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METRIC SPACES WITH NICE CLOSED BALLS

AND DISTANCE FUNCTIONS FOR CLOSED SETS

GERALD BEER

A metric space iX}d) is said to have nice closed balls if each

closed ball in X is either compact or the entire space. This

class of spaces includes the metric spaces in which closed and

bounded sets are compact and those for which the distance function

is the zero-one metric. We show that these are the spaces in which

the relation F = Lim F for sequences of closed sets is

equivalent to the pointwise convergence of (d(',F )) to d(-,F)

We also reconcile these modes of convergence with three other

closely related ones.

1. Introduction

Let CL(X) be the collection of closed nonempty subsets of a metric

space <X,d> . If ^ £ CL(X) and F . e CL(X) , the Hausdorff distance

between F- and F,, is given by h,(F.,F2) = sup ({d(z3FJ:

x e F,,} u {dCxjFoJ: x e F,}J. Distance so defined determines an infinite

valued metric on CL(X) . Basic facts about Hausdorff distance can be

found in Aubin [2], Castaing and Valadier [6], or Klein and Thompson [72].

Most fundamentally [2], the map F •*• d('}F) is an isometry of (CL(X)}h«)
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into the space of real valued continuous functions on X equipped with

the infinite valued metric p(f3g) = sup {\f(x) - g(x) \: x e X} • Thus,
a sequence (p > in CL(X) is fr,-convergent to a nonempty closed set F

n a

i f and only if < d(• }F P converges uniformly to d(',F) • As a result,

pointwise convergence of < d(• ,F )) to d('• }F) is a weaker form of

convergence than Hausdorff metric convergence of < £" > to F . Recently,

Lechicki and Levi [743 have shown that if X has a countable dense subset

^x : n £ Z } then pointwise convergence of distance functions is

convergence with respect to this metric on CL(X) •

*r* „ . V ,-" ld(*n>A)
 n

p (A>B) = I 2 '1+ \ct(xn,A) -d(xn,B)\

In [3] the author made a feeble attempt to determine in which spaces

pointwise convergence of distance functions for closed sets is equivalent

to a standard notion of convergence of sets weaker than ^-convergence.

If <F̂ > is a sequence in CL(X) , let Li Fn (respectively Ls F ) be the

set of points y in X each neighbourhood of which meets all but finitely

(respectively infinitely) many sets F . If Li F = Ls F' = F , we

write F = Lim F H 3 ] . It is well known (see [2], [3] or [9]) that if
n

F e CLCX) and (F > is a sequence in CL(X) whose distance functions

converge pointwise to the distance function of F , then F = Lim F

Those spaces X for which the converse holds include the spaces in which

closed and bounded sets are compact, and are characterized as follows:

whenever ^-J is a sequence in X with no cluster point, then for each

p and x in X , we have d(p,x) < lim inf dCp,x ) . it is one purpose

of this paper to present more tangible descriptions of such spaces. More

importantly, we study the relationship between convergence of distance

functions for closed sets and convergence of sequences of sets with respect

to two Vietoris-type topologies on CLCX) , as well as the ftj-topology on

CLCX) .

Keeping notation uncumbersome when discussing such, matters is a

nontrivial task. Motivated by standard notation for multifunctions [5],
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if A c X we write A+ for {F e CL(X): F c A} and /T for

{F e CL(X): F n A * 0} . A well-studied topology on CL(X) , which is

consistent with pointwise convergence of distance functions when X is

ordinary Euclidean space, is the topology of closed convergence %„ [72] /

also called the Fell topology [S] , generated by all sets of the form

(A ) with K compact, and V with V open. If X is locally compact

and separable, then T~ is metrizable and topologizes the relation

F = Lim F for sequences of sets (see [70] or [72]). If X is locally

compact, but not necessarily separable, it is still the case that t-

topologizes the convergence of nets of closed sets (with F = Lim Fn

defined in the obvious way), in the sense that the convergence structure

satisfies the net axioms of Kelley [77] (see for example, [76] or [72]).

A natural misconception has arisen from this theory, which we would like

to correct: local compactness of X is necessary for the equivalence of

the relation F - Lim Fn for sequences of closed sets and T^-convergence

of < F̂ > to F . This is utterly false, a point that has been informally

observed in [9].

