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DISTRIBUTIONAL WATSON TRANSFORMS
HSING-YUAN HSU

1. Introduction. All our notation is as defined in [2] with the restriction to
n = 1. However, for our purposes, we introduce a sequence {||*||,}5-0 of norms

by
1
llell, = max sup [&,,®)x" "D (x)]
0=<k<p 2z2€R*
in.#, ;. It is not difficult to see that.#, , turns out to be a fundamental space.

It is a well-known fact that the Watson transform and the Mellin transform
are connected by the fact that

8@ = [ rORGna

and

1@ = [ grena

if and only if K(s)K (1 — s) = 1, where K(s) is the Mellin transform of & (x).
Further, the Hankel transform and Hilbert transform can be considered as
special cases of Watson transforms.

In this paper we extend these transformations so that they may be applied
to Schwartz distributions, and we study their interrelationship.

2. Distributional Watson transforms.

THEOREM 1. Assume that M,y is constructed as above with a + b = 1 and

ke My, k#0, with
{s € Kla = Res £b} CQ.

For each f € M, , f % 0, with {s € K|a < Res < b} in Q;, 1t makes sense
to define g = fA k sothat g € M, with {s € Kla < Res £ b} CQ,.

Then g = f Ak implies f =g ANk if and only of K(s)K(1 —s) =1 for
a £ Res £ b, where K(s) = (ME)(s), the distributional Mellin transform of
k (see [2] for the definitions).

Proof. Suppose that K(s)K(1 — s) = 1. Forg =f A &,
G(s) = F(1 — $)K(s), where G(s) = (Mg)(s). F(s) = (Mf)(s).
Then G(1 — s) = F(s)K(1 — s). Set f1 = g A k. Then
Fi(s) = G(1 — s)K(s) = F(s)K(1 — s)K(s) = F(s),
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where Fi(s) = (#f,)(s). By the uniqueness theorem in [2], f = fi. Hence
f=g ANk
Conversely, suppose that g = f A k= f = g A k. Then

G(s) = F(1 — s)K(s) and F(s) = G(1 — s)K(s).
Thus G(s) = G(s)K(s)K(1 — s). Hence K(s)K(1 — s) = 1.

Remark. Suppose that f, k are locally integrable and f/£,_1,5-1, #/£,—1,5_1 are
absolutely integrable on R,.

Then g is also locally integrable and g/£,-1,,_1 is absolutely integrable on
R, and so

gly) = J:Of(x)k(xy)dx and f(y) = J:og(x)k(xy)dx.

In this way, we get the classical Watson transform again.

Therefore, let us call the mapping W defined by W, : f—g = f A k the
Watson transformation; and the inverse mapping W,;™! is given by
Wytig—=f=g Ak

Further, we call such % a distributional Watson kernel.

It is not difficult to prove the following properties:

(1) Suppose that f is a distributional Watson kernel. Then W,(f) = g is
also a distributional Watson kernel.

(2) Suppose that ki, ky € A, ', a + b = 1, are two distributional Watson
kernels. Then k; A ks, k1 V ks (see [2] for the definition) are also distributional
Watson kernels.

(3) Suppose that {k,}o-; is a sequence of distributional Watson kernels in
M, such that k, — k in.#,, asn— oo, where @ + b = 1. Then % is also a
distributional Watson kernel.

Example. Consider 8 (x). It is clear that 6 € 4, , for all ¢,b € R, a < b.
Suppose that a +b =1 and set 6.(x) = 6(x — ¢). Then (A6,)(s) =
(6(x — 1),x1) = 15! = 1 and (#6;)(1 — s) = 1. Hence

(AM5y) (s) (Mb,) (1 — 5) = 1.

Therefore 8, is a distributional Watson kernel. Suppose that f € .#, , with
{s € Kla £ Res =0} CQ Set g=7fA 6. Then for all ¢ € .4#,,, we have

(g(x), ¢ (x)) = (f(x), (1(y), x " (y/x)))
(f(x), Gy — 1), x7"e(y/x)))
(fx), x7e(1/x))

= (7 (1/x), o(x)).
Hence g(x) = (1/x)f(1/x). Similarly, f(x) = (1/x)g(1/x).

