DECOMPOSITION OF FINITE GRAPHS INTO OPEN
CHAINS

C. St. J. A. NASH-WILLIAMS
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1. Introduction. If m, n are integers, “m = n”’ will mean “m = n (mod
2).” The cardinal number of a set 4 will be denoted by |4|. The set whose
elements are a4, @9, . . . , @, will be denoted by {ay, as, . . ., a,}. The empty set
will be denoted by @. If 4, B, C are sets, 4 — B will denote the set of those
elements of 4 which do not belong to B, and 4 — B — C will denote (| — B)
— C. The expression 2 gaf(§) will be denoted by f.A4. The statements
“f=gon 4, “f=gon 4" will mean that f(¢) = g(&) or f(§) = g(§) res-
pectively for every ¢ € A.

An unoriented graph U consists, for the purposes of this paper, of two dis-
joint finite sets V(U), E(U), together with a relationship whereby with each
N € E(U) isassociated an unordered pair of (not necessarily distinct) elements
of V(U) which X is said to join. An oriented graph is a triple N = (U, ¢, k),
where U is an unoriented graph and ¢, & are mappings of E(U) into V(U) such
that each A € E(U) joins At to M. We write V(U) = V(N), E(U) = E(N)
and call A¢, Mk the tail and head of A respectively. Either an unoriented or an
oriented graph may be referred to as a graph. Throughout this paper, U will
denote an unoriented graph, N will denote an oriented graph, and G may
denote either. The elements of V(G) and E(G) are called vertices and edges of
G respectively. A subgraph of U is an unoriented graph H such that V(H) C
V(U), E(H) C E(U) and each edge of H joins the same vertices in H as in
U. A subgraph of N = (U, t, h) is an oriented graph (Uy, #;, ;) such that U,
is a subgraph of U and ¢4, &, are the restrictions of ¢, % respectively to E(U,).
An orientation of U is an oriented graph of the form (U, ¢, #). A vertex ¢ and
edge A of G are incident if £ is one or both of the vertices joined by . The
order, ord G, of G is |V(G) U E(G)|. G is empty if V(G) = E(G) = @. The
degree d(£) of a vertex £ of a graph is 2a(¢) + b(£), where a(£) is the number
of edges joining £ to itself and &4(¢) is the number joining £ to other vertices. A
vertex is even or odd according as its degree is even or odd respectively. G is
Eulerian if its vertices are all even. A collection of subgraphs of G are disjoint
(edge-disjoint) if no two of them have a vertex (edge) in common. The union
of the subgraphs Hy, Hs, . .., H, of G is the subgraph H of G such that

ven = Uve,  B@ = UEe),

A decomposition of G is a set of edge-disjoint subgraphs of G whose union is G.
G is connected if it is not the union of two disjoint non-empty subgraphs. The
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components of a non-empty graph are its maximal connected subgraphs. (An
empty graph is deemed to have 0 components.) A chain-sequence of G is a
finite sequence

EO; )\1) Ely )\Zy £2v )\Sy ceey >‘ny gn (n > O)
in which the £; are vertices of G, the \; are distinct edges of G and A\, joins
t,itogfore =1,2,...,n If Gisan oriented graph, this chain-sequence is

forwards-directed if

M= Nh=E(  (=1,2...,7n)
and backwards-directed if

Nk =, Nt = & t=1,2,...,n).

A finite sequence is closed or open according as its first and last terms are the
same or different respectively. If s is a chain-sequence of G, the subgraph of
G formed by those vertices which appear at least once and those edges which
appear exactly once in s will be said to be derived from s. A subgraph of G is an
open chain of G if it is derivable from an open chain-sequence of G. If £, ¢
are the first and last terms of an open chain-sequence s of G and C is the open
chain derived from s, then clearly &, g are odd in C and every other vertex of C
is even in C. It follows that an open chain has precisely two odd vertices which
are the end-terms of every chain-sequence from which it is derivable; these
are called the end-vertices of the open chain. If S, T are subsets of V(G), S will
denote V(G) — S, So 7T will denote the set of those edges of G which join
elements of S to elements of T, and S6 will denote S o 8. A subgraph of G is
an ST-chain if it is derivable from a chain-sequence of G whose first and last
terms belong to S, 7" respectively. A cincture of G is a subset of E(G) which
is of the form .S6 for some subset S of V(G). If £ € V(&), an edge X is an
exit of £if Nt = £ and an entry of £ if Nk = £ The number of exits [entries] of
¢ will be denoted by x(§) [e(¢)]. The Aux out of £ denoted by f(§), is
x(&) — e(§). N is quasi-symmetrical if x = e on V(N). A route-sequence of N
is a chain-sequence of N which is either forwards- or backwards-directed. A
subgraph of N is a route (closed route, open route) of N if it is derivable from
a route-sequence (closed route-sequence, open route-sequence) of .