LEMMA 1.0. Let (X}d> be a metric space, and let F, F-., FgJ

be nonempty closed subsets of X. Then F = Lim F if and only if < F >

T--converges to F .

Proof. The relation F = Lim F means (i) F c Li F , and

(iil Ls Fn c F . By (i), if F meets an open set V , then < F > meets

V eventually. By (ii) , if F misses a compact set K , then <F >

misses K eventually. Thus, <F> is T_-convergent to F . Conversely,
n o

if <F> is T_-convergent to F , we show (i) and (ii) hold. Condition

(i) is immediate, for if x e F and e is positive, then <F > must be

in {w. d(x,w) < e) eventually. Suppose (ii) fails. We can then find

an increasing sequence < n-J of positive integers and a sequence < a:̂ ) in

X convergent to a point p in F such that for each k, x, e F

Since F is closed, without loss of generality, we may assume each x li-es

K
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in r . As a result, {p} u {x^-. k e Z } is a compact set that misses

F , but which meets < F̂ > frequently. We conclude that < F̂ ) does not

x_-converge to F .

Another topology of somewhat greater strength which would appear to

be a prime candidate for one compatible with pointwise convergence of

distance functions is generated by all sets of the form (B ) with B a

closed ball in X and S~ with S an open ball in X . We call this

topology the ball topology on CL(X) , and denote it by T_ in the sequel.

Of course, "open ball" could be replaced by "open set" in the description

of its subbase without enlarging the .topology. The ball topology has been

of some interest to Salinetti and Wets in their ongoing study of weak

convergence of probability measures [7S]. Now if F e CL(X) and K is a

nonempty compact set for which F e (K) , then there exists a finite

n
collection of closed balls B^,..., B in X with F n ( .u ̂ B .) = 0

n
and X = .u, S. . As a result T_ <= T R .

In the sequel 5 [p] (respectively B [p]) will denote the open

(respectively closed) ball of radius e with centre p in X . Also, if

A c X , we write S LAI for u {S [x]: x e A] , and call S L4] the

e-parallel body of A. Of course, Hausdorff distance can be expressed in

terms of parallel bodies:

= inf {e: S^lF^ = F2 and

2. The Main Results

LEMMA 2.0. Let F, F?J F-, ... be nonempty closed sets in a metric

space <X3d). If <F > T--converges to F , then (df-^F )) converges

pointuise to d(',F) . If (d(-,F )) converges pointwise to d(',F),

then <FM> \c-converges to F (see "Proposition 2.3 of [9]j .

Proof. Suppose <F ) converges to F in the ball topology. If

X e F and e is positive, then < F > eventually lies in (S
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This means that for all n sufficiently large, Fn meets S£[x] . As a

result, d(-,F) > lim sup d( • ,Fn) . Suppose that d(-,F)-< lim inf d(-,Fn)

fails. Then for some p e X and e > 0 there exists a subsequence (F >
nk

of <F > such that for each k , d(p,F ) < d(p,F) - e. Letn nk

Q -f-

a = d(p>F) - e; we have F e l(B Lpl) ] , but for each k3
o */*F i KB [p!U ] . Thus, <F > does not T_-converge to F , a

Wjr a n o

contradiction. We conclude that < d(•3F )) converges pointwise to

d(-,F) . The second assertion follows from Lemma 1.0 and the fact that

pointwise convergence of (d(m,F )) to d('3F) forces Lim F = F [3]

Example 1 of [3] shows that T«-convergence of <F > to F does not

ensure that (d(-,F )) converges to d(-}F) pointwise. We now show that

pointwise convergence of distance functions does not guarantee the

convergence of the underlying sequence of sets in the ball topology.

EXAMPLE 2.1. Let e be the real sequence whose nth term is 1

and whose other terms are all zero. Consider this subspace AT of lm :

X = {0} u {en: n e Z
+} u {(V^LL)^ n e z+)

Let F = {(n + 1)e : n e Z+} , and for each n e Z+ let F = {(3 +- 1)e •:n n n 3 3

j <, n} u {e .: j > n} . Since (F ) actually Tzj-converges to F , the

sequence (d(~,P -)) converges pointwise to d('3F) . Although

F e (B-i0']O)+ , for each n the set F meets B-LOl . Thus, <F>1 n 1 n

does not T_-converge to F .

In view of the next lemma, it is reasonable to call the spaces X

presented in [3] spaces with nice closed balls. Not only do they include

spaces in which closed and bounded sets are compact, but also spaces whose

distance function is the zero-one metric.

