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THE DENSITY OF ZEROS OF DIRICHLET’S
L-FUNCTIONS

D. R. HEATH-BROWN

1. Introduction. Let L(s, x) be a Dirichlet L-function and let N(a, 1", x)
denote the number of zeros p of L(s, x), counted according to multiplicity, in
the rectangle ¢ < Re(p) = 1, [Im(p)| £ 7, (T’ = 1). In this paper we shall
prove several new estimates for the sum

2@ =2 2* N6 T x

¢=Q x(mod ¢)

where Y_* denotes summation over primitive characters only. These estimates
will all be of the type

(1) 2(Q) K (QTH* =

where e denotes any fixed positive quantity.

Extending the well-known density hypothesis for the Riemann Zeta-function,
which is given by the case Q = 1, it is generally conjectured that (1) holds
with ¢ = 1 and 4 (o) = 2 for the interval 1/2 £ ¢ =< 1. At present the widest
interval on which the conjecture is known to hold is 21/26 < ¢ < 1, due to
Jutila [6]. In this paper we shall extend the range of admissible values to
11/14 £ ¢ £ 1. Note that 21/26 = 0.807 ..., whereas 11/14 = 0.785 ...

THEOREM 1. The estimate (1) holds witha = 1, A(s) = 2and 11/14 < ¢ £ 1,
uniformly in o, Q and 1.

In the case Q = 1, (that is, for the Riemann Zeta-function) the theorem
gives

N(o, 1) < T* 2+ (11/14 £ ¢ £ 1),

in the usual notation; this is in fact the same as Jutila’s estimate [6], which is
the best result to date in connection with the ordinary density hypothesis.
Jutila’s work improved upon several earlier theorems, in particular Mont-
gomery [7] and Huxley [1] obtained the first unconditicnal resuits in this con-
text, with ¢ = 9/10 and ¢ = 5/6 respectively, and it has long been knewn, from

the classical work of Ingham [4], that if the Lindeldf hypothesis
(/2 + ) <t

is true, then so also is the density hypothesis. It is easy to verify that a resuit
of the latter kind holds more generally for arbitrary Q.
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Huxley [3] has shown that the bounds for 4 (¢) in (1) may be improved if «
is allowed to take the value 2. This gives estimates that are sharper with respect
to Q but weaker with respect to 7. Huxley showed, in particular, that (1)
holds with @ = 2, 4 (¢) = 20/9 for the range 1/2 £ ¢ £ 1. We shall prove the
following sharpening of Huxley's results.

THEOREM 2. The estimate (1) holds uniformly in o, Qand T for1/2 £ ¢ < 1and
2) a=6/54()=5/(3—a), or
(B) a=16/5 4(c) = 20/9.

The estimates (2) and (3) should be compared with the corresponding
results of Huxley [3], which have the same value of 4 (¢), but have a = 2. We
have thus reduced the exponent of 7, while leaving the exponent of Q un-
changed.

Huxley [3] also showed that (1) is valid with ¢ = 2, 4 (¢) = 2 for the range
11/14 £ ¢ £ 1. This is now superseded by Theorem 1. However Jutila [6]
showed that one may take ¢ = 2, A(¢) = 2 in (1), for the wider range
7/9 £ ¢ £ 1. We shall improve this result further, to 129/167 < ¢ £ 1. Note
that 7/9 = 0.7777 . . . and 129/167 = 0.7724 . . . .

TueorREM 3. The estimate (1) holds, with a = 2, A(e) = 2 for 129/167 =<
o = 1, uniformly in Q, T and o.

Our proofs are based on the use of Dirichlet polynomials as in Montgomery
[7], with the developments of Huxley [1], [2], [3] and Jutila [5], [6].

We adopt the following convention in the use of € to denote a small positive
quantity, namely that at certain points, which we shall not specify, we shall
change € by a constant factor. Thus, for example, we may write x¢log x < x¢,
for x = 2.

2. The Estimates of Huxley and Jutila. We shall not repeat the details of
the zero detection method, which are given in Huxley [3]. We summarize the
results as follows:

Define I = log (Q7T) and

Y = (QT)V/2+4e/2o-D)

For convenience in writing we shall let
a=1/2 + 4¢/(20 — 1).