When, to avoid ambiguity, it is necessary to specify the graph relative to
which a graph-theoretical symbol is defined, the letter denoting the graph
will be attached to the symbol in some convenient way. For example, if &
is a common vertex of two oriented graphs M and N, d,(¢) will denote the
degree of £ in M. We shall, however, make the convention that, in any context
in which an oriented graph denoted by the letter &V is under consideration, all
graph-theoretical symbols relate to N unless the contrary is indicated; for
example, d(£) would mean dy(§) in the situation instanced above.

Let s be a forwards-directed route-sequence of N, R be the route derived
from s and &, g be the first and last terms of s respectively. Then clearly R is
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quasi-symmetrical if £ = nand fg(¢§) = 1,fz(n) = —1 and fzg = 0on V(R) —
{&, n} if £ # 9. It follows that a closed route cannot also be an open route and
that an open route R has uniquely determined vertices £, 7 such that fz(¢) = 1,
fr(n) = —1and &, g are the first and last terms respectively of every forwards-
directed route-sequence from which R is derivable; we call £ 75 the tail and
head respectively of R.

By a G-function, we shall mean a non-negative integer-valued function
defined on the vertices of G. A G-function g is congruential if g = d on V(G).
If g is a G-function and ¢ € S C V(G), F,(§; S) will denote

—g(®) +¢g.(S— {&) +[S9].

We shall call g toleradle if F,(£;.S) > 0 for every pair £, S such that ¢ € S C
V(G). A subset Sof V(G) is g-critical if F,(¢;S) = 0for some ¢ € S. A cincture
C of G is g-critical if C = S8 for some g-critical subset S of V(G). A g-chain-
factor of G is a set ® of edge-disjoint open chains of G such that each vertex £
of G is an end-vertex of exactly g(¢) elements of ®. A g-decomposition of G
is a g-chain-factor of G which is a decomposition of G.

Let #, v be N-functions. Then a (u, v)-route-factor of N is a set ® of edge-
disjoint open routes of V such that each vertex £ of N is the tail of exactly
u(£) and head of exactly v(¢) elements of ®. A (u, v)-decomposition of N is a
(u, v)-route-factor of V which is a decomposition of V.

The object of this paper is to prove the following two parallel results:

THEOREM 1. Let g be a U-function. Then U has a g-decomposition if and only
if g s tolerable and congruential and g . V(H) > 0 for each component H of U.

THEOREM 2. Let u, v be N-functions. Then N has a (u, v)-decomposition if and
only if u + v is tolerable, u — v = fon V(N) and (u + v) . V(H) > 0 for each
component H of N.

Our procedure will be to prove Theorem 2 and deduce Theorem 1 from it.
Certain generalizations of the theorems will be mentioned at the end of the

paper.
2. Proof of Theorem 2.
LemMA 1. If G has a g-chain-factor, g is tolerable.

Proof. Let ® be a g-chain-factor of G. For any pair of disjoint subsets .S, T°
of V(G), let SxT denote the number of S7-chains in ®. Then, if ¢ € S C V(G),

g(®) = ({£}+8) 4;"8;“ ({£}{a}]).

But {¢}*{n} < g(n) for every n € S — {¢}; and {£}*8 < |S8| since £ € S and
so each {£¢}8-chain must include an element of S8. Hence g(¢§) < g. (S — {&})
4+ |S5]; and the lemma is proved.

LemMma 2. If A, B are disjoint subsets of V(G), |(4 \J B)s|+

43 > |B3).
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Proof. If V(G) — (4 \U B) = C, the above inequality follows from the
relations

|48] = |AoB| + |CoA|, |Bs| = |BoC| 4 |4oB]|, |(4 U B)s|=|Cod|+|BoC|.
LemMa 3. If S C V(G), |Ss] =4 . S.

Proof. An edge contributes 2, 1, or 0 to & .S according as it belongs to
SoS, S6 or SoS respectively.

CoroLLARY 3A. If g s a congruential G-function and ¢ € S C V(G),
F,(§;S) is even.

CoroLLARY 3B. (= (1, chapter 11, Theorem 3)). The number of odd vertices
of a graph s even.

