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Abstract

Accurate zygosity determination is a fundamental step in twin research. Although DNA-based testing is the gold standard for determining
zygosity, collecting biological samples is not feasible in all research settings or all families. Previous work has demonstrated the feasibility of
zygosity estimation based on questionnaire (physical similarity) data in older twins, but the extent to which this is also a reliable approach in
infancy is less well established. Here, we report the accuracy of different questionnaire-based zygosity determination approaches (traditional
and machine learning) in 5.5 month-old twins. The participant cohort comprised 284 infant twin pairs (128 dizygotic and 156 monozygotic)
who participated in the Babytwins Study Sweden (BATSS). Manual scoring based on an established technique validated in older twins accu-
rately predicted 90.49% of the zygosities with a sensitivity of 91.65% and specificity of 89.06%. The machine learning approach improved the
prediction accuracy to 93.10%, with a sensitivity of 91.30% and specificity of 94.29%. Additionally, we quantified the systematic impact of
zygosity misclassification on estimates of genetic and environmental influences using simulation-based sensitivity analysis on a separate data
set to show the implication of our machine learning accuracy gain. In conclusion, our study demonstrates the feasibility of determining zygos-
ity in very young infant twins using a questionnaire with four items and builds a scalable machine learning model with better metrics, thus a
viable alternative to DNA tests in large-scale infant twin studies.
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Twin studies are valuable in determining the relative contributions
of genetic and environmental factors to individual differences in
human traits and diseases. In classic twin studies, the comparison
of the degree of within-pair similarity of identical twins (monozy-
gotic; MZ) to the degree of similarity within fraternal twin pairs
(dizygotic; DZ) can infer these relative contributions of genes and
environment to a trait. While twin studies have been around for
decades, studies done on infant twins are scarce. Infant twin studies
contribute to understanding key developmental processes and
differences and to what extent these are driven by genetic factors.

To successfully obtain heritability estimates in the classic twin
design, it is necessary to accurately measure their zygosity. The
most accurate way of doing this is by extracting and comparing
DNA from biological specimens such as saliva or blood samples.
While zygosity determined by DNA testing has a reliability of
nearly 100% (Hannelius et al., 2007), it is not always feasible, espe-
cially in large cohort studies (Jackson et al., 2001). Although gen-
otyping is very accessible, there can still be obstacles in obtaining
biological samples and genotyping from large infant cohorts, thus

motivating the research of alternative methods to predict zygosity.
There are also ethical implications associated with collecting DNA
samples related to privacy, long-term storage and future analyses
(Anderlik & Rothstein, 2001). Although parents or legal guardians
may consent to collecting DNA from their infants, the information
acquired from DNA could implicate relatives who have not given
their consent. The infants themselves have not given their consent
to collecting, using and storing their DNA and may oppose this as
they get older (Botkin et al., 2015). It is also fundamental that
parents are informed about the use of their infants’ DNA in con-
nection to their consent, but this cannot always be assumed.
Samples are also usually stored for many years after collection,
and consenting guardians may forget the initial reason for collec-
tion and what they consented to. Analyses that were not possible at
the time for consent may be possible in the future, using the sample
collected many years prior.

Previous studies have been able to predict zygosity using ques-
tionnaires, many using the items about highly heritable traits,
such as overall appearance, eye color and hair color, as presented
in the Goldsmith Child Zygosity Questionnaire (Goldsmith,
1991). Twin studies have used the questionnaire to determine
zygosity in samples of 18-month-old twins with seemingly good
results (Constantino et al., 2017; Hawks et al., 2019; Price et al.,
2000). The largest disadvantage with questionnaire classification
of zygosity is that there are always a number of twin pairs left
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unclassified, usually ranging from 5 to 10% (Goldsmith, 1991).
For this reason, it is important to find a good analysis (classifica-
tion) technique for processing questionnaire responses that
would minimize the number of unclassified pairs while maintain-
ing high accuracy.

To our knowledge, the only study to assess the accuracy of ques-
tionnaire method in predicting zygosity in 5-month-old twins is one
by Forget-Dubois et al. (2003). They found that the questionnaire
was able to correctly predict zygosity in 91.9% of 123 cases. As high-
lighted by Goldsmith (1991), it is important that zygosity question-
naires are constructed for the specific age group being studied. In
this study, we aim to expand the existing literature of twins zygosity
prediction by (1) replicating the use of questionnaire method for
zygosity prediction in a 5-month-old infant population but now
with a much larger sample size; (2) highlighting comparative tech-
niques to process the questionnaire data, including the use of
machine learning algorithms for calling the predictions; (3) provid-
ing a numeric generalization of the classification results utilizing
computational simulations and (4) providing simple quantification
on the impact of misclassification on estimates of heritability and
shared environmental influence through numeric simulations. As
there are inherently higher classification error rates with the ques-
tionnaire-based method compared with analysis of DNA samples,
characterization of the amount of bias induced by different levels
of zygosity misclassification on the two aforementioned parameters
should provide valuable information for those contemplating the
use of the questionnaire-based method.

