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THE DENSITY OF ZEROS OF DIRICHLET'S 
L-FUNCTIONS 

D. R. HEATH-BROWN 

1. I n t r o d u c t i o n . Let L(s, %) be a Dirichlet L-f unction and let N(a, T, %) 
denote the number of zeros p of L(s, %), counted according to multiplicity, in 
the rectangle a ^ Re(p) S h | Im(p) | ^ T, (T è 1). In this paper we shall 
prove several new estimates for the sum 

E(<2) = £ E * N(a, T, x) 
QSQ x(mod ç) 

where X * denotes summation over primitive characters only. These est imates 
will all be of the type 

(i) Z ( 0 « (e2rV(')(1-')+e, 
where e denotes any fixed positive quant i ty . 

Extending the well-known density hypothesis for the Riemann Zeta-function, 
which is given by the case Q = 1, it is generally conjectured t h a t (1) holds 
with a = 1 and A (a) — 2 for the interval 1/2 S & ^ 1. At present the widest 
interval on which the conjecture is known to hold is 21/26 S cr ^ 1, due to 
Jut i la [6]. In this paper we shall extend the range of admissible values to 
11/14 S (r g 1. Note t ha t 21/26 - 0.807 . . . , whereas 11/14 - 0.785 . . . . 

T H E O R E M 1. The estimate (1) holds with a = 1, A (a) = 2 and 11/14 ^ cr g 1, 
uniformly in cr, Ç a ^ ^ ^ • 

In the case Ç = 1, ( that is, for the Riemann Zeta-function) the theorem 
gives 

N(a, T) « r2~^+% (11/14 ^ ( 7 ^ 1 ) , 

in the usual notat ion; this is in fact the same as Jut i la ' s est imate [6], which is 
the best result to da te in connection with the ordinary density hypothesis. 
Ju t i la ' s work improved upon several earlier theorems, in part icular Mont­
gomery [7] and Huxley [1] obtained the first unconditional results in this con­
text, with a ^ 9/10 and a ^ 5/6 respectively, and it has long been known, from 
the classical work of Ingham [4], t ha t if the Lindelôf hypothesis 

r ( i /2+ ;*)«*% 
is t rue, then so also is the density hypothesis. I t is easy to verify t h a t a result 
of the lat ter kind holds more generally for arbi t rary Q. 
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Huxley [3] has shown that the bounds for A (<r) in (1) may be improved if a 
is allowed to take the value 2. This gives estimates that are sharper with respect 
to Q but weaker with respect to T. Huxley showed, in particular, that (1) 
holds with a = 2, A (a) = 20/9 for the range 1/2 ^ a ^ 1. We shall prove the 
following sharpening of Huxley's results. 

THEOREM 2. The estimate (1) holds uniformly in a, Q and Tfor 1/2 ^ a ^ 1 and 

(2) a = 6/5,i4(cr) = 5/(3 - a), or 

(3) a = 6/5, A (a) = 20/9. 

The estimates (2) and (3) should be compared with the corresponding 
results of Huxley [3], which have the same value of A (<r), but have a = 2. We 
have thus reduced the exponent of T, while leaving the exponent of Q un­
changed. 

Huxley [3] also showed that (1) is valid with a = 2, A (a) = 2 for the range 
11/14 ^ c ^ 1. This is now superseded by Theorem 1. However Jutila [6] 
showed that one may take a = 2, A (a) = 2 in (1), for the wider range 
7 / 9 ^ o - ^ 1. We shall improve this result further, to 129/167 ^ a ^ 1. Note 
that 7/9 = 0.7777 . . . and 129/167 = 0.7724 . . . . 

THEOREM 3. The estimate (1) holds, with a = 2, A (a) = 2 for 129/167 S 
o - ^ l , uniformly in Q, T and a. 

Our proofs are based on the use of Dirichlet polynomials as in Montgomery 
[7], with the developments of Huxley [1], [2], [3] and Jutila [5], [6]. 

We adopt the following convention in the use of e to denote a small positive 
quantity, namely that at certain points, which we shall not specify, we shall 
change e by a constant factor. Thus, for example, we may write xe log x <<C x% 
for x ^ 2. 