Proof. Take S = V(G) in Lemma 3.

Definition. Let \, u be distinct edges of N such that Az = ut = £ Then
the oriented graph M obtained from N by fusion of X and u at ¢ is defined by
the rules:

1) V(M) = V(N), E(M) = [E(N) — {\, u}] U {v}, where v is a newly
added edge and is not an element of the set (V) U E(N);
(11) vty = N, vhy = ph;
(iii) «kty = kt, khy = xh for every « € E(N) — {\, u}.

LeMMA 4. If, in the circumstances of the above definition, g is a tolerable
congruential N-function and no g-critical cincture of N includes both \ and p,
then g 1is tolerable in M.

Proof. Let ¢ ¢ S C V(M) (=V(N)). If A, » do not both belong to .S, then
|Séx| = [S8] and so »Fy(£;.S) = Fy(£;S) > 0. If \, u both belong to S8, then
(i) |Séa] = |S8] — 2, whence »F,(&;,S) = F,(¢,.S) — 2, and (ii) S8 must not
be g-critical, whence, by the tolerability of g and Corollary 3A, F,(£;S) > 2.
Hence ,F,(¢;S) > 0.

Definitions. 1f S C V(N), S* will denote the subgraph of N defined by
V(S*) = S, E(S*) = SoS, and N will denote the oriented graph M defined as
follows.

Q) V(M) =8\ (S}, E(M) = SoV(N), where S’ [§ V(N) U E(N)] is a
newly introduced vertex.

(i) Write ¢(¢§) = ¢ if ¢ € S and ¢(&) =5 if £ € 5. Then My = ¢ (M),
My = ¢(\k) forevery N € E(M).

Thus N gisobtained from N by contracting the subgraph S* to a single vertex.S’.

LemMa 5. Let g be a tolerable N-function and C be a g-critical subset of V(N).
If g(C"), g(C") are both defined to be |Cé|, then g is tolerable in N¢ and Ng.

Proof. Write N¢ = H, N¢ = K. Since C is critical,
(1) g®) = g. (C— {&}) + |Cd|
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for some ¢ € C. Since g(C") = g(C") = |C5|, (1) can be rewritten in each of the

forms
1 g&) =¢.[V(H) — {§],
) g(C) =g —g. (C— {£)]).

LEmMA 5AL If S C V(H) — {&}, 2.5 < |S64].
Proof. Since F,(§;, C—S) >0
2) g —g. (C—=S— (&) <[(C -9
¢ ¢S,
[Sog| = [S8] > [(C—S)s| —[Co| > g(&) —g. (C—S—{&}) —|Co| =¢.S
by Lemma 2, (2) and (1). If ¢" € .S,
1Sou| = [(C— 8)o| > ¢g(®) —g. (C—=S—{&}) =¢.S

by (2) and (1').
Suppose that ¥V C V(H). Let V(H) — YV = W. If £ ¢ Y, then, for every
7 €Y,
alfy(n; Y) > |You| —gln) > |Youl —g. V>0

by Lemma 5A. If £ € ¥, then by (1),
alFy(&;Y) = |You| —g. W= |Wég| —g. W>0
by Lemma 5A, and, for every n € ¥ — {£},

alfy(; Y) > ¢g. (Y = {n}) —gln) >0

by (1’). Hence g is tolerable in H.
Suppose that Z C V(K). If C" ¢ Z, then Zéx = Z6 and so xF,(n; Z) =
F,(n; Z) > 0 foreveryq € Z. If C' € Z, then

where Z = (Z — {C'}) U C. By (1") and (3), xF,(C";Z) = F,(£; 2) > 0
and, by (3) and Lemma 2,

g(C) + |Zox| = |C8| + | Z3| > |(Z = {C'])3],
whence xF,(n; Z) > F,(n; Z — {C'}) > Oforeveryqn € Z — {C'}. Hence g is
tolerable in K.

Definitions. An edge \ of N is a loop if N = Ah. If g is an N-function, a vertex
¢ is g-critical if the set {£} is g-critical, that is, if g(£) = |{£}4], and is g-safe if
F,(&; {£}) > 0, that is, if g(£) < |{£}8]. A ome-edge-route is a route which has
exactly one edge. If S C V(N), an edge X is an exit of Sif At € S, M € §,
and is an entry of Sif Nt € S, \¢ € 8. If A C E(N), N — A will denote the

We give the names Lemma #A, Lemma #B to lemmas which themselves form part of the
proof of Lemma #.
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subgraph of N defined by the relations V(V — 4) = V(V), E(NV — 4) =
E(N) — 4.