Materials and Methods

Sample and Baseline Zygosity Estimated From DNA

The sample of our study included 284 twin pairs from the
BabyTwins Study in Sweden (BATSS). The twin pairs partici-
pated in BATSS between 2016 and 2020. During the study visit,
multiple questionnaires, experimental and biological data were
collected (Falck-Ytter et al., 2021). The biological samples
included saliva collected from all the twins using the DNA
Genotek OG-575 collection kit during the study visit. The saliva
samples were stored at the Karolinska Institutet biobank and
processed for DNA extraction using a Chemagen kit based on
magnetic bead separation in the Hamilton ChemagicSTAR® plat-
form. The DNA samples were then used to perform zygosity
analysis using two methods. The first 195 twin pairs were ana-
lyzed using selected single nucleotide polymorphisms (SNPs)
based on the earlier reported protocol (Hannelius et al., 2007)
at the Mutational Analysis Core Facility. An additional 89 twin
pairs were genotyped using Infinium Global Screening Array-
(Illumina, San Diego, CA, USA). The estimated identity by
descent was analyzed using the PLINK software after quality con-
trol and removing SNPs with minor allele frequency less than
0.05 within the samples, deviation from Hardy–Weinberg equi-
librium. All pairs of DNA samples showing π ≥0.99 were consid-
ered as MZ pairs. In the sample, 128 twin pairs (45.1%) were
dizygotic (DZ) and 156 (54.9%) were monozygotic (MZ).
There were 137 (48.2%) female pairs and 147 (51.8%) male, all
participants being of 168 ± 17.88 [135−324] days of age (mean
± SD [min−max]).

Zygosity Questionnaire

The eight-item zygosity questionnaire was administered online to
the parents in connection to their visit at the Center of

Neurodevelopmental Disorders at Karolinska Institutet. The
questionnaire items are commonly used in zygosity question-
naires (Forget-Dubois et al., 2003; Jackson et al., 2001;
Lichtenstein et al., 2002), originating from Goldsmith (1991).
The first four items inquired how the parents perceive the physi-
cal similarity of their twins in terms of hair color, eye color and
earlobe shape and if they thought their twins to be ‘like two peas
in a pod’ (Cederlöf et al., 1961) or not more similar than siblings
in general (Table S1 in Supplementary material). Another four
items included questions about how often the twins get mixed
up by strangers, if the parents thought their twins were MZ or
DZ and if the twins share the same blood group and/or Rh factor.
The questionnaire respondents were the parents of the twins
(91.2% mothers and 8.8% fathers) who had no prior knowledge
about their children’s zygosity besides information obtained dur-
ing pregnancy and at delivery.

Manual Classification of Zygosity

To classify the twin based on the questionnaire responses with a
manual method, we used an algorithm validated in the Child and
Adolescent Twin Study in Sweden data set (Lichtenstein et al.,
2002). The manual method enabled us to analyze four out of
the eight items in our questionnaire (hair color, eye color, two
peas in a pod and mixed up by strangers). The responses to these
items were given a score as to whether they indicated the twins
being MZ (1), DZ (−1) or not valid (0) (Table S1). The scores
of the individual items yielded a score sum for each twin pair,
ranging from a maximum of 4 (MZ) to a minimum of −4
(DZ). These sums were then coded as zygosity estimations using
different thresholds. In the study by Lichteinstein et al. (2002), the
threshold 3/-3 was used, presenting that a pair needed a score
equal to or larger than 3 to be estimated asMZ and a score smaller
than or equal to -3 to be estimated as DZ. As our study sample is
considerably younger, we decided to test the performance of dif-
ferent thresholds (1/-1, 2/-2, 3/-3 and 4/-4). The performances of
these thresholds were compared by the proportion of accurate
zygosity estimations and the proportion of unclassified pairs.

