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Abstract

In this work we shall study the existence of extremal solutions for an impulsive problem
with functional-boundary conditions and weak regularity assumptions, not only on the
right-hand side of the equation and on the functions that define the boundary conditions,
but also on the impulse functions, which will be required to be nondecreasing, but not
continuous as well, as is customary in the literature.
Moreover, in order to prove one of our results we shall study a general impulsive linear
problem, giving a complete characterisation of resonance for it.

1. Introduction

The framework of impulsive differential equations has proved to be the most adequate
for the modelling of processes with short time perturbations where change is assumed
to occur instantaneously. These equations exhibit several new phenomena and pose a
number of specific problems that cannot be treated with the usual techniques for ordi-
nary differential equations (ODEs). There are many applications in different sciences
for impulsive differential equations. We mention here a model for drug distribution
[11,12], the model of a single-species population with changes to important biologi-
cal parameters [5,17] and the impulsive stabilisation of a state which may not be an
equilibrium point of the system (stabilisation of an inverted pendulum) [14].

In recent years many authors have considered different problems involving im-
pulsive differential equations, and many types of techniques have been employed
to deduce the existence of solutions: degree theory, topological transversality, fixed
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394 Daniel Franco and Rodrigo L. Pouso [2]

point theorems, passing to the limit and the definition of a proper generalisation of the
Poincare map for the study of initial and periodic boundary value problems.

On the other hand, a recent trend in the study of the existence of solutions for
ODEs is that of discontinuous nonlinearities. It is necessary to point out that the usual
techniques we have mentioned before strongly depend on continuity, so one has to
look for alternative ways to deal with this type of problem. The fundamental reference
in this field we have followed is [10].

In practical situations impulse effects are constant over certain ranges of values,
mainly when the impulses are used to keep a control over a determined system. Thus it
is reasonable to consider discontinuous impulse functions, rather than continuous ones,
to obtain more realistic models (for example, a model of medical drug distribution in
which each patient receives either one or two doses per day, depending on his, or her,
temperature).

However, to the best of our knowledge, we know of no paper on impulsive equations
that considers discontinuous impulse functions.

As we said in the abstract we shall study the existence of extremal solutions for an
impulsive problem with functional-boundary conditions when some of the classical
regularity hypotheses over the functions that define the problem are removed. In
particular, impulsive functions will be required to be nondecreasing but not continuous.

The results that we shall present extend and complement those in [2,8-10,13] and
are new even for the nonimpulsive case.

2. Notation, definitions and preliminary results

We shall study the impulsive functional-boundary value problem given by

x\t) = f (t,x(t)) for a.a. t e J = [0, 1],

x«?) = /*(*(/*)), * = 1,2, . . . ,m, (2.1)

B(x(0),x) = 0,

where 0 = /0 < t\ < • • • < / „ < /„,+, = 1 is a fixed partition which corresponds to
impulse effects.

REMARK. It is not difficult to prove that the results of the present work for (2.1)
remain valid if we change the interval J by an arbitrary compact real interval [a, b]:
a simple change of variable shows the equivalence between the two problems.

Following the standard notation, we consider the set

PC(J) = {x: J -» K | x is continuous in J \{tut2 /„,}
and there exist x(t^) = x(tk) and x(t£), k = 1 ,2 , . . . , m).
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which is a Banach space with the norm ||*|| = sup{|jc(/)| : t € J}.
In the space PC(J) we consider the usual pointwise partial ordering: for v, w e

PC(J), we shall write v < ID when v(t) < w(t) for all t € J. In such a case, we
define the interval [v, w] = {z e PC(J) : v < z < w}.

The general assumptions for problem (2.1) are listed below:
(F) (1) For every x € (R, / (•, x) is Lebesgue measurable on J.

(2) For a.a. t € J, lim s u p w - / (r, z) < f(t,x) < lim u u % , + / (r, z) for
all j e l .

(3) For every /? > 0 there exists f e L'(J) such that \f (t, x)\ < ^ ( 0 for
a.a. t e J and all x e K with |JC | < /?.

(I) Ik: K -> R is a nondecreasing function for each k = 1, 2 , . . . , m.
(B) B: K x PC(J) ^ K is such that for every £ 6 PC(7) we have that, for all

u € R, liminfz^a-5(z,^) > B(u, ^) > limsupz^u+ B(z, £). Moreover, for
each M e K, the function B(u, •) is nonincreasing in PC(J).

The type of functional-boundary conditions we use here follows the spirit of [9].
Note that the usual boundary conditions, such as initial or periodic conditions, are
covered in the formulation of problem (2.1). For periodic boundary conditions it
suffices to define B(u,%) = u - £(1) for (M,£) e K X PC(J). Furthermore,
not only the behaviour of the solution at the boundary is involved in the condition
B(x(0), x) = 0 and, for instance, a condition of the form x(0) = J,'̂ 2 x(s) ds, can be
studied in the frame of problem (2.1).