It
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3. Distributional Hankel transforms.

THEOREM 2. Let V € K with Re V > —1. Assume that {a,}m and {b,}3-1
are, respectively, a strictly monotonically decreasing sequence and a strictly
monotonically increasing sequence in R such that

W) ~(V+HD<an<by < VA+3formmn=123,...,

@2)a,+b,=1forn=1,23,...,

@) anm>=(V+3),b>V+iasn—co.

Set

%V = k_Jl'%an.bn'

Then 'y is a fundamental space with

@
%V=r}%MM
—

as its dual.

Proof. By the construction of A,, ,, for n = 1,2,3,..., each M,,,, is a
complete countably normed space.

It is easy to see that {.#,, ;,}71 is an increasing sequence and the topology
of each .#,, ,, is stronger than the topology induced by #,, ., s, ...

Hence £y is a countable union space of the spaces.#,, ,,. Further, ¢, — 0
in #y as m — o implies ¢, — 0 in 4, ,, for some n as m — co. Hence
en(x) — 0 as m — © on R,. Therefore 5y is a fundamental space. Plainly,
{ M, 5, )51 is decreasing so that the dual 57’ of Sy is equal to NTy A, o, .

THEOREM 3. Assume that k(x) = x3Jy(x), where Jy (x) is the Bessel Sfunction
of order V.

Then the mapping Hy : Sy —Hy by g = Hy(f) =f ANk is one-one,
onto, and continuous. The inverse mapping is given by f =Hy1(g) = g A k
which is also continuous.

k(x)
Ean_1,0n1 (%)
integrable on R, forn = 1,2, 3, ... so that k(x) is ans#y regular distribution.

Let

Proof. k(x) is clearly locally integrable and is absolutely

_Ja=-2H"F 0<x<1
fl(x) - {0’ x > 1

and

g1(x) = (%)21“((1) (cos 2aw)x~?, 0 < Rea< 1.

Then the Fourier cosine transforms Fi (x), Gi.(x), respectively, of
fi(x), g1(x) are
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iRy
3 [0
N——"

o )
f (1 — )72 cos xt dt
0

T)l f (1 — Y gy
> = (=)™ T(V + 5T (n + 3)
= (2n)! r(V+n+1)

1 n 1 2n
C)ror e pveE ey

270 (V 4 3V T (),

Flc(x) =

I
RN

3|

—
- 7[\48

M

RS

DO b=
3w
3
|

G1c(x)

I

%f I'(a) cos $am - % cos xt dt
0

= % T'(a)(cos dam)T(1 — a)(sin dam)x*"

— xa—l

By Parseval’s formula,
[ Fe@Giwix = [ n@nes,
that is,

o % 1
VAPV 4+ 1) f Ty ()x® "V ldx = (%) I'(a) cos ar f (1 — &%) %
0 0

Hence
J;w Ty (@)x® " ldx = —\%rz“ I‘(I;/(a—{)— 1)cos laxw fm a—x«x )V"x‘“dx
2\;1.- F(I;/Sa_i)_ 3yc0s %a‘/rf (1 — p)Vher gy
0
_ 27 T@r(V+ HrE — $a)
= VR TV DIV + 1= 1) 207
AN /|
9V (i — 3a) 27T (é) r <§ + 5)
\/W~—_—F(V+ =1 )cos law e
_ 27V"! I'(1a) cos Law T
w T(V+1—1a)sin n(3 + 3a)
_ 27T () 3
= I‘(V+1-%a)’0<a< V+ 3.
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Puts =a — V — %. Then

} oty _ 2T+ 3) + 37)
fx]v(x)x dx = VT ET T

Thus

_ 27 (s +1+17)
KO ="rav=3+p

and
G _2TTE s+ 3 1
K==+t “K@
Hence K(s)K(1 — s) = 1. Therefore k is a distributional Watson kernel.
Thus, by Theorem 1, Hy is a one-one, onto mapping such that

g=fANkesf=g Ak

It is clear that f, — f in ;' as m — © and g, = f, A k implies g, — g
in ) as m — o, where g = f A k. Thus Hy is continuous. Similarly,
Hy~1 is continuous.