Machine Learning Algorithm Generation for Zygosity
Determination

In addition to the manual approach described above, we employed
machine learning algorithms trained as binary classifiers to predict
the zygosity of the twins. Specifically, we used three different algo-
rithms: Random Forest (RF; Ho, 1995), Support-Vector Machine
(SVM; Cortes & Vapnik, 1995) and a simple feedforward artificial
neural net (also called Multilayer Perceptron; MLP; Hastie et al.,
2009) to learn from the items of our questionnaire to predict
the zygosity outcome. Essentially, when trained as a binary classi-
fier, a machine learning algorithm attempts to infer a decision
boundary in the sample data space, which best separates data
points belonging to different classes. The three algorithms we used
thus differ in how they approach this inference problem. An RF
classifier builds multitudes (hundreds or thousands) of simple
decision trees simultaneously — thus, the notion of ‘ensemble
learning’ — in a manner such that each tree makes predictions
independently from one another and the whole ‘forest’ thus pro-
duces a distribution (a Gaussian in the case of a continuous-valued
output) of predictions centered and peaked around the most likely
outcome. ‘Voting’ of predictions among all the trees subsequently
takes place to decide on the eventual class prediction of the entire
forest (in practice, such ‘voting’may amount to taking the modus,
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median, mean or some other summary statistical value of the pre-
diction distribution).

In contrast, an SVM classifier looks for regions of widest gap
('margin') between data points of the two classes and then tries
to fit a separating line (or a hyperplane in multidimensional case)
which traces these regions, thus producing a boundary of ‘maxi-
mum margin’. Finally, a neural network is a collection of many
interconnected computational units that mimic a simplified bio-
logical neural system. Each of these computational units (called
‘neurons’) performs simple arithmetic or mathematical mapping
operations, but when put together in such a configuration, they
form a powerful inferential engine that can approximate anymath-
ematical function: a ‘universal function approximator’. Hence,
when we use a sigmoid mapping operation in the output neuron,
we can produce a logistic regression function with a potentially
very complex and nonlinear combination of predictors, enabling
the algorithm to draw a highly expressive decision boundary.
Here, we used the linear variant of SVM (Lin-SVM) which draws
a relatively simple linear boundary. Readers interested in reading
more about these algorithms are advised to refer to, for example,
Bishop (2006) or Hastie et al. (2009).

Unlike the manual algorithm, the ML algorithms could utilize
all the eight items we included in our questionnaire as learning fea-
tures (or predictors), thus making greater use of the available infor-
mation. Nonetheless, while the ML algorithms were initially
trained with all of these eight items, we eventually kept only the
same four items used in the manual method to be used as ML fea-
tures to maintain comparability between the two approaches and
as the use of this smaller set of features had only negligible impact
on the classification accuracy of the ML method. As the target var-
iable for training theML algorithms, we used the zygosity informa-
tion produced by actual DNA analysis, containing binary
outcomes of MZ or DZ. Here, MZ was taken as the reference (pos-
itive) class; hence, we used a binary coding: MZ= 1 and DZ = 0 to
generate our target variable. Due to the relatively small sample
employed in this study, a 10-fold cross-validation (10CV) tech-
nique (Kohavi, 1995) was used to train and test the three classifiers
to maximize the amount of information available during training.
This technique essentially reuses the whole data in a round-robin
manner to train and test the model without setting aside a separate
data set for testing the trainedmodel. Finally, to ensure replicability
of our results, the same random seed was used to fix the random
initializations of various model parameters (i.e., interconnection
weights in MLP, internal bootstrapping and predictor selections
in RF and optimization steps in Lin-SVM) before training each
algorithm. All implementation codes of our ML classifiers (in R
language) and an anonymous sample data set are available in
the supplementary materials.

Numeric Simulation Analyses

To obtain amore realistic performance measure for each algorithm
(ML models and manual algorithm) under uncertain class distri-
butional conditions (i.e., where the algorithms are faced with new
data sets having not only a different zygosity prevalence but also a
different combination of answers to questions by class, from what
we have here), we performed a bootstrapping simulation with k
= 50,000 resamplings with replacement (Efron & Tibshirani,
1993) to generate many possible different class distributions. For
small data sets, simple cross-validation (without replication) was
found to frequently result in overestimation of the predictive per-
formance of binary diagnostic tests, and bootstrapping has been

suggested as a reliable way to correct such bias (Smith et al.,
2014). Therefore, we applied this technique to obtain realistic con-
fidence intervals of the predictive performance of both our manual
and ML-based methods for each of the three reported metrics, that
is, sensitivity, specificity and total accuracy.