LEMMA 6. If u and v are N-functions such that u — v = f on V(N) and
u + v 1s tolerable, then N has a (u, v)-route-factor.

Proof. Since Lemma 6 is trivially true for an oriented graph of order 0,
it may be proved by induction on ord V. We shall therefore make the inductive
hypothesis that Lemma 6 is true for all oriented graphs of lower order than .V.
Let # + v = g. If N has a loop A, then X\ belongs to no cincture. Therefore g,
being tolerable in V, is tolerable in N — {\}. It is also clear that fy_p; = f =
u — von V(N). Therefore, by the inductive hypothesis, ¥ — {\} hasa («, v)-
route-factor, and hence so has N. We shall therefore henceforward assume
that N is loopless. We shall consider separately the following two cases: (I)
V(N) has a g-critical subset C such that |C| > 2 and |C| > 2; (II) V() has
no such subset.

Proof for Case 1. Let the exits of C be Ay, Ao, ..., A, and its entries be
Moty Apr2, ooy A I we write Ne = K, u(C’) =p, v(C') =7 — p and
2(C) = |Cs|, then u, v, and g are defined on all vertices of K and g = u + v
on V(K). By Lemma 5, g is tolerable in K. It is clear that «(C") — »((C’) =
fx(C’) and that fx = f =u — v on C; hence u — v = fx on V(K). Since
|C] » 2, ord K < ord V. Therefore, by the inductive hypothesis, K has a
(u, v)-route-factor ®. Since #(C") + v(C’) = r and A, Ag, . .., A, are the only
edges incident with €’ in K, it is clear that Ay, Ag, . . ., A, must be distributed
in a one-to-one fashion amongst the 7 elements of ® which have C’ as an end-
vertex; let R; be that element of ® which includes A; among its edges. Then
clearly R, is derivable from a route-sequence of the form C’, \;, s;, where s, is
a route-sequence of C*. Clearly C’, \;, s; and hence also s; must be forwards-
or backwards-directed according as C’ is the tail or head respectively of A,
in K, that is, according as ¢z < p or z > p respectively. Moreover, if & —
{R1, Rz, ..., R} = A, then, since the A, are the only edges incident with
C'in Kand \; € E(R;) ({ =1,2,...,7r), it follows that each element of A
is a route of C*.

If we write #(C") = r — p, 9(C") = p, an argument similar to that of the
preceding paragraph, but using the hypothesis that |C] > 2 and the assertion
concerning Ng in Lemma 5, shows that Nz has a (u, v)-route-factor A \U { Ry,
R,, ..., R,} such that the elements of A are routes of C*and, fori = 1,2, . . .
r, R, is derivable from a route-sequence of the form 3, A; C’, where §, is a
route-sequence of C* and is forwards- or backwards-directed according as
1 < p or i > p respectively. It is now not difficult to see that, if S; is the
route derived from the route-sequence §;, A;, s;, then AU A\ {5, Sy, ...,S,}
is a (u, v)-route-factor of V.

Proof for Case 11.
LEMMA 6A. A vertex £ of N is g-critical if V(N) — {&} is g-critical.

’
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Proof. If V(N) — {&} is g-critical,
—g(m) +g. (V(V) — {§n}) + [{E}s] =0
for some n € V(N) — {¢}. But
—gn) +g. (VIV) = {&n}) + g&) = Foln; V(N)) > 0.

Therefore g(¢) > |{£}4], that is, F,(¢; {¢}) < 0. Hence, since g is tolerable,
F,(&; {¢}) = 0 and so £ is g-critical.

CoroLLARY 6AA. In Case 11, every mom-empty g-critical cincture is of the
form {£}6 for some g-critical vertex &.

If ¢ is a g-critical vertex, g(¢) = |{£}§], that is, since N is loopless, u(£) +
v(§) = x(§) + e(¢). But, by hypothesis, (&) —v(§) = f(§) = x(§) — e(§).
Hence u(¢) = x(¥) and v(¢) = e(£). Hence, since N is loopless, the one-edge-
routes in NV constitute a (#, v)-route-factor of IV if every vertex of V is g-critical.
We may therefore assume that IV has a g-safe vertex . Since o is g-safe,

[{ate] > g(0) > |u(o) — v(0)| = [f(0)]
by hypothesis. Therefore
4) x(a) > 0, e(s) > 0.

LEMMA 6B. T%e vertex o has an entry \ and an exit u such that no g-critical
cincture includes both \ and pu.