LEMMA 2.2. Let (X,d) be a metric space. The following are

equivalent:

(1) For each p and x in X , whenever < x > is a sequence in X
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with no cluster point, then d(p,x) < lim inf d(p}x);

(2) If B is a noncompact closed ball in X 3 then B = X .

Proof. (1) •*• (2) . Let B [p] be a noncompact closed ball in X .

Let (x > be a sequence in the ball with no cluster point, and set

a = lim inf dCp,X ) . By hypothesis, X = B [p] . Since for each n we

have d(p}x ) < e , i t follows that a £ e . As a result , X = B [p]

(2) •> (1) . Fix p e X and le t (x > be a sequence in X with no

cluster point. Condition (1) clearly holds if lim inf d(p,x ) = °° . There

remains the possibility that lim inf d(p}x ) i s a finite number a .

Suppose for some x e X , d(p3x) > a . If e = gCa + d(p,x)l , then

B [p] would contain infinitely many X . Thus, B [p] is neither compact
E fir £

nor i s i t a l l of X , in v io la t ion of (2) .

THEOREM 2.3. Let {X,d) be a metric space. The following are
equivalent:

(1) X has nice closed ballsJ
(2) Tg = ic on CL(X);

(S) T --convergence of sequences in CLCX) is equivalent to the pointun.se
Li

convergence of their distance functions.

Proof: (1) •*• (2) . By the remarks made at the end of Section 1,

T c T D • Th6 reverse inclusion is immediate from condition (1).
C B

(.21 ->• C3) . By the second part of Lemma 2.0, we need only show that

if (F ) is T -convergent to F . then {d( • }F )) converges pointwise to
71 C/ ft

d(-,F) • But if (.2) holds, this is immediate from the first part of

Lemma 2.0.

(3) (1). Suppose F p p ... are nonempty closed sets in
1 2

with F = Lim F • By Lemma 1.0, (p > x^-converges to F i so, by (3)
Tt WO

the associated sequence of distance functions is convergent. By Lemma

2.2 and Theorem 1 of [3]/ the space X has nice closed balls.
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An immediate consequence of Theoren 2.3 is this: if X has nice

closed balls, then T_-convergence of sequences in CL(X) is equivalent to
D

the pointwise convergence of their distance functions. The converse

fails, a point that we shall return to following Theorem 2.7.

We now describe the precise place of the Hausdorff metric in the scheme

of things. It is well-known and easy to show that the hi-topology always

contains the Fell topology, whereas Example 2.1 shows that it need not

contain the ball topology. By virtue of the next lemma, the ball topology

need not contain the 7z,-topology either (see also Lemma 3.2 of [/5]). The

key to the proof is the following obvious fact: if (F„> is an increasing

sequence of nonempty closed sets in a metric space, then (F > converges

to u F with, respect to TR •

LEMMA 2.4. Let (. X,d) be a metric space. Suppose the ball topology

on CL(X) contains the Hausdorff metric topology. Then X is totally

bounded.

Proof. For any metric space (Xtd) and for each e > 0 , there

exists a subset A of X such that X c S \_A ] and if {x,y} c A ,

then d(x}y) > e (use Zorn's Lemma). Suppose X fails to be totally

bounded; then an infinite A must exist. Let A = {x : n e Z } be a

countably infinite subset of an infinite A . For each n e Z let

F = {x.: Q < n) . Since A is closed, by our above remarks, <F >

T -converges to A . Clearly, (F) does not converge to A in
a n

Hausdorff distance.

We next strengthen Proposition 2.5 of [9].

THEOREM 2.5. Let <X,d) be a metric space. The following are

equivalent: (1) X is totally bounded; C2) Hausdorff metric convergence

of sequences in CLCX) is equivalent to the pointwise convergence of their

distance functions.
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Proof. (1) -»• (2) . By our remarks in the introduction, h.-convergence

is at least as strong as pointwise convergence of (d(-,F J> do d( • 3F) ,

with no assumptions on X whatsoever. Now suppose X is totally bounded,

and (d( • ,F)) converges pointwise to dC- tF) . Let A be a finite

•=•- dense subset of X , and choose N so large that for each n > N ando

each x in A we have \d(x,FJ - d(.x,F) I < •=• . Since distance functions

are Lipschitz continuous with Lipschitz constant one, it follows from the

triangle inequality that

sup̂ , \dCx,F) - dCx,F) 1 < e (n > N)

Thus, < d(• }F )) converges uniformly to d(• ,F) , and (2) follows

(2} -> (1). If iX,d) is not totally bounded and < F^ and A are

as described in the proof of Lemma 2.4, then by Lemma 2.0 < d('• ,F' ))

converges pointwise to d(•}A) .