There exists an integer » such that
Q) = 2"Y = I?’Y

and

>(Q) < (1 + Ry
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Here R, = R is the number of zeros p, counted by >_(Q), for which
@ | X benxmm| 21/0210),
The coefficients b (m) depend on Q, T, ¢ and ¢ but not on x or p; they satisfy
(5)  [p(m)| = d(m).
We now take U = (Q7')* and suppose that
(PY) = U< (BY)*,

for some positive integer ¢. We then raise the sum on the left of (4) to the
power b, where b is the integer for which

2"y = U < (20Y)o
Thus
2 clm)x(m)m™

KW<msWwW
where W = (2°Y)?, K = 27%, V = (120)~? and, by (5), |c(m)| £ (d(m))?".
Since 2"Y < )Y we have b £ a. Also, since 2"Y = (QT)¢, we have
bLe'K1. Thus K> 1, V> (QT)~¢and c¢(m) < (QT)¢. Moreover

(6) UM@tD < 0D < (VY = W < UL

%

v,

To bound R we may use either a mean value estimate, or some form of the
Haldsz method. The mean value estimate, Theorem 7.5 of Montgomery (7],
with § = 1 yields

() RKLGVHW + Q*T)(QT)*,
where

8) G= > letm)'m™ KW*(QT)".
EW<m=wW
This suffices for the proof of (2).
The Hal4sz method, in the form due to Huxley [2], Theorem 1, yields
(9) RKL(GWV2+ QTGWV—)(QT)*,
under the condition
(10) V> Grrwepe,

We use this to prove (3).

For the proofs of Theorems 1 and 3 we use the method of Jutila [6]. We may
divide the range —7T = Re(p) < T into 1 + [27/7] subintervals of length
at most Ty and apply (1.3) of Jutila [6] to each. This shows that, for a given
positive integer &, each subinterval contains

L (GWV=2 4 Q*To(GWV8)* + (Q*TG* V=) (QT )¢
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points. Hence, under the condition 1 £ 7'y £ 7', we have
(11) R (T/To)(GWV=2 + QT (GW2V-8)F ++ (Q*T\G2V—4)*) (QT)e.

This estimate will be used to prove Theorem 1.

Finally, the proof of Theorem 3 requires, in addition to the ideas which lead
to (11), a variation in Jutila’s method. We postpone the description of this
to § 4.

3. The proofs of Theorems 1 and 2. In this section we specify U in each of
the cases corresponding to Theorem 1, (2) and (3). We then verify that the
above mentioned estimates do indeed follow from (7), (9) and (11). We shall
write D = QT for brevity.

For the proof of Theorem 1 we choose U = D% We distinguish two cases,
T=Qand "> Q. If T = Q we may take ¢ = 3, since

(lZY)3 - ZG(QT)&x é 16(Q2T>2a = U < lS(QT)da — ([2 Y)4

Otherwise 7 > Q and we have ¢ = 2 similarly.
For the case 7" < (Q, a = 3 we have by (6)

D34 < W <« Dite,
We use (11) with 79 = T, £ = 3, whence, by (8),
R << (Wr—20 4 DW1s—245 | DsJJ6—120) De,
Using the bounds for W, we have, assuming 11/14 < ¢ < 1,

]{ X (1)2—20 -+ D(29—36z7) /2 + D(lé’;—lSﬂ) /2)De

X D2—20+e

This proves Theorem 1 in the case 7 < Q.
When 7> Q and a = 2 we set Tg = T(W/D)*2 unless W = D, when
Ty = T. Then, for 3/4 = ¢ £ 1, (6) yields

]“(I/I/,/D)Q—Qv g ]‘D—(2—2¢7)/3 z TD—I/G _>—_ ]*5/6@—1/3 g 1.

Hence 7'y 2 1; and clearly 7y < T also. Thus we may apply (11) with £ = 3,
whence

R << (DZ—'Z(Y + DLVIS—QQU + D4a‘-1W10-—-16&7)D5‘
From (6) we have

D3 £ W L Dite,
Thus, for 11/14 £ ¢ £ 1, we have

R << (D2—20 + Dl3—160 + D(17—2017) /3)De << D2~_2U+(,

This completes the proof of Theorem 1.
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We turn now to the proof of Theorem 2. We shall prove (2) foreoy £ 0 £ 1
where ¢y is any number in the interval 1/2 < ¢y < 1. Hence we have, on recall-
ing our convention in the use of e,

V = (QT)1/2+45/(20—1) < (QT)1/2+e‘

This avoids difficulties that arise when ¢ is close to 1/2. We may then take
oo arbitrarily close to 1/2, and use the trivial estimate

> (Q) KDY

for the remaining range 1/2 < ¢ < 0¢. In this way we obtain an estimate valid
uniformly for 1/2 £ ¢ £ 1.
For the proof of (2) we choose

U J— (\Qa’)]‘l‘))l/(.’i—v) (QT)?OS/(QO’—I)ZIO.
The estimate (7), together with (6) and (8) yields
1{ << (U2—26 + DU(1—20)G/(G+1))D6
under the condition
(PY)" £ U < (V).
The case @ = 1 is clearly impossible. If ¢« = 2 then U < (I?Y)?, whence
(Q5T3)l/(3—0‘) § (QT)3/2’
which simplifies to yield
(12) Q(3a+1)/(3—30) <T7T.
Then
DU([——20)2/3 é Q2T(Q5T3>(2~40) /(9—30) é (Q5T3)(2—2v)/(3—0)

using the inequality (12). This proves (2) in case ¢ = 2. For ¢ = 3 we have
U < (1?Y)*, whence

Q(?U—-l)/(3——2tf) g T.
As before we have

DUG-28/4 < Q2T (Q3T3)B—0)/(2=d0) < ((5T'3)(2-20) /(=0
and (2) follows. Finally, if ¢ = 4,

DLT(1—20)4/5 é Q2T(Q5T3)(4—80’)/(15—50) _g (Q5T3)(2——2a)/(3—cr)’

for all Q, T = 1. This completes the proof of (2).