Proof. (Throughout this proof, the reader should bear in mind that & is
assumed to be loopless.) If o is adjacent to two or more other vertices, it is
easily seen from (4) that ¢ has an entry A and an exit x which join it to
different vertices; since o is g-safe and is the only vertex incident with both
X and u, Corollary 6AA shows that no g-critical cincture includes both A and
w. We may therefore assume that o is adjacent to at most one, and hence, by
(4), to exactly one other vertex; let this vertex be 7. Since ¢ is adjacent only to
7, |{o, 7}8] = |{r}d8] — |{c}d|. Therefore

—g(1) +g(@) + [{r}o| — [{o}s] = Fy(r; {o, 7}) > 0.

But |{s}d] > g(o) since o is g-safe. Therefore |{r}8] > g(r). Hence 7 is also
g-safe. But, by (4), we can select an entry A and an exit u of ¢. Since \, u must
both join o, 7, which are both g-safe, Corollary 6AA again implies the required
result.

Since

g=utv=u—v=f=x—e=x+e=4d

on V(N), gis congruential in V. Therefore, by Lemmas 6B and 4, g is tolerable
in the oriented graph (M, say) obtained from N by fusion of A and u at ¢. It
is also clear that f)y = f = # — von V() = V(M) and that ord M = ord N
— 1. Therefore, by the inductive hypothesis, M has a («, v)-route-factor, and
it is easily seen that this is converted into a (#, v)-route-factor of N when we
reverse the fusion of A\ and u at o.

https://doi.org/10.4153/CJM-1961-012-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1961-012-1

164 C. ST. J. A. NASH-WILLIAMS

LeMMA 7. If N has a decomposition of the form ®\J O, where & is a (u, v)-
route-factor of N and © 1s a set of closed routes each of which has a vertex in com-
mon with some element of ®, then N has a (u, v)-decomposition.

Proof. Let & = {R,R:,...,R,}, and let 6 =06,U6,U...UB®6,
where the 0; are disjoint and each element of O; has a vertex in common with
R;. If S; is the union of R; and the elements of 0, it is easily seen that .S,
is an open route with the same head and tail as R,. Hence {S1, S, ...,S,}
is a (u, v)-decomposition of .

Proof of Theorem 2. The necessity of the first condition follows from Lemma
1, and the necessity of the other two is obvious. Conversely, suppose that
these three conditions are satisfied. Then, by Lemma 6, N has a (%, v)-route-
factor ®. If 7T is the union of the elements of &, then clearly f = 4 — v on
V(T) and u =v =0 on V() — V(7). But f = u — v on V(V) by hypo-
thesis. Therefore N — E(T) is quasi-symmetrical. Therefore, by (1, chapter
11, Theorem 7), every component of N — E(7) is a closed route. Moreover,
since (¥ + v) . V(H) > 0 for each component H of N, each component of N
contains an element of ® and hence each component of N — E(T) has a
vertex in common with an element of ®. Therefore, by Lemma 7 (with 6
taken to be the set of componentsof N — E(7)), N hasa (u, v)-decomposition.

3. Proof of Theorem 1.

LeMMA 8. Every unoriented graph has an orientation in which f(§) = 0 for
each even vertex £ and f(§) = = 1 for each odd vertex &.

Proof. Let U be a given unoriented graph. By Corollary 3B, the number of
odd vertices of Uiseven;letit be 27. Then U can be converted into an Eulerian
unoriented graph H by the addition of 7 new edges joining its odd vertices in
pairs.? H, being Eulerian, has by (1, p. 30, 1. 4-9), a quasi-symmetrical
orientation, and this clearly induces in U an orientation of the required type.

Proof of Theorem 1. The necessity of the condition that g be tolerable follows
from Lemma 1, and the necessity of the remaining conditions is obvious.
Conversely, let the conditions of Theorem 1 be satisfied, and let N be an
orientation of U satisfying the condition of Lemma 8. Write u = (g + J),
v = (g — f), where f denotes flux in N. Then, by Theorem 2, N has a (u, v)-

decomposition, and hence U has a g-decomposition.