Let us denote Jo = [0, tt] and for it = 1, 2 , . . . , m, Jk = (tk, tk+l]. We define the
following subspace of PC(J):

Q = {x € PC(J) : xWt e AC(Jk), k = 0,l,...,m),

where A C(K) denotes the space of absolutely continuous functions in the interval K.
Now we define the concepts of a lower and upper solution for problem (2.1).

DEFINITION 2.1. A function a: J -> K is a lower solution of problem (2.1) if
a € Q, f (•, <*(•)) is measurable and

a it) <f(t,a(t)) for a.a. t e J,

a(tk
+) < Ik(a(tk)), k= 1,2, . . . ,w ,

fl(a(0),a) <0 .

Afunction;6: J - • R is an upper solution of (2.1) if /3 e fi,/(-, &(•)) is measurable
and

P'(t)>f(t,P(t)) fora.a. t € J,

P(.tt)>h(P{h)), k=l,2,...,m,
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Finally we say that x is a solution of (2.1) if it is both a lower and an upper solution.

REMARK. A function / : J x K - > R is said to be superpositionally measurable or
sup-measurable iff (•, *(•)) is measurable on J whenever x : J —> K is a measurable
function on J, see [1].

For instance, continuous, and even Caratheodory, functions are sup-measurable
functions, so in that case, the condition "/ (•,*(•)) is measurable" is unnecessary in
Definition 2.1.

However, if/ only verifies (F), the composition/ (•, x(-)) may not be a measurable
function, even for continuous x (see [8]).

REMARK. In [2] a particular case of the following problem is considered:

x'(t) = q(x(t))f(t,x(t)) fora.a. t € J = [0, 1],

*(/+) = /*(*(**)), * = l , 2 , . . . ,m , (2.2)

B(x(0),x) = 0,

where the function q: DS —> (0, oo) is such that q, \/q e L[£(R) and

± ds

/
Jo

= ±oo.

Note that, although / verifies condition (F), the product qf may not fulfil it.
However, this apparently more general situation can be studied as a particular case of
problem (2.1).

Indeed, following the ideas of [4,8], one can prove that x € ft is a solution of (2.2)
if and only if <j> o x is a solution of

y'U) = / (f, 4>~x (y(t))) for a.a. t € J = [0, 1],

( ' ) ) ) . * = 1, 2 , . . . , m,

where </>(*) = _£ ds/q(s) for all x 6 R.
Moreover, since 0 is an increasing homeomorphism from K onto R, it can be

proved that the function (t, y) e J x K >-*• f (t,<p~{(y)) verifies condition (F), the
impulse functions <j> o Ik o <p~l are nondecreasing for k = 1, 2 , . . . , m and £?(«, ̂ ) =
B(<f>-l(u), </>-' o ̂ ) for («, 5 ) 6 l x PC(7) verifies condition (B).

If a and fi are, respectively, a lower and an upper solution of problem (2.1) and
a < ft, we say that a solution x of (2.1) is maximal in [a, 0] if for every solution
y e [a, fi\ of (2.1) we have that x > y. We define the minimal solution in [a, ft] by
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reversing the inequalities. When both minimal and maximal solutions in [a, ft] exist,
we call them the extremal solutions in [a, /?].

Analogously, we say that x* and JC* are, respectively, the minimal and the maximal
solutions of (2.1), and we call them the extremal solutions, if they are solutions, and
x*U) <x(t) < x*(t) for all t € J, whenever x is a solution of (2.1).

The following result is [8, Theorem 3.1], and we include it here for the convenience
of the reader.

THEOREM 2.2. / / / : J x K ->• K verifies conditions (1) and (2) of (F) and,
moreover, there exists \j/ € Ll(J) such that \f (t,x)\ < \j/(t) for a.a. t e J = [0, 1]
and all x € K, then the initial value problem

x'(t)=f(t,x(t)) fora.a.teJ, x(0)=x0,

has extremal solutions for every x0 € K.

The following lemmas will be used in the proof of our main results.

LEMMA 2.3. Let a, b e 1, a < b and h: K -* U. be such that h(a) < 0 < h(b)
and lim infz_ x̂- h(z) > h(x) > limsupz_>_t+ h(z) for all x e [a, b\.

Then there exist C\, c2 € [a, b] such that h(c\) = 0 = h(c2) and if h(c) = 0 for
some c € [a, b] then C\ < c < c2, that is, C\ and c2 are, respectively, the smallest and
largest of the zeroes ofh in [a, b].

PROOF. We shall only prove the existence of ct since the existence of c2 may be
deduced using symmetric arguments.