In the manual approach, resamplings were done by choosing
randomly among the 284 twin pairs existing in the complete data
set, where each pair could occur more than once in any single (re)
sample, and recalculating the three metrics for each sample based
on the scores assigned with the 1/-1 threshold. Each (re)sample had
the same size (284 observations) as the original complete data set,
but on average, only 63.2% of these were unique observations. In
the ML-based approach, due to the need to set aside data for train-
ing and testing separately, the overall data were split into two based
on the time upon which the DNA tests of the twin pairs were
received. In the earlier (first) batch, we received DNA-based zygos-
ity information for 195 twin pairs, and these data were used for
algorithm training. In the later (second) batch, we received
DNA-based zygosity data for the remaining 89 twin pairs, which
was then used as a test set, on which we performed the bootstrap-
ping simulation and tested the trained algorithms. Each (re)sample
had the same size (89 observations) as the complete test set, but on
average, only 63.2% of these were unique.

We observed that the class distribution (along the four features
employed for each ML model) of the first-batch data set (of 195
pairs) was very similar to our complete data set. Thus, training
the three algorithms using the earlier data set should somewhat
mimic the training performed using the complete data set, while
bootstrapping the latter data set could simulate how sensitive this
particular training setting was to distributional variabilities unseen
during training. From the bootstrapping, we subsequently
obtained a confidence interval for each of the three algorithms
(RF, MLP, Lin-SVM) and three performance metrics. Due to most
of these score distributions being heavily right-skewed (with a long,
thin left tail), we reported the median and interquartile range
(IQR) tomeasure the central tendency and the spread, respectively,
for all distributions obtained from the bootstrapping.

Sensitivity Analyses for Parameter Estimation in ACE Models

To perform sensitivity analysis of parameter estimation in struc-
tural equation model (SEM)-based twin modeling, also known
as the ACE models (Knopik et al., 2017; Neale & Maes, 2004),
we used example data sets that are widely available with the distri-
bution of the free OpenMX package (Boker et al., 2011): one data
set of body mass index (BMI) of 3808 twin pairs (2009 DZ, 1799
MZ) from the Australian social attitudes twin study of Martin et al.
(1986)1 and one synthetic data set of 400 pairs (200 DZ, 200 MZ)
with two unnamed (simply ‘X’ and ‘Y’) phenotypes. To inducemis-
classification in the range of 0−10%, which includes the figures we
observed in our results (see Results), for each increment of one per-
centage point, a corresponding number of randomly selected pairs
(e.g., in the ‘Y’ phenotype data, for 1% error rate there were four
pairs, for 2% there were 8 and so on) had their actual zygosity label
flipped (i.e., from ‘MZ’ to ‘DZ’ and vice versa). MZ and DZ intra-
class correlations (ICCs) along with their difference were calcu-
lated followed by an ACE model-fitting to this modified data set
using the lightweight twinlm() function of the ‘mets’ package
(Scheike et al., 2013) in R to obtain quick estimates of A (heritabil-
ity) and C (shared environment) variance components. This proc-
ess was repeated for 10,000x to obtain a confidence interval for
each of the abovementioned parameters: rMZ, rDZ, Δr, A and C.

170 Irzam Hardiansyah et al.

https://doi.org/10.1017/thg.2021.24 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2021.24


In addition, the significance of the C estimate was also noted each
time to see how the conclusion regarding the presence or absence
of C could change due to zygosity misclassification. All the 906
opposite-sex DZ twins in the Australian data set were excluded
to reduce the complexity of the twin analysis further, and the num-
ber of MZ pairs was downsampled to avoid having asymmetric
simulated error rates between the two zygosity classes, bringing
the final sample size to 2206 twin pairs (1103 DZ, 1103 MZ).
Finally, we regressed the mean of the computed parameters on
the error rates (from 0% to 10%, with 1% increment) to see how
the estimates will change with increasing misclassification rate.

Statistical Analyses

The nonparametric Kruskal–Wallis tests were performed on the
bootstrapped results (see ‘Numerical simulation analyses’) to iden-
tify differences in performance among the alternative methods
(three ML-based and one manual), for each of the three metrics,
followed by a pairwise posthoc analysis using the nonparametric
Mann–Whitney–Wilcoxon (MWW) test for each significant dif-
ference detected.

Results

Manual Scoring Classification

Using the ‘default’ manual scoring techniques (Lichtenstein et al.,
2002), the threshold of 4/-4 or 3/-3 yielded a perfect accuracy of
100% of the zygosity determination. However, due to a larger num-
ber of unclassified pairs in the higher threshold (i.e., 3/-3: 46.1% vs.
4/-4: 69.7%), we used the 3/-3 threshold for comparison with the
lower thresholds (i.e., 1/-1, 2/-2; Table 1). The use of the lower
thresholds reduced the accuracy marginally while noticeably
increasing the number of classified pairs. A threshold of 2/-2
yielded 76.4% accurate zygosity predictions while leaving 24.3%
of the twin pairs unclassified. The lowest and most generous
threshold, 1/-1, accurately classified 90.5% of the sample while
leaving 5.8% unclassified. Based on the DNA zygosity, 53.3% of
these unclassified pairs were MZ and 46.7% were DZ.