2. The Estimates of Huxley and Jutila. We shall not repeat the details of 
the zero detection method, which are given in Huxley [3]. We summarize the 
results as follows: 

Define / = log (QT) and 

Y = (QT)ll2+^e^2(T-l) 

For convenience in writing we shall let 

a = 1/2 + 4e/(2(7 - 1). 

There exists an integer n such that 

(QT)' ^ 2nY ^ PY 

and 

Z(Q)«a + Rn)i4. 
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Here Rn = R is the number of zeros p, counted by XX<2), for which 

(4) 2^ 6(w)x(w)w p è 1/(12/). 

The coefficients 6(m) depend on Q, T, e and <r but not on x or p; they satisfy 

(5) \b(m)\ ^ d(m). 

We now take U ^ (QT)A and suppose that 

(l2Y)a S U < (/2F)G+1, 

for some positive integer a. We then raise the sum on the left of (4) to the 
power b, where b is the integer for which 

(2nY)b ^ U < (2nYY+1. 

Thus 

23 c(m)x(m)m~p ^ F, 

where W = (2nY)\ K = 2~\ V = (12l)~b and, by (5), \c(m)\ S (d(m))2b. 
Since 2nY ^ l2Y we have ô g a. Also, since 2WF ^ (<2^)% we have 
b « e-1 « 1. Thus K » 1, 7 » (<2^)~e and c(w) « (Çr ) ' . Moreover 

(6) j7«/(a+D ^ C7&/(ô+i) < (2WF)& = IF ^ £/. 

To bound 7? we may use either a mean value estimate, or some form of the 
Halâsz method. The mean value estimate, Theorem 7.5 of Montgomery [7], 
with <S = 1 yields 

(7) R«GV~2(W + Q2T)(QT)% 

where 

(8) G= £ \c{m)\2m~2a « Wl-2°{QT)\ 
KW<m^W 

This suffices for the proof of (2). 
The Halâsz method, in the form due to Huxley [2], Theorem 1, yields 

(9) R « (GWV-2 + Q2TG3WV~Q)(QT)% 

under the condition 

(10) V»G1/2WUH2. 

We use this to prove (3). 
For the proofs of Theorems 1 and 3 we use the method of Jutila [6], We may 

divide the range — T ^ Re(p) ^ T into 1 + [2T/To] subintervals of length 
at most TQ and apply (1.3) of Jutila [6] to each. This shows that, for a given 
positive integer k, each subinterval contains 

« (GWV-2 + Q2To(GW2V-*)k + (Q2T0G
2V-4)k)(QT)< 
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points. Hence, under the condition 1 ^ T0 ^ T, we have 

(11) R « (T/To)(GWV~2 + Q2To(GW2V~*)k + {Q2T,G2V-"Y){QT)\ 

This estimate will be used to prove Theorem 1. 
Finally, the proof of Theorem 3 requires, in addition to the ideas which lead 

to (11), a variation in Jutila's method. We postpone the description of this 
to §4. 

3. The proofs of Theorems 1 and 2. In this section we specify U in each of 
the cases corresponding to Theorem 1, (2) and (3). We then verify that the 
above mentioned estimates do indeed follow from (7), (9) and (11). We shall 
write D = Q2T for brevity. 

For the proof of Theorem 1 we choose U = P2a76. We distinguish two cases, 
T ^ Q and T > Q. If T S Q we may take a = 3, since 

(/2F)3 - lQ(QTY« g I*(Q2T)2« = U < l*(QT)*« = (l2Y)\ 

Otherwise T > Q and we have a = 2 similarly. 
For the case T ^ Q, a = 3 we have by (6) 

D3 '4 ^ W«Dl+<. 

We use (11) with T0 = T, k = 3, whence, by (8), 

R « (W2~2ff + DWl*~2** + D*W*-U*)D*. 