Remark. 1f f is locally integrable and f/,,, », is absolutely integrable over
R, for all » € N, then so is g such that

80) = | 1) )T (e)a,

10) = | el ey )i

which coincides with the classical Hankel transforms.

Thus we call Hy the Hankel transformation and Hy ! the inverse Hankel
transformation and k(x) = x3J,(x) the distributional Hankel kernel of Vth
order.

4. Distributional Hilbert transforms. Assume that {a,}; and
{b,}5=1 are, respectively, a strictly monotonically decreasing sequence and a
strictly monotonically increasing sequence in R such that

MDo<a, <b,<lformmn=1,2,3,...,

@) a,+b,=1forn=1,2,3,...,

3) a,—0,b, >0asn — 0.

As indicated in Theorem 2, 5 ; = Us1.#,, 5, is a fundamental space
with 1 = Npg1M 4,5, as its dual.

LeEmmA 4. Suppose that
1

k(x)=1_x.
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Then Pyh defined by

- ® ox)
(Pvh, ) = Py , l—xdx

for all ¢ € 31 1s an Hy 1-regular distribution, where
" o)
Pvfo 1 — x dx
is the Cauchy principal value of
® o) dox.
0 1 —x
Proof. Let ¢ € #y 1. Then ¢ € M, ,, for some n.
al—e oo
Pvrf—(@;dx J 20 g 4 L(’Q—dx'
o 1 —

=lmy Jo 37 el —x

€50

e - ¢ ) ox)

= lim f + + f + f S ax

0 0 1/e 1+e e 1—x

/ 1/e 1

. an,bn -

= lim [le]ls <f0 = |
+ 1—e A—l—_ dx + e —*—_1—— dx
ve |61 =) e | Z @)1 — )

o 1
+fe T dx)

< lim ||e| """ (M1 + M log e — M log(1 — 1/e)
€0

+ Mlog(e — 1) — Mlog e + M)
= [lo|[§"" (M1 + Ms + M) = M,, say,
where % (x) is the part of £, ,,(x) in 1/e < x < e, and

M = max|% (x)|,

M B fl/e _,__L___ d
1= 0 xl~an(1 _ x) X,y

Mz = J; Q_CT_IJ’L(T:)C_) dx

which are bounded. Hence Py# is a functional on 5% 1. The linearity of it as
a functional on S ; is clear.

Suppose that ¢, — 0 in ¥ ; as m — . Then ¢, — 0 in.#,, ,, for some n
as m — oo. Thus, by an argument quite similar to that given above, we have

(Pyh, ¢n) — 0 as m — 0.
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Hence Pyh is continuous. Therefore Pyh is an 5 ;-regular distribution.

THEOREM 5. The mapping H =Koy —H ' defined by f—g=f Ak,
where

1
l_x‘.’y

2

is one-one, onto, and continuous. The inverse mapping H —' is given by
H -1 g—f =g A kwhich is also continuous.

Proof. Plainly, 1/(1 — x) is an ¥, ;-regular distribution.
Now,

2 > xt
k(s) = ;PV f 1 _?dx

2

™

= cot 3sT.
Kl —5s) =cot:i(1 — s)m = tan 3sm.
Thus K(s)K(1 — s) = cot 3sw tan 3s7 = 1. Hence k(x) is a distributional
Watson kernel. By Theorem 1,5 is one-one and onto. It is clear that f,, — f
in #y. as m —; and g, = f, A k implies g, —g =f A k in £, as
m — 0. Hence  is continuous. Similarly, 7 —!is given by # ~1: g — f =
g A k which is also continuous.

Remark. 1f f is locally integrable and f/&.,_, s._, is absolutely integrable
over R, for all » € N, then J# would coincide with the classical Hilbert
transformation. Thus we call 2 the Hilbert transformation and % —! the
inverse Hilbert transformation and

2 1
k(x) = ;PV—I —
the distributional Hilbert kernel.
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