The manual analysis also showed that the proportion of cor-
rectly estimated MZ pairs exceeded the proportion of DZ pairs
in all thresholds (Table 1), although threshold 1/-1 produced the
least difference. Next, using the 1/-1 threshold and MZ zygosity
as the reference class, we performed the bootstrap simulation to
obtain confidence intervals for total accuracy, specificity (DZ accu-
racy) and sensitivity (MZ accuracy). Summary statistics of the
obtained distributional results are as follows: accuracy: 90.49% ±
1.33%; specificity: 89.06% ± 2.11% and sensitivity: 91.65% ±
1.69% (Figure 1, red boxplot).

Machine Learning Classification

We obtained a total of eight usable items from the questionnaire, of
which only four were used in the manual approach to follow the
reference study (see above, ‘Manual Classification of Zygosity’).
Incidentally, the variable importance ranking given by the RF algo-
rithm after the initial training (with all eight items) showed that
four out of the five top discriminative predictors were the same
four items used in the manual approach (see Figure S1 in
Supplementary Material). The complete descriptives (labels,
frequencies and proportions) of each of the eight variables are pre-
sented in Table S2 in the Supplementary Material.

When trained and tested using the 10CV technique, out of the
three algorithms we employed, the MLP classifier yielded the best

performance with 14 out of 284 incorrect predictions (total accu-
racy of 95.1%), while the RF classifier yielded the worst with 29 out
of 284 (total accuracy of 89.9%; Table 2, Figure 1). However, unlike
themanual method, no twin pairs were left unclassified as the algo-
rithms automatically set their binary decision thresholds to catego-
rize each twin pair as either MZ or DZ. As a result, all the three
classifiers made a larger, or at least equal, number of correct pre-
dictions compared with the manual approach in any threshold set-
ting. We also performed subsequent bootstrapping simulation for
each of the three algorithms and obtained the following results: RF
accuracy: 93.10% ± 2.98%, RF specificity: 91.30% ± 6.11%, RF sen-
sitivity: 94.29% ± 4.18%; SVM accuracy: 91.07% ± 3.44%, SVM
specificity: 85.71% ± 6.28%, SVM sensitivity: 94.29 ± 4.09%;
MLP accuracy: 93.10% ± 2.98%, MLP specificity: 91.30% ±
6.11%,MLP sensitivity: 94.29% ± 4.18% (Figure 1). The wider con-
fidence intervals observable in these results were due to a much
smaller resampling data set (89 obs.) than in the manual method
(the whole 284 obs.).

When comparing the performance of the manual algorithm
with the three ML models using the nonparametric Kruskal–
Wallis test, we show overall significant differences for all metrics
(in all, p < .001). Subsequent post hoc analysis with the pairwise
MWW tests revealed that all the three ML-based algorithms had
significantly different (in all, p< .001) performance compared with
the manual algorithm (Figure 1). Furthermore, the accuracy and
specificity performance of the SVM classifier was significantly dif-
ferent (in both, p < .001) from those of RF and MLP, but no sta-
tistically significant difference was found in sensitivity among the
three algorithms (results not shown). Finally, no statistically sig-
nificant difference in the performance of RF and MLP was found
for any of the three performance metrics.

Impact Analysis of Misclassification On Twin Modeling
Parameter Estimations

As zygosity misclassifications occurred in all the algorithms, we
wanted to investigate the impact of these misclassifications.
Misclassifications of DZ twins as MZ tend to lower the rMZ (MZ
intraclass correlation), while misclassifications of MZ twins as
DZ tend to increase the rDZ. Hence, the general effect of zygosity
misclassifications is to narrow the gap between the two ICCs (i.e.,
reducing the Δr). As expected, this pattern was observed with all
the three phenotype data sets employed in our numerical simula-
tions. We produced a distribution of values for each of the three
ICC parameters (rMZ, rDZ andΔr) and the two ACEmodel param-
eters, A and C, which stands for additive genetics and shared

Table 1. Performance of the manual algorithm, thresholds across twins and in
the DZ/MZ group respectively

Threshold 3/-3 2/-2 1/-1

Correct 153/284 (53.9%) 212/284 (74.6%) 257/284 (90.5%)

Correct DZ 53/128 (41.4%) 87/128 (68.0%) 114/128 (89.1%)

Correct MZ 100/156 (64.1%) 125/156 (80.1%) 143/156 (91.7%)

Unclassified 131/284 (46.1%) 69/284 (24.3%) 15/284 (5.3%)