Using the bounds for W, we have, assuming 11/14 ^ cr ^ 1, 

R < £ (D2~2(T + D(29-36(7)/2 _|_ jT)(15-18<7)/2)£)* 

« £)2-2<r+e 

This proves Theorem 1 in the case T ^ Q. 
When r > Q and a = 2 we set T0 = T(W/D)2~2« unless I f ^ A when 

7̂o - T. Then, for 3/4 S a g 1, (6) yields 

r (WV^) 2 " 2 o r ^ TD~(2-2<T)/Z 2> TD~1/6 è T5/6Q-UZ ^ 1. 

Hence 7̂ 0 è 1; and clearly To S T also. Thus we may apply (11) with & = 3, 
whence 

7? « (D2~2<7 + DPF8"24* + £M<r-lĴ 10-16(r)£)«. 

From (6) we have 

D2n g W«Z> 1 + É . 

Thus, for 11/14 ^ o- ^ 1, we have 

This completes the proof of Theorem 1. 
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We turn now to the proof of Theorem 2. We shall prove (2) for a0 S <r S 1 
where ao is any number in the interval 1/2 < <r0 S 1. Hence we have, on recall­
ing our convention in the use of e, 

Y = (n3")l/2+4e/(2<r-l) « ( Ç j y / 2 + e ^ 

This avoids difficulties that arise when a is close to 1/2. We may then take 
o"o arbitrarily close to 1/2, and use the trivial estimate 

Z (<2) « # 1 + é 

for the remaining range 1/2 ^ a ^ <xo. In this way we obtain an estimate valid 
uniformly for 1/2 ^ c ^ 1. 

For the proof of (2) we choose 
U = (n5^3)l/(3-(r)(Ç7^)20€/(2(r-l)/10! 

The estimate (7), together with (6) and (8) yields 

i£ « (U2-2* + DU(1-2°)a/{a+l))D* 

under the condition 

(PY)a S U < (l2Y)a+K 

The case a = 1 is clearly impossible. If a = 2 then [/ < (/2F)3, whence 

(Q53T3)l/(3-(r) ^ (QT)*/2, 

which simplifies to yield 

(12) Q(3<H-D/(3-3<r) < J^ 

Then 

JJJJ{l~2(r)2lZ < ()2J1/n5pU2-4(r)/(9-3(r) < (()5p)(2-2ff)/(3-ff) 

using the inequality (12). This proves (2) in case a = 2. For a = 3 we have 
U < (l2Y)\ whence 

Q(2«r-l)/(3-2<r) < J^ 

As before we have 

£)[/(l-2(r)3/4 < n2 2^/Ç5r3)(3""6<7)/(12~4<r) < (05T3) (2~2<r) /(3_cr) 

and (2) follows. Finally, if a ^ 4, 

2}£/U-?2<r)4/5 < n2J^/Ç5^3)(4-8cr)/(15-5o-) < / / ) 5 ; p \ (2-2<r)/(3-r) ? 

for all Q, 3" ̂  1. This completes the proof of (2). 
The proof of (3) is very similar. (3) follows from Theorem 1 for 

11/14 ^ a ^ 1, and from (2) for 1/2 g a ^ 3/4 + 2e. For the remaining 
range we use the estimate (9), which yields by (6) and (8), 

R « (U2~2<x + DU(i-6<T)a/ia+1))D*. 
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By (8) the condition (10) becomes 

We shall take 

U = ((02^6/5) 10/9 ( /JJ^Oe/^cr- l^lO 

whence W°~ZIA ^ We ^ U*/2, so that the required condition always holds. 
It remains to show that 

£)[/(4-6<r)a/(a+l) < /Q2^6/5)20( l -<r) /9 

always. Since 

(l2Y)a ^ U < (Z'F)0*1 

the case a = 1 is impossible. If a = 2 then 

(Q27^6/5\ 10/9 < (QT)Zl2 

whence 

Ç13/3 <; ^ 

Hence 

£)£/(4~6cr)2/3 < £ ) 2 j V n 2 ^6/5)20(4-6(0/27 < / ( )2 J"6/ô^j 20(l-<r)/9 

as required. If a = 3 then 

(02^6/5)10/9 ^ ( Ç r ) 2 , 

whence <21/3 ^ 7". In this case 

2)£/(4-6ff)3/4 < |Q2 J1 / r)2J"6/5\15(2-3(r)/9 < (r)2J^6/5) 20(l-<r)/9 

also. 
Finally, if a ^ 4 we have 

£)£/(4-6cr)4/5 < n2jV£)27"6/5\8(4-6(r ) /9 < (£)2 ^ 6 /5) 20(1- a) /9 

for all Q, T ^ 1. This completes the proof of (3). 

