
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(a) (b) (c)

Fig. 6. The sets Kq(−, −, d) for d = 3 and three 3-admissible values of q.

Thus, Proposition B allows us to recover the equidistribution results from [4, 7, 10] and
extends [4, theorem 7 and theorem 10] to all values of d, and to the case where only one of
the two parameter a and b varies.

Moreover, Proposition B (b) widely generalises the previously known results to other
families of exponential sums. Indeed, sums with ax or ax + bx−1 inside the exponentials
may now be replaced by sums with a1xm1 + · · · anxmn inside the exponentials, provided the
mi are coprime with d. For instance, one can consider the sums

Qq(a, b, c, d) :=
∑

x∈(Z/qZ)×
xd=1

e

(
ax4 + bx2 + cx

q

)
for a, b, c ∈ Z/qZ,

for all d-admissible integers q. As soon as d is odd, it is coprime with the exponents of X
that appear in the polynomials of the form

aX4 + bX2 + cX.

Therefore, Proposition B (b) applies to this family of sums, as long as the summation is
restricted to a subgroup of odd order. So if we look at the case d = 3 and we draw the sets

Qq(−, −, −, 3) = {Qq(a, b, c, 3); a, b, c ∈ Z/qZ}
for different 3-admissible values of q, we observe the same equidistribution as for the other
types of sums, inside a 3-cusp hypocycloid (see Fig. 7).

One could also want to consider sets of Birch sums restricted to a subgroup, that is:

Bq(a, b, d) :=
∑

x∈(Z/qZ)×
xd=1

e

(
ax3 + bx

q

)
oùa, b ∈ Z/qZ.

For instance if we take d = 7 and look at the sets Bq(−, −, 7) := {
Bq(a, b, 7); a, b ∈ Z/qZ

}
,

then Proposition B (b) (combined with Proposition 5·3) states that they should become
equidistributed in H7 (the region delimited by a 7-cusp hypocycloid) as q goes to infinity
among the 7-admissible integers. This is indeed what the Fig. 8 suggest:
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(a) (b) (c)

Fig. 7. The sets Qq(−, −, −, d) for d = 3 and three 3-admissible values of q.

(a) (b) (c)

Fig. 8. The sets Bq(−, −, d) for d = 7 and three 7-admissible values of q.

Remark 5·6. Note that in Theorem A and Proposition B, the measure with respect to which
the sums become equidistributed is the pushforward measure via gd of the Haar measure
on T

ϕ(d). This explains why one does not observe a uniform distribution in the sense of the
Lebesgue measure.

On the other hand, one could want to consider Birch sums restricted to the subgroup of
order 3, that is sums of the type:

Bq(a, b, 3) :=
∑

x∈(Z/qZ)×
x3=1

e

(
ax3 + bx

q

)
oùa, b ∈ Z/qZ.

However, this type of sum does not fall inside the range of application of Proposition B
(b), because the exponent 3 in the polynomial expression ax3 + bx is not coprime with the
order of the subgroup. In fact, this situation is part of case (a) of Proposition B.

Finally, let us illustrate Proposition 5·4, which gives a geometric interpretation of the
image of gd when d is a prime power.
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(a) (b) (c)

Fig. 9. The sets Kq(−, −, 9) := {
Kq(a, b, 9); a, b ∈ Z/qZ

}
for three 9-admissible values of q.

If we take again the example of Kloosterman sums, Proposition B (b) states that the sums:

Kq(a, b, 9) =
∑

x∈(Z/qZ)×
x9=1

e

(
ax + bx−1

q

)
, a, b ∈ Z/qZ

become equidistributed in the image of g9, with respect to the pushforward measure of the
Haar measure on T

6. Now, thanks to Proposition 5·4 we can interpret the image of g9 as the
Minkowski sum of three copies of H3 (see also example 5·5). Therefore, we should observe
equidistribution in a region of the shape given by [10, figure 11]. Figure 9 illustrates this
asymptotic behaviour.
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