If h(a) = 0 then c\ = a. Assume h(a) < 0. Since limsup,^,^ h(z) < h(a) < 0,
there exists e > 0 such that h(t) < 0 for all t € [a, a + s]. Set

r = s u p [t 6 (a, b] : h(s) < 0 f o r a l l s e [a, t]}

and let us prove that h(r) = 0.
If h(r) < 0 we deduce (just as we did for a in the last paragraph) that h(t) < 0

for all t e [r, r + et] for some e, > 0, which contradicts the definition of r. Hence it
must hold that h(r) > 0.

If h(r) > 0, since liminfz_,.r- h(z) > h(r) > 0, there exists e2 > 0 such that
h(t) > 0 for all t € [r - e2, r], which is impossible by the definition of r.

Finally, if h(c) = 0 for some c € [a, b], we have r < c by our choice of r. Thus
we have to define C| = r.

A set 5 C PC(J) is said to be quasi-equicontinuous if for all x e S and e > 0
there exists S > 0 such that s, t € Jk and \s — t\ < 8 implies \x(s) — x(t)\ < e.

The following result about the relatively compact sets in PC(J) is a consequence
of the Arzela-Ascoli theorem. The reader can find its proof in [ 13].
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LEMMA 2.4. A set S C PC(J) is relatively compact if and only if S is bounded
and quasi-equicontinuous.

The following result is an adaptation of [10, Theorem 1.4.7] for the spaces PC{J)

and Q.

LEMMA 2.5. Let a, @ e Q be such that a < /S and G: [a, ft] ->- [a, ft] is a
nondecreasing mapping. Moreover, suppose that there exists v G Q such that

\Gx(s)-Gx(t)\ <\v(s)-v(t)\, s, t e Jk, k = 0, \,...,m, (2.3)

for every x 6 [a, /?].
Then G has a least fixed point xt in [a, fi\ and a greatest one, x*. Furthermore, it

is satisfied that

JC» = min [x e [a, fi] : Gx < x\, x* = max {x e [a, /S] : Gx > x).

PROOF. Let {.*,,} be a monotone sequence in [a, fl]. Since the operator G is
nondecreasing, [Gxn(t)\ is for each t e J a monotone sequence in [a(t), /KOL Thus
we define x(t) = lim,,..^ Gxn{t) for each t e J.

From (2.3) it follows that for each n e N,

\ G x n ( s ) - G x n ( t ) \ < \ v ( s ) - v ( t ) \ , s , t e Jk, k = 1 , 2 , . . . , m . ( 2 . 4 )

Therefore the sequence {Gxn\ is quasi-equicontinuous and bounded and, by Lem-
ma 2.4, the sequence [Gxn] converges in PC(J) tox.

Now, (2.4) implies as n -*• oo that

\ x ( s ) - x ( t ) \ < \ v ( s ) - v ( t ) \ , s , t e J k , k = 0 , l , . . . , m . (2.5)

Since v e Q., it follows from (2.5) that x e Q.
In this situation, a straightforward application of [10, Theorem 1.2.2] yields the

result.

3. Linear problems: the resonance condition

In this section we shall study the linear problem

x'(t) = p(t)x(t) + q(t) fora.a. t € J, (3.1)

x{tk
+) = ckx(tk) +dk, A: = 1 , 2 in, (3.2)

x(0) = L(x) + X, (3.3)

https://doi.org/10.1017/S1446181100008105 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008105


[7] Extremal solutions for impulsive DEs 399

where p, q e Ll(J), X, ck and dk are given real numbers and L is a linear functional
defined on the vector space PC(J).

Note that for ck = 1 and dk — 0, k = 1,2 m, we have the corresponding
nonimpulsive case, and for L(u) = u(l) and X = 0 we have periodic boundary
conditions.

In the following proposition we discuss completely the solvability of (3.1)—(3.3),
obtaining a general characterisation of resonance. A first step in the study of the
resonance of the periodic case is given in [6,15,16].

In what follows, by J2s<i<i w e m e a n> a s usual, ^ | . J < K J | , and in the same way by

H<,,<, we mean Yl{i:i<ll<n.

PROPOSITION 3.1. Let p, q e L\J),X,ck,dk € K, k = 1, 2, . . . , m, and a linear
mapping L: PC(J) - • (R be fixed.

(a) (Resonance) If

then the linear problem (3.1)—(3.3) is solvable if and only if

-X = L [t i-)-
s<lk<t I \ 0<lt<l lt<li<l I

and, in such a case, the problem has infinitely many solutions, which are given by the
expression

f ] c-AptrUrdk, (3.5)

where : s l
(b) If condition (3.4) is violated, problem (3.1)—(3.3) has a unique solution given

by (3.5) and

r =

( 1 J , )
+ — 7 • N ' . (3.6)
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PROOF. It is known that a function that satisfies (3.1 M3.2) also satisfies the equality
([13, Theorem 1.4.1])

x(t) = x(0) 11 cke?*>wil + / I ! cke£p(r)drq(s)ds
Jo

+ E II c.et'"**, (3.7)
0 < tk < t ik<tj<t

for all t € 7.
Imposing the condition *(0) = L(x) + k and taking into account the linearity of L,

one can deduce (a) and (b) by direct computation.