4. The Proof of Theorem 3. In this section we develop the method of 
Jutila [6]. We denote the zeros counted by R, prj (1 ^ r ^ R), their imaginary 
parts yr, and their associated characters Xr- By a further subdivision of the 
zeros in § 2, we may suppose that \yr — ys\ ^ /4, if Xr = Xs- We define h = I2, 

en = e-^n,W)h - e-(
niKW)\ B = KW 

and 
CO 

77(^, x) = X) enx(n)ri~s. 
7 1 = 1 
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In Jutila's work, the constant K is replaced by 1/2, but clearly this is not 
essential. 

We begin by applying Lemma 1.7 of Montgomery [7], from which it follows 
that 

(13) R2V2 «GRW + G £ |H(Pr + j5,-2cr,xrx.) | . 
r,s^R,r?*s 

We now apply Lemma 1 of Jutila [6]. For ease of reference we quote the lemma 
here. 

LEMMA 1. Let % be a character (mod q), q S Q, and let 0 ^ a ^ 1, |/| ^ T. 
If x is principal let \t\ ^ h2 also. Then, for B ^ qT and q(\t\ + hz){jB)~l 

^ M S (qT)2, 

/

h2 I M 

E x(«)»-1/2+i((+r) 

-h* I 1 
dr. 

It is clear from the proof of the lemma that the conditions B ^ qT and 
M S (qT)2 may be dropped. 

Lemma 1 yields 

H(Pr + Ps — 2(7, XrXs) 

« U1/2 I I w , 
\ ^ - 7 * 2 | 1 

where M = h3D/(KW). We now write 

(n)n - l / 2 + l ( 7 r - 7 s + r) dr + 1 
> • 

E = E E 
» = 1 l ^ g ^ 2 1ogM M/2Q<n^M/2Q-l 

N = M/2", and 

2 » = E 
2V<w^2iV 

Thus (13) shows that, for some integer q, 

( (14) R' « GRW + GR' + GW 1/2 r E(-)̂ ) D€ 

By Holder's inequality we have, for any integer k, 

( R I / \ A; I 2 \ 1/2A; 

E Z • 
r,s=l I w<wg2JV/ I ' 

We shall apply Lemma 2 of Jutila [6] to the right hand side of the above 
inequality. We quote the lemma here. 

LEMMA 2. Let an be complex numbers such that \an\ ^ A. Then 
R N 2 /£ AT 

E V* „ - f^\^-l/2+i^^—ts) 
2^ anXrXs(n)n ^i ! E 1^ XrXs(n)n 

r, s = l ra=l r , s = l n=l 
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This yields 

(16) E 
r,s=l 

E 2 ' « D ' ± | £ xrX.OO»-1'**™' 

f __ p-(n/(2N)k)h _ (n/Nk)h 

Alternatively, writing 

and 

J(s> x) = S fnx(n)ri 

we have, also by Lemma 2, 

fl ! / \ A; I 2 

(17) E l l ' 
r,s=l I W<re^2JV< 

«B*N~~k V | / ( i ( 7 r - 7 . ) , XrX,)|2. 

We now apply Lemma 3 of Jutila [6], which we also quote here. 

LEMMA 3. For each r, (1 rg r S R), let Xr be a primitive character of conductor 
at most Q and let tr be a real number satisfying \tr\ ^ T. Suppose that \tr — ts\ ^ .1 
whenever Xr = Xs- Then 

Ê \t Xr(»)x(»)«-1/2+<" <<(iV+ {RDYIZ)D\ 

where % ̂  ^ ^ character of modulus at most Q. 