Unclassified DZ 75/128 (58.6%) 38/128 (29.7%) 7/128 (5.5%)

Unclassified MZ 56/156 (35.9%) 31/156 (19.9%) 8/156 (5.1%)

Note: ‘Correct’ shows the number of zygosity estimations that were correctly classified by the
threshold, separated by (/) the number of responses thatmet the threshold criteria, as well as
the number of correct classifications. ‘Unclassified’ shows the number of pairs that did not
meet the threshold criteria. N= 284; n(DZ)= 128; n(MZ) = 156.
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environmental variance component, respectively. These distribu-
tions were invariably symmetrical and bell-shaped, and they quan-
tify the uncertainty surrounding the parameter calculations in the
presence of a certain amount of zygosity prediction error.

Regressing the mean of the above distributions on the error
rates (i.e., from 0% to 10%, increment by 1%, where 0% corre-
sponds to values calculated from the original data with no flipped
zygosity label) for all the three ICC parameters, it was found that
the mean varies linearly with an increased error rate, with an
almost perfect fit (R2≃ 1) and a highly significant linear slope effect
(p< .001; Figure 2). The negative–positive slope of these regression
lines depends mainly on the magnitude of the corresponding ICC
itself, but invariably in all the three phenotype data sets: rMZ

decreases (a negative slope), rDZ increases (a positive slope), and
Δr decreases even more steeply than rMZ (actually, the slope of
Δr is the negative sum of the magnitudes of rMZ and rDZ slopes).
Equally important, the standard deviation of the distributions (and
hence confidence interval around the computed ICC values) also
grows linearly with increasing error rate. Figure 2a shows the
regression lines (along with each confidence band) of rMZ, rDZ
and Δr for the Australian BMI data as an illustration. Similar fig-
ures (not shown here) were obtained for the other two data sets.

In contrast, for the A and C parameters of the ACE model, the
mean varies quadratically with an increased error rate, again with
an almost perfect regression fit (R2 ≃ 1) where the quadratic effect
was highly significant (p < .001). As with ICC, invariably for all
three phenotype data sets: mean of A decreases (negative quadratic
effect), mean of C increases (positive quadratic effect) and confi-
dence interval of both parameters grows wider quadratically with
increasing zygosity misclassification rate. As an illustration,
Figure 2b shows the regression lines (along with each confidence
band) of A and C for the Australian BMI data (https://rdrr.io/cran/
OpenMx/man/twinData.html). Similar plots (not shown here)
were obtained for the other two data sets. Finally, Figure 2c
presents the probability of false detection of the presence of C

influence (i.e., a significant non-zero estimate) for the three phe-
notypes— all of which were known to have strictly zero C variance
component — as a function of increasing misclassification rate.
The probability was calculated as the proportion of 10,000 simu-
lation trials, for each 1% increment of the error rate, in which the
lower-limit value of C’s confidence interval was found to be pos-
itive (i.e., the whole CI was on the right of zero). As seen in the
figure, the probability grows exponentially with an increased error
rate, but the magnitude stays zero or very close to zero even with
larger error rates near the end of the range.

Discussion

We found that even using a threshold of 1/-1 and allowing all par-
ticipants with a score sum over zero to be coded as eitherMZ or DZ
produced 90.5% accuracy in classifications (leaving 5.3% unclassi-
fied). Compared to the reports of Forget-Dubois et al. (2003),
where a zygosity questionnaire predicted 91.9% of zygosities in
infant twins, we suggest that a threshold of 1/-1 is sufficient for
analyzing a four-item zygosity questionnaire for infants. Our boot-
strap simulation showed the distribution of results to have an over-
all accuracy, sensitivity and specificity of approximately 90%.

To improve the use of the questionnaire-based zygosity deter-
mination, we built three different ML algorithms to help classify
the twins based on the same answers. RF algorithm is known to
be among those possessing the best capacity to generalize its learn-
ing to new unseen data due to its bootstrapping-based ensemble
inference that makes its learning very robust against overfitting.
Therefore, it is no surprise that its performance on our particular
twin data set was very close to the generalized one obtained using
the bootstrapping simulations. On the contrary, the much higher
performance of Lin-SVM andMLP on our twin data set in contrast
with their respective less stellar generalization performance indi-
cates some extent of overfitting in both algorithms’ learning to
the particular class distribution observed in our twin data set. A