Total boundedness of X is not sufficient for the hj-topology and

the ball topology to agree on CL(X) . To spell out exactly what is

needed in addition, we state another definition.

DEFINITION. Let A and B be disjoint subsets of a metric space

(X3d) . We say that A and B can be uniformly separated if there

exists e > 0 for which SeD4] n 5g[B] = 0 .

We intend to show that the two topologies agree on CL(X) if and

only if X is totally bounded, and it is possible to uniformly separate

disjoint elements of CL(X) whenever one of them is a closed ball. This

last condition surely holds if X has nice closed balls. It also holds

if each pair of disjoint elements of CLCX) can be uniformly separated.

These are exactly the metric spaces on which continuous functions are

always uniformly continuous [7]. In the literature such spaces are usually

called UC spaces [79] or Atsuji spaces [4]. Euclidean «-space has nice

closed balls, but fails to be a UC space. A UC space that fails to have

nice closed balls is the "constellation" in 1^: {0} u {^e : j e Z

and n e Z } . A space in which closed balls can be separated from closed

https://doi.org/10.1017/S000497270001306X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001306X


Metric spaces and distance functions 89

sets (provided they are disjoint) which does not have nice closed balls and

which is not a UC space is (0,1) , as a subspace of the line.

Our characterization will be obtained via the next lemma.

LEMMA 2.6. Let (Xtd) be a totally bounded metric space. Suppose

it is possible to uniformly separate disjoint elements of CL(X) when one

of them is a closed hall. Then the ball topology on CL(X) is seaond

countable.

Proof. For each n e Z+ let E be a finite subset of X for
n

which. X c Sj, IE ] . We claim that

1/3
(j e Z+ and x e ̂  Ej

is a (countable) subbase for the ball topology. Since u E is dense in

X , it is clear that if S.[p] is an arbitrary open ball in X and

F e CSSpl)~ then there exists x e u E and j e Z for which

F e (S1..lxV~ c (SJ.pV~ . On the other hand, let B be a closed ball

in X and suppose A e (B ) . By assumption, A and S can be uniformly

separated; so, there exists n e Z for which. A n S~/ IB] = 0 . Choose

E c E for which B c 5 [£] and for each, x e. E we have d(x3B) < 1/n .

It follows that u {£, / Lxl: x e E} contains B and is contained in
1/n

. As a result,

A e xcnE L(Bl/n^V°1+ C CB°)+

THEOREM 2.7. Let <X3d) be a metric space. The following are
equivalent: CD The Hausdorff metric topology on CL(X) equals the
ball topology; (2) X is totally bounded, and it is possible to uniformly
separate disjoint elements of CL(X) whenever one of them is a ball.
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Proof. (1) -*- C21. By Lemma 2.4, X is totally bounded. If

A e CL(X) and B is a closed ball disjoint from A , then for some

e > 0 the set S Ld] must fail to meet B ; otherwise-, < S7TTA1> would

be h-,-convergent, but not T^-convergent, to A . We conclude that

(2) -> Cl] . With no assumptions on X each set (S lxl)~ is

Tij-open. Now suppose A e CLCX) fails to meet a closed ball B . Choose

e > 0 for which S lAl n S [B] = 0 , It follows that if hJA,F) < e,

then F r\ B = 0 . As a result, CB ) contains an h,-neighborhood of each

of its points. We conclude that the h.-,-topology is at least as strong

as the ball topology. To show that T R is at least as strong as the

h-j-topology, we may procede sequentially by virtue of Lemma 2.6. Let <. FJ
CL fir

be a sequence in CL(X) T_-convergent to a closed nonempty set F . By

Lemma 2.0, (d(-,F )) converges pointwise to dC-,F) . Since X is

totally bounded, Theorem 2.5 guarantees that (. F ) Tzi-converges to F .