The proof of (3) is very similar. (3) follows from Theorem 1 for
11/14 £ ¢ = 1, and from (2) for 1/2 < ¢ < 3/4 4+ 2¢. For the remaining
range we use the estimate (9), which yields by (6) and (8),

R K (U2—247 -+ DU(4—6J)G/('I+1))DG.
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By (8) the condition (10) becomes
We=3/4 > De,

We shall take
U = (Q2T6/5)10/9(@7‘)206/(20——1)l10’

whence We=3/4¢ = We = U¢/?, so that the required condition always holds.
It remains to show that

DU(4—6n)a/(u+1) é (QZTB/S)ZO(I—U)/Q
always. Since
(lzy)a < U < (Z2 Y)(H—l
the case @ = 1 is impossible. If ¢ = 2 then
(Q2T6/5)]0/9 é (QT):}/Z’
whence
Qs < T,
Hence
DU(4~6¢7)2/3 é Q2T(Q2T6/5)20(4—GU)/27 é (Q2T6/5)20(1—¢7)/9
as required. If ¢ = 3 then
(Q2T6/5)10/9 é (QT)2,
whence Q' < 7. In this case
DU(4-647)3/4 _S_ QQ]’(Q2T6/5)15(2-347)/9 é (Q27‘6/5)20(1—~U)/9

also.
Finally, if ¢« = 4 we have

DU(4—60)4/5 é Q21‘(Q2T6/5)8(4—60)/9 é (Q27‘6/5)20(1—ﬂ)/9Y

for all Q, T = 1. This completes the proof of (3).

4. The Proof of Theorem 3. In this section we develop the method of
Jutila [6]. We denote the zeros counted by R, p,, (1 < r < R), their imaginary
parts v,, and their associated characters x,. By a further subdivision of the
zeros in § 2, we may suppose that |y, — v, = 14, if x, = x,. We define & = [2,

—_ p— Wk —(n/KW)h —_
€y = e~/ — =KW B = KW

and

©

H(s, x) = 2, exx(m)n".

n=1
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In Jutila’s work, the constant K is replaced by 1/2, but clearly this is not
essential.

We begin by applying Lemma 1.7 of Montgomery [7], from which it follows
that
(13) RV'KGRW+G 3, [H(pr + bs — 20,%:%5)|-

TSR, THS

We now apply Lemma 1 of Jutila [6]. For ease of reference we quote the lemma

here.
LemMaA 1. Let x be a character (mod ¢), g £ Q,and let 0 <o =1, )t = T.
If x is principal let |t| = h? also. Then, for B < ¢gT and q(|t| + h*)(xB)~!

=M = (¢1)?,

dr.

M
Zl: >-((n)n—l/?+i(l+f)

It is clear from the proof of the lemma that the conditions B < ¢7" and
M = (¢7)? may be dropped.
Lemma 1 yields

H(Pr + p, — 20, Xr)_(s)

h2
1/2
<(we ["

where M = h3D/(KW). We now write

h2
H(s, x) <1+ BQ" f
—hn2

M
- —1/2+ iCrr—ys+1)
Xrxs(m)n e

1

dr + I)D‘,

M
n;l - 1=¢<%Tog M M/29<n=M /201
N = M/2¢ and
S 1/2+i(yr—vs+m)
Z<T) - r,sz=1 N<n2§2N X s (n)n

Thus (13) shows that, for some integer g,

h2
(14) R*« (GRW + GR® + GW'"? f Z(T)dr>pf.
—h2

By Hélder's inequality we have, for any integer &,

15) Z(r)éze?-”k(él (NZN) )

We shall apply Lemma 2 of Jutila [6] to the right hand side of the above
inequality. We quote the lemma here.

LEMMA 2. Let a, be complex numbers such that |a,] < A. Then

R N ) 2 N ) 2
Z Z anirXs(n)n—I/H—l(”—ta) < A2 Z Z )_(rXs(n)n-U +i(tr—ts)
r,s=11 n=1 r,s=1 n=1
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This yields

R k|2 R ‘ ‘ 2
(16) Z ( ) | << Df Z Z ers(n)n—‘lﬂ“f‘l(‘w“/s) L.
re=1 N<nzon/ | rram1 | akcnZiank |

Alternatively, writing
f = e QNRE o (u /N

and

](\51 X) = Z—:i an(”)nhS'

we have, also by Lemma 2,
B [ k|2 R )
€ ny—k . -
(17) Z | ( Z ) | KD'N Z |J(7'('Yr - ‘Ys)y XrXs)| .
roe=1 | \w<nson/ | rs=1

We now apply Lemma 3 of Jutila [6], which we also quote here.