Lemma 3, in conjunction with (15) and (16) yields 

£ ( T ) «R2~1/k(R(Nk + (RD)1/2))1/2kDe 

«(R: 2-1/(2*) A 7 l /2 Nlf* + R 2—1/(4*;) n l /4 fc \ n e Dl'qK)D\ 
We now have, by (8) and (14), 

i ^ 2 « (RW2~2(r + i?2]^ l -2<r _f_ ^ 2 - 1 / ( 2 * ) ^ T l / 2 ^ 3 / 2 - : 2 ( r 

+ JR2~l/(4fc)2)l /(4^)]^73/2-2a\^)« 

whence 

(18) R « (PP"2* + (AW3-4*)* + DW ( 6 - 8 ^ )D f . 

Alternatively we may estimate the expression on the right hand side of (17) 
by repeating the procedure of the preceding paragraphs. Lemma 1 yields 

\J(i(lr — 7 s ) , XrXs)\2 

« ( l +Nk J X XrXs(n)n /2+iXyr-ys+T) dr)D\ 

for 13 = Nk. Here r 5^5, and P = Dhz/Nk. Hence, on writing 

S(.r) = E I E XrXs(«)«-1/2+i(T '-7S+T) 

r,,s=l I ??,= I 
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we have 

(19) t \J(i(lr-ys),XrXs)?«(RNu + Ri + Nk "" 

By Holder's inequality we have, for any integer j , 

k f S(r)dr)D\ 

S{r) è R2~V1{ E E 
2 \ l / i 

Moreover, by Lemrna 2, 

£ n<P I 
«D*Z 12. XrXsWn - l /2+ i (y r -<y«) 

We apply Lemma 3 to the right hand side, whence 

\n<P I 
«R(P] + (RDY/Z)D\ 

This yields 

S(r) « (R2~1/jP + pj~i/(2J)DU(2j^D% 

whence, by (15), (17) and (19) 

E(r) « (R*-1'™^2 + R2N~1/2 

I j^2~l/(2kj),l/(2k)> T)2-l/(4kj)jjl/(Uj)\Tje 

Thus, by (8) and (14) 

R2 « (RW2~2(T + j R W 1 - 2 < r + .^2-1/(2*)pp/2-2<7^ri/2 _j_ 7^2^ /3 /2 -2^ -1 /2 

_j_ 7^2-1/(2fc^)]^/3/2-2o-pi/(2A;) I J£2-l /(4k j) ^ 3 / 2 - 2 ^ 1/(4^ )̂ \ p e 

which reduces to 

(20) i? « (PR-2* + (i\W3-4*)* + (DN"kW^-^k)j + DW«~Bff)kj)D*. 

We now choose U = (/2F)4, whence a = 4 and 

(QD8/5 g w « (çr)2+«. 

We distinguish two cases, according as A7 S D(1~a)/2W4a~3
} or not. In the first 

case we use (18) with k = 4. This yields 

pF2-2. <<c (Qry-^+% 

(Nw*-**y « (z)̂ ™ /̂2)4 « (QTy-^+% 

and, for 129/167 g ^ 1, 

£)]7J7(6-8<r)A; << Q2J-2(QFy2(Q~8a)/5 << (QI")4""*4*, 

since 3/4 < 91/118 < 129/167. This deals with the first case. 
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We now suppose that N > D^-a)/2WAa~B. We use the estimate (20) with 
k = 3 and j = 2. For the first term of (20) 

For the second term of (20) we note that N ^ M « D1+eW~\ Hence 

(AW 3 - 4 *)*« (Dw2~i(xyD*« ((32r2)3(ç^)24(2~4c7)/5^e« (Qry-^+% 

where, in the final estimate, we have used the inequalities 3/4 < 29/38 < 
129/167 ^ a. For the third term of (20) we have, using the fact that 
N > D(1~a)/2WAff-\ 

Since a ^ 129/167, this expression is 

« ( (2 2 P) 3 ^ I (C^)" 9 6 ( 4 '~ 3 ) / 5 « (QTy-*°. 

Finally, the fourth term of (20) is 

since 139/182 < 129/167 ^ a. This completes the proof of Theorem 3. 
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