It follows from Lemma 2.0 and Theorem 2.5 that if X is a space

satisfying condition (2) of Theorem 2.7, then T_-convergence of sequences
D

in CL(X) is equivalent to the pointwise convergence of their distance

functions. As we noted earlier, (0,1) as a subspace of the line is such

a space. It is natural to guess that the total boundedness of X is

irrelevant here, and to make this conjecture: for TD-convergence of
D

sequences in CLCX) to be equivalent to the pointwise convergence of their

distance functions, it is both necessary and sufficient that closed balls

can be uniformly separated from closed sets in X . We now pursue this

question.

LEMMA 2.8. Let <-X,d) be a metric space. Suppose ig-oonvergence

of sequences in CL(X) is equivalent to the pointwise convergence of

their distance functions. Then it is possible to uniformly separate

disjoint elements of CL(X) whenevev one of them is a closed ball.
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Proof: Suppose there exist A e CL(X) and a closed ball B which

are disjoint, yet cannot be uniformly separated. We can find sequences

<x > in A and <y > in B for which lim d(x ,y ) = 0 . Neither

•< x > nor < y > can have a cluster point, for it would lie in A n B .

As a result, for each n e Z the set F^ = ̂ X2" ' "xn'yn+l'yn+2'' "^ is

closed. If we set F = {x : w £ Z } , then <.d(-,F )) converges pointwise

to dC-,F) . However, although F e (B ) , for each n we have

F /̂  (ET) . Thus, <F > fails to converge to F in the ball topology.

It is a great disappointment to this author that the converse of

Lemma 2.8 fails.

EXAMPLE 2.9. m 1 let F = {5-±i. e + L, . „ = 2 j 3 j t f j . . . } .

We take for our space X this subspace of lm -.

X = {0} u F u ie1 + en: 71 = 2,2,4...}

Notice that if x and y are distinct points of X , then d(x,y) S 1/2 ;

so, jf is actually a UC space. For each n e. Z let

F = F u (e7 + e,: fe > n} . Each F meets B [0] , whereas F does not;

so, <F > fails to converge to F in the ball topology. We show that for

x in X , lim ̂  d(x,F ) = d(x3F) . Two cases are trivial: if x = 0 ,

then for each n d(x>F ) = d(x3F) = 1 , and if x e F , then for each

n d(x}F ) = d(xsF) = 0 . Now suppose that x e F° is nonzero. For

some n ̂  2 , we have x = e- + e . Evidently, for each y e. F - {x}

we have d(x,y) = 1 . On the other hand, d(x,F) = d(e~ + e , e7

+ -~ e ) = 1/2 . As a result, for this fixed x

( 0 if k < n

d(x,F) if k > n

We conclude tha t l i n i ^ , d(x,Fn) = d(x,F) in t h i s l a s t case, too.
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To finish this section, we include a new proof of a known result,

and in the process, show that spaces with nice closed balls are complete.

THEOREM 2.10. Let (X,d) be a metric space. Then the Hausdorff

metric topology on CLIX) coincides with the Fell topology if and only if

X is aompact.

Proof: If X is compact, all of the notions of convergence we have

considered coincide. Conversely, if the Hausdorff metric topology on

CL(X) coincides with the Fell topology, then by Theorem 2.3 and Theorem

2.5, the space has nice closed balls and is totally bounded. We show that

the former condition implies that X is complete. Suppose (x > is a

Cauchy sequence in X with distinct terms without a cluster point. Then,

a = inf {d(x~3x ) : n > 1} is positive. Choose N e. Z such that

whenever n > m ^ N we have dCx ,x ) < a/2 . It follows that B /0[a:,7]
n m a/o ri

is a noncompact proper subset of X , a contradiction. We conclude that

< x) has a cluster point; so, X is complete. Since X is also totally

bounded, X is compact.

3. Nearest points, furthest points and spaces with nice closed balls

By a multifunction Y from a metric space X to a metric space Y ,

we mean a function from X to CL(Y) . Now let F be a nonempty closed

set in a metric space < X,d) . We say that F is proximinal [7] if for

each x e X there exists at least one point of F nearest x . If F

is proximinal, we call the multifunction ?p'-X •*• CL(X) defined by

Tp(x) = {y e F: d(x,y) = d(x,F)}

the metric projection for F .