Fig. 1. Comparative bootstrapped performance of the three ML-based and manual approaches. Bootstrapped distributions for the manual approach are approx-
imately Gaussian, while those for the three ML approaches were right-skewed. The manual method is the baseline for the comparisons. In all cases, MZ is the positive
class; thus, sensitivity is the MZ accuracy, while specificity is the DZ accuracy.
Note: ML, machine learning; MZ, monozygotic; DZ, dizygotic.
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case in point is the specificity of linear SVM, which showed a sub-
stantial discrepancy between its generalized mean performance
(85.7%) and performance on our twin data set (95.3%) — as indi-
cated by the statistical test, its generalized specificity tended to be
even inferior to that of the manual method. As the bootstrapping
simulations for the ML were calculated with a much smaller boot-
strap sample (89 pairs) than for themanual approach (284 pairs), it
may have contributed to this and the skewed and more dispersed
bootstrapped distributions for theML approach. Based on both the
performance of the ML models in our data and simulation boot-
strapping, we propose that either an RF or MLP model be used to
determine zygosity in further studies. However, the three algo-
rithms’ generalized sensitivity was shown to be no different sta-
tistically (Figure 1).

Both the machine learning and manual scoring approach
showed that the zygosity of DZ twins is more challenging to predict
than MZ twins. We hypothesize that this is due to the items of
zygosity questionnaires, including ours, that generally focus on
physical attributes (i.e., hair and eye color and generally perceived
physical similarity). As DZ twins can share the same hair and eye
color, they can be misclassified as MZ by a scoring system with
binary outputs as in our manual scoring approach. DZ twins
can also be mixed up by strangers based on them being twins
and not necessarily because they are physically identical.

As shown by our numerical simulations, zygosity misclassifica-
tion always underestimates heritability and may lead to overesti-
mation of shared environmental (C) influence on phenotypic
variance. However, the magnitude of such biases depends on both
the strength of the underlying ICCs and the sample size (smaller
samples tend to produce much more variable estimates and more
significant biases). Furthermore, when the C effect in the ACE
model is virtually zero, as is the case for many known phenotypes,
the inflated estimation of C due to zygosity prediction error will not
so much lead to an erroneous conclusion about the presence of
shared environmental influence as merely inducing a doubtful C
estimate due to a wide confidence interval that usually crosses zero,
unless the misclassification is very severe. For the range of misclas-
sification rate presented here, we showed that the probability of
such erroneous conclusion occurring should be minimal: the worst
case was ˜2% chance (i.e., 224 in 10,000 trials) for the Australian
BMI twin data in the presence of 10% misclassification rate, while
the other two (synthetic) phenotypes shown probabilities in mere
tenths of a percentage point.

It is somewhat surprising that both the bias and uncertainty of
ACE parameter estimation were magnified with a quadratic rate as
the misclassification rate increases. As there is scarce referential

literature investigating the issue, we could only speculatively think
that such quadratic biases arise from the manner computation of
model parameters is implemented in SEM-based ACE modeling
software: The path coefficients a, c, e of the structural model might
be directly estimated from the observed ICCs, while the variance
components A, C, E were each calculated as the square of the cor-
responding path coefficient. Therefore, a linear change in a and/or
c (due to a proportional change in ICCs) would produce a corre-
sponding quadratic change in A and/or C respectively.
Nevertheless, such a quadratic pattern has two important implica-
tions: (1) incremental worsening of zygosity prediction error
would inflate the uncertainty in much larger jumps— for example,
a 40% increase in error rate will cause the confidence interval to
double and (2) the observed performance gain from using RF
and MLP algorithms compared to the manual scoring technique
would indeed meaningfully translate to much lower underlying
uncertainty in ACE model parameter estimation; the confidence
interval should be only half as wide in the former case due to a
reduction of error rate from 10% to 7% (i.e., 72/102 ≅ 0.5).
Combined with the simplicity of using a pretrained ML zygosity
classifier to crunch questionnaire responses, the latter implication
should make a good case for deploying our, or a similar ML-based
approach, for this problem.

As another point of reflection, we saw a need to adapt the origi-
nal questionnaire of Goldsmith (1991) to better suit infancy stud-
ies, at least in the way the questions and/or answer choices are
formulated and phrased. As items in the questionnaire generally
ask about how similar the twins’ physical looks are, attributes that
are still developing and have not reached stability in the pediatric
population (especially at 5months of age), strong ambiguities often
arise in perceiving the similarity. Setting aside parents’ subjective
bias in viewing how similar their twin children are, objective
differences in physical measures such as weight, head shape and
body size certainly affect the similarity judgment, while such dis-
crepancies usually are temporary and would later disappear. It is
not unusual that physical differencesmanifest in a pair ofMZ twins
during their early months of life due to factors present during preg-
nancy, but as both infants grow older and physical features further
develop, the resemblance of MZ twins becomes more apparent. In
light of this, we suggest that the questionnaire be adapted by
including items related to medical diagnoses, expert opinions
and facts that are generally disclosed to parents during pregnancy
and delivery; for example, shared or nonshared amniotic sac(s),
chorionicity already mentioned above. The aforementioned study
by Forget-Dubois et al. (2003), in which they included an item
about chorionicity to boost their prediction accuracy to ˜96%, pro-
vides a case in point. Another case is Segal (1984), which reported a
classification accuracy of ˜94% using expert’s guesses of twins’
zygosity, albeit with much older twins (children and adolescents)
and thus may not readily translatable to our sample of very young
infants. The choices of such questions will need to consider the
issue of privacy.