4. Generalizations.

Definitions. A semi-oriented graph is a quintuple S = (U, t, ¢, p, ¢) such
that U is an unoriented graph, r, ¢ are disjoint sets and p, ¢ are mappings of
r Ueinto V(U), E(U) respectively, subject to the condition that each edge A
of U is the image under ¢ of exactly two elements of ¢ \U e and that, if these
elements are ¢, €, then A joins ep to €'p in U. Vertices and edges of U are

2This procedure is suggested by the proof of (1, chapter 11, Theorem 4).
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called vertices and edges of S respectively, and elements of r \U e are called
hinges of S. A vertex £ (edge \) of Uis incident with a hinge eif ep = £ (eg = \).
Two hinges are opposed if one of them belongs to ¢ and the other to e. If
£ € V(U), f(&) will denote [8 x| — [8Me|, where 8 is the set of those
hinges of S which are incident with £ An open route-sequence of S is a finite

sequence
(5) 507 €1, )\l) Elv Sl» €2, x27 621 $2v €3y « -« oy )‘nv E", gn
such that &g, Ay, &1, N2, . . ., Ay, &, is an open chain-sequence of U, the e; and

¢, are hinges of S, the relations
€p =8, &p =60 = &g = Ny €6, &

hold for © =1,2,...,%n and &, €;+1 are opposed for 2 =1,2,...,n — 1.
(The last condition is vacuous if # = 1.) The vertex &, [&,] is a tail or head
of (5) according as €; [¢,] belongs to r or e respectively. (Thus an open route-
sequence of S may have two tails, two heads, or one tail and one head.) An
open route of S is a subgraph of S derivable from an open route-sequence of
S. (We shall leave the reader to guess the definitions of subgraph of S, derivable
and certain other terms relating to semi-oriented graphs from corresponding
definitions given for unoriented and oriented graphs.) If R is an open route of
S, £is a vertex of R, and s is any open route-sequence from which R is derivable,

then clearly fr(§) = 1 if and only if £ is a tail of s and fz(¢§) = —1 if and only
if £1is a head of s; we shall therefore call £ a tail of R if fzr(§) = 1 and a head
of Rif fr(§) = —1. A decomposition of S is a set of edge-disjoint subgraphs of

S whose union is S. If u, v are U-functions, a (u, v)-decomposition of S is a
decomposition D of S into open routes such that each vertex £ is a tail of
exactly #(§) and head of exactly v(£) elements of D. Semi-oriented graphs are
virtually a generalization of oriented graphs, since an oriented graph may be
regarded as a semi-oriented graph in which each edge is incident with two
opposed hinges. A semi-orientation of an unoriented graph U; is a semi-
oriented graph having U, as its first constituent element.
Theorem 2 admits the following generalization:

TaEOREM 3. Let S = (U, 1, ¢, p, q) be a semi-oriented graph and u, v be
U-functions. Then S has a (u, v)-decomposition if and only if u + v is tolerable,
u—v=7Ffon V(U)and (u +v). V(H) > 0 for each component H of U.

The proof of Theorem 3 is a fairly easy adaptation of that of Theorem 2;
but we refrained from giving the argument in this more general form to avoid
obscurity. It may be remarked, however, that Theorem 1 is more readily
deducible from Theorem 3 than from Theorem 2, since Lemma 8 becomes
trivial if, in its statement, ‘“‘an orientation’’ be replaced by ‘‘a semi-orientation.”

Definitions. A partition of a set A is a set of disjoint subsets of 4 whose
union is 4. If P is a partition of V(XN), an N-function g is P-tolerable if

€. SNT)<g.(S—T) + S|
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for every pair S, T of subsets of V(V) such that 7 € P. A set ® of open routes
of N is P-restricted if no element of ® has both its end-vertices in the same
element of P.

THEOREM 2'. Let P be a partition of V(N) and u, v be N-functions. Then N
has a P-restricted (u,v)-decomposition if and only if u + v is P-tolerable,u — v =
fon V(N), and (u + v) . V(H) > 0 for each component H of N.

Theorem 2’ is a generalization of Theorem 2, since it clearly reduces to
Theorem 2 when P is taken to be the partition of V() into subsets of order
1. The proof of Theorem 2’, which we shall not give in detail, consists in
applying Theorem 2 to an oriented graph N; and N;-functions uy, v; defined
as follows. N, is obtained from N by adding, for each 7" ¢ P, a new vertex
ap and, for each pair & 7" such that £ € T € P, u(¢) new edges with tail ar
and head ¢ and »(£) new edges with tail £ and head ay. (Thus |P| new vertices
and (# + 2) . V(V) new edges are added altogether.) We write #,(ar) = u . T,
vi(ap) = v. T and u; = v, = 0 on V().

Theorems 1 and 3 admit corresponding generalizations to ‘‘P-restricted”
decompositions.
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