THEOREM 3.0. Let (X,d) be a metric space with nice closed balls,

and let F e CLCX). Then:

(1) F is proximinal, and for each p e X the set TF(p) is either

compact or is all of F;

(2) The metric projection !"„ is upper semicontinuous in the sense of
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Kuratouski, therefore, whenever V is open in X then {x: Vp(x) c V

is open in X ;

(3) If p € X has no furthest point in F , then sup {dCpsx): x e F}

= step {d(p,x): x e X) .

Proof: To prove (1) , fix p e. X and suppose all points of F are

not equidistant from p . Choose x and y in F with d(p,x) < d(p3y) ,

and let a be between these two distances. Since 5 [p] is compact, the

set of nearest points to p in B [p] n F is a nonempty compact set.

These are the points of F nearest p . To prove (2), let V be an

open neighborhood of Tp(p) . If Vp(p) = F , then {.X: r (x) <= V} = X .

Otherwise, T^fpJ is a proper subset of F , and there exists a > 0 for

which

d(p,F) < a < sup id(psx): x e F)

Suppose {x: r_Cxj c V } does not contain a neighbourhood of p . Then

there exists a sequence <x > convergent to p such that for each n

the set Y-(xn) n V is nonempty. Since lim _>co d(x ,F) = d(p,F) < a ,

eventually F^/x ) n v lies within the compact set B [p] . As a result,
r n ct

Ls fr_(jeJ n v) is nonempty. Each point q in this set lies in F n V

and satisfies d(p,q) = d(p,F) , in violation of I" (pj n V° = 0 . To

prove (3), suppose p e X has no furthest point in F and g =

sup {d(p,x)-. x e F} is finite. If S.[p] were compact, then F would

be compact, and a furthest point would exist, an impossibility. Thus

5g[p] = X . The case B = °° is trivial.

We intend to characterize spaces with nice closed balls in terms of

nearest and furthest points. We need a simple fact for this purpose.

LEMMA 3.1. Let <ct > be a real sequence with distinct terms.

Then < a) ?uzs a monotone subsequence.
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Proof: A proof can be constructed through brute force, but the

result follows most elegantly from Ramsey's Theorem [17]: if the n-

element subsets of Z are partitioned into k classes {E^E^i • • • -E^} ,

then there exists an infinite subset A of Z and j e {1,2,... ,k] such

that each n-element subset of A lies in E. . We can get by here with
Q

n = k = 2: let ff, = {{j,n}: j < n and a. < a } and let Eo = {{j,n}:-i Q n z

j < n and a. > a } .
3 ft

THEOREM 3.2. Let <X,d) be a metric epaae. The following are

equivalent:

(1) X luxs nice closed balls;

(2) For each F e CL(X) and each p e X (i) the set of nearest

points to p in F is either a nonempty compact set or is all of F ,

and (ii) if p has no furthest point in F , then sup {d(p,x): x e F}

= sup id(p,x): x e. X}.

Proof: The implication (1) •*• (2) is immediate from Theorem 3.0.

Conversely, suppose (1) fails. We can then find a closed ball #a[p]

contained properly in X and a sequence of distinct terms < x) in the

ball with no cluster point. We claim that (d(p,x )) has a constant

subsequence. If not, then by passing to a subsequence we can assume

( d(p,x )) has distinct terms. Invoking Lemma 3.1 and once again passing

to a subsequence, we can assume < d(p,x )) is monotone. If it were

strictly decreasing, then the closed set {x : n e Z } would have no

point nearest p . If it were strictly increasing, then since B [p] ̂  X ,

we get

sup id(p,x ) •• n e Z } S a < sup {d(p,x): x e. X}

In either case, condition (2) above is violated. We conclude that

(d(p,xn)) has a constant subsequence; in other words, there exists a

closed noncompact subset E of B [p] whose points are equidistant from

p . Choose q such that d(p3q) > a , and form F = E u {q} . The set

of nearest points to p in F is just E , a set which is neither compact
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nor all of F . Again, C21 is violated. We conclude that closed balls

that are proper subsets of X are compact.

EXAMPLE 3.3. The existence of unique nearest points in arbitrary

elements of CLCX) does not ensure that X has nice closed balls. Let

X be this subspace of the plane: {(—, 0) -. n e Z } u {(-$, 1) } . It is easy

to check that for each p e X and each F e CL(X) there exists a unique

x e F satisfying d(p,F) = d(p,x) . However, the ball BJ[(130)] is a

noncompact proper subset of X .
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