Finally, our findings of the sensitivity of heritability estimate to
zygosity mislabeling in twin modeling hint at a prospect of devel-
oping fully ML-based techniques for zygosity labeling as a viable
alternative to the conventional DNA-based labeling. Indeed, with-
out analyzing a sample of bodily substances (e.g., saliva, skin or
blood) from the participants, zygosity predictions made by an
ML-based questionnaire technique might never reach the level
of accuracy comparable to that of a DNA-based technique.
However, as our results showed that a false detection of shared
environment component is very unlikely to occur in twinmodeling

Table 2. Performance of the three ML classifiers for binary classification of
zygosity

Algorithm RF Lin-SVM MLP

Correct total
(Accuracy)

255/284 (89.9%) 269/284 (94.7%) 270/284 (95.1%)

Correct DZ
(Specificity)

116/128 (90.6%) 122/128 (95.3%) 125/128 (97.7%)

Correct MZ
(Sensitivity)

139/156 (89.1%) 147/156 (94.2%) 145/156 (93.0%)

Note: With themachine learning-based approach, the number of unclassified pairs is zero (no
pair left unclassified). In all three algorithms,N= 284, n(DZ) = 128, n(MZ) = 156 andMZ is the ref.
(positive) class.
MZ, monozygotic; DZ, dizygotic; RF, Random Forest, SVM, Support-Vector Machine; MLP,
multilayer perceptron.
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even at a 10% misclassification rate, devising an ML-based algo-
rithm capable of churning out the accuracy of, say, ˜98% may
already be good enough to get a reliable estimate of heritability.
As shown in the study by Forget-Dubois et al. (2003), with a proper
redesign of the questionnaire, such level of performance should not
be a bridge too far. An important caveat to this would be, in very
rare cases of non-twins (e.g. twins switched during birth or twins
having different fathers), a ML binary zygosity classifier would not
be able to reveal the true zygosity information, since parental
responses would most likely show much, if not complete, overlap
with those of DZ twins’ parents (obviously, such twins will not look
very similar physically). However, this is a limitation of the ques-
tionnaire method in general.

Conclusion

Here, we demonstrate the feasibility of using a questionnaire
method to determine zygosity adopted from Goldsmith (1991)
in infant twins with reasonably high accuracy, thus replicating
the results of Forget-Dubois et al. (2003). We introduce an ML
algorithm to replace this manual scoring process to improve scal-
ability and eliminate unclassified pairs for large-scale use. Two of
our MLmodels based on Random Forest andMLP yielded an even
better result. Furthermore, the results that we reported in this study
can be generalized to many other data sets having different distri-
butions, and they showed the limits of prediction accuracy achiev-
able with the questionnaire method in its current form. Perhaps
more importantly, our results demonstrated that using only four
items most commonly employed for adults in the original ques-
tionnaire were sufficient to reach the reported accuracy levels, thus

pointing to an opportunity for simplifying the original question-
naire to include fewer, but the most zygosity-discriminating,
questions.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/thg.2021.24.
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Notes

1 Also available at: https://rdrr.io/cran/OpenMx/man/twinData.html

Fig. 2. Illustrations of misclassification impact on heritability model estimates. (a, top-left) Biaxis plot of rMZ (blue line, left y-axis), rDZ andΔr (red line and green line,
respectively, both right y-axis) along with their respective confidence band as a linear function of zygosity prediction error; (b, top-right) Biaxis plot of A (blue line, left
y-axis) and C (red line, right y-axis) along with their respective confidence band as a quadratic function of zygosity prediction error; (c, bottom) Probability of false
detection of C in ACEmodel grows much faster than a linear rate with increasing zygosity prediction error, although the nominal probability remains very small in the
shown error range. The first two plots are from the Australian twin BMI data set, the third from all three data sets.
Note: A, additive genetic variance; C, common (or shared) environmental factors; E, specific (or nonshared) environmental factors plus measurement error.
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