LemMA 3. Foreachr, (1 £ r £ R), let x, be a primitive character of conductor
at most Q and let t, be a real number satisfying |t,] £ T.Suppose that |t, — t| = 1
whenever x, = s 1 hen

R N s | 2
2 | 2 o) xn T (N + (RD))D,
r=1 n=1
where x 1s any character of modulus at most Q.
Lemma 3, in conjunction with (15) and (16) yields

S () KRTMHR(N® + (RD)M*)* D

&« (R2_1/(2k)N1/2 + J<2—1/(4Ic)D1/4Ic)De'
We now have, by (8) and (14),

1{2 < (I{VI]Q———?G + 1{2‘[/}/1—«25 + 1{2—1/(276)N1/2I/I/'3/2—25
+ ]€2—1/(4k},pl/(4k)W3/2—2a)Df,

whence
(18) R (W22 4 (NW3¥40)k - DW(E—80F) De,

Alternatively we may estimate the expression on the right hand side of (17)
by repeating the procedure of the preceding paragraphs. Lemma 1 yields

| . - 2
;J(7'<'Yr - ‘YS)v XrXs)i
/ P

/ ‘hZ
< (1 + N* j XrXs(m)n
\ =1

—n% 0 n=

—1/2+ 10y r~ys-+T)

2
)
for B = N*. Here r 5 s, and P = Dh3/N*. Hence, on writing

P

r |
| — +i(yr—ys+7
S0 = 3|5 gl e

ros=1 | n=1

2

’
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we have
R h2

W) 3 1~ < (R 24w [ st
r,8=1 ) ]

By Hélder’s inequality we have, for any integer 7,

{ ' il 2\ 1/
S@) éRM“(L (Z) | ) :
T,S | n=pP |
Moreover, by Lemma 2,

> (ZS;)] 2<<D‘ >

T8 Ty

1
( 2
|

Z X X (n)n—1/2+i(7r—')‘x)
X7 Xs

n<Pi !

We apply Lemma 3 to the right band side, whence

2 (Z) "R+ (RDYPD.

This yields
S(T) << (RZ—l/jP + RQ—I/’(Zf)Dl/(Zj))De’
whence, by (15), (17) and (19)

S(r) K (RTYOPNIE 4 RPN
A RPTHEEDpHER 4 pEUGE) pGEDy e

Thus, by (8) and (14)
]€2 << (RI/V2—20 + ]{‘ZVVI—ZO' + ]{2—1/(27() I/£73/2—2<7ATI/2 + R?VI/.’S/?-&G}V-I/Z
+ RZ—l/(ij) I/I,73/2—20P1/(2k) + RZ—I/(4kj) W3,’2—27D1/(4k1))De,
which reduces to
(20) R << (W/2—2a + (NI/I/'S—IM)’C + (DN-—/\‘I/I/(S—tiu)k)j + DW(G—SJ)kj)DE'
We now choose U = (I2V)%, whence ¢ = 4 and
QT3 = WL (QT)**-.

We distinguish two cases, according as N < DO-9/2[J/4=3 or not. In the first
case we use (18) with & = 4. This yields

W?—?cr << (QT) 4—40+e’
(NW3—4a)k < (D(l—-o) /2)4 < (QT)4—441+€,
and, for 129/167 < ¢ = 1,
DW(G—BV)k << Q2T2 (QT)32(6—-8L1) /5 << (Q]‘)AI—A{U’
since 3/4 < 91/118 < 129/167. This deals with the first case.
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We now suppose that N > DU-072F4=3 We use the estimate (20) with
k = 3 and j = 2. For the first term of (20)

W22 < (QT)4—4<7+5'
For the second term of (20) we note that N < M < D' <W~1. Hence
(NW3—40')IC << (DW2—40‘)3D6 << (Q2T2)3(QT)24(2—4¢7) /5De << (QT)4—4U+('

where, in the final estimate, we have used the inequalities 3/4 < 29/38 <
129/167 < o. For the third term of (20) we have, using the fact that
N > D(I—U)/2W4a—3,

DIN-HW=iok] < D2DIo=3Ty=btio-9 o=,
Since ¢ = 129/167, this expression is
& (QUT) =1 (QT) /s & (QT).
Finally, the fourth term of (20) is
DIV < QRTX(QT) =55  (QT)o-*,
since 139/182 < 129/167 < ¢. This completes the proof of Theorem 3.
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