REMARK. Note that when we consider periodic boundary conditions (defining
L(x) = *(1) for* e PC(J) and X = 0), relation (3.4) becomes f]Li cke^pls)ds = 1,
and if, moreover, we consider the nonimpulsive case, that is, ck = 1, dk = 0,
k — 1,2,... ,m, we obtain f0 p(s)ds = 0.

REMARK. For the nonimpulsive case, corresponding to Q = 1, dk = 0 ,
k — 1,2,... ,m, the linear mapping L is defined over the set of continuous func-
tions on the interval J.

Therefore, if L: ^(J) -*• IR is a continuous functional, there exists a function of
bounded variation rj: J —*• K such that L(v) = fQ v(t) drj(t) for all v e 'tf(J), where
the integral is understood in the Riemann-Stieltjes sense.

For instance, the periodic conditions correspond to the function r], defined by
= Ofor/ e [0, l )and??(l) = 1.

Using this fact, condition (3.4) can be expressed more succinctly as

J '
/o

For our purposes we will require the following generalised maximum principle.

LEMMA 3.2. Let p, q € L\J), q(t) > 0 for a.a. t € J, k, ck, dk e R \
k = 1,2 m, and a linear nondecreasing mapping L: PC(J) —* K be fixed.

Ifx € Q is a solution of (3.1 )-(3.3) and condition

?kehi>^«>\ < i (3.8)

is fulfilled, thenx(t) > 0 for each t € J.
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PROOF. Note that x is explicitly given by (3.5) and (3.6). Hence, since q and dk,
k = 1,2,... ,m, are nonnegative, it suffices to show that x(0) > 0 to conclude our
result.

Since L is nondecreasing and k > 0, by (3.3) we have that

x(0) = L(x) + A > i | l ^ x ( 0 ) [ ] cte
f°p(s)ds) ,

\ IK' I

and, since L is linear, we obtain

Therefore, in view of (3.8), we can conclude thatx(O) > 0.

4. Nonlinear problems (I): upper and lower solutions

This section is devoted to proving the following existence result. Its proof is based
on the generalised iterative technique described in [10]. However, unlike the usual
way in which this technique is used (where the right-hand side of the differential
equation is modified to construct the iterates), we modify the functional-boundary
condition and keep the same right-hand side.

THEOREM 4.1. Let a and ft be, respectively, a lower and an upper solution of (2.1).
Assume that a(t) < ft {t)for all t e J and that conditions (F), (I) and (B) are verified.

Then problem (2.1) has extremal solutions in [a, /}].

REMARK. Note that continuity is not required over any of the elements which define
problem (2.1). In particular, the impulse functions need not be continuous.

PROOF. Consider the mapping G: [a, 0] -*• [a, j8], defined as follows: for each
rj € [a, /3] define Gn as the minimal solution between a and p of the impulsive initial
value problem

x ' ( t ) = f ( t , x ( t ) ) , teJ,

x ( t £ ) ~ Ik(x(tk)), k = 1 , 2 , . . . , m ,

* (0 ) = T,,

where r,, is the minimal solution in [a(0), /J(0)] of the implicit equation

#(v?) = °- (41)
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Note that, since B(u, •) is nonincreasing for every u € R, we have

B 08(0). n) > B(fi{0), fi) > 0 > B(a(0), a) > B (a(0),r?),

and hence, by assumption (B) and Lemma 2.3, we conclude that zn is well-defined.
The existence of the minimal solution of (Pn) between a and fi can be proved by

using Theorem 2.2 together with standard arguments with upper and lower solutions.
It suffices to solve the problem "piecewise" over each interval Jk, k = 0, 1 , . . . , m,
taking into account the following fact: if x is the minimal minimal solution of (/>„)
between a and fi on the interval [0, tk], then a(tk) < x(tk) < fi(tk), and since Ik is
nondecreasing, we have that

«(**") < /*(«('*)) < /*(*('*)) < Wtk)) < PV+),

thus the solution x can be continued over the interval [tk, tk+l], between a and fi and
so on.

Note that if x e [a, fi] is a fixed point of G then x is a solution of (2.1) in [a, fi].
Let us prove that G is nondecreasing in [a, fi]. Let /?,, fj2 € [«. /*] be such that

»?i 5 >72- By definition, r,, is the minimal solution in [a(0), fi(0)] of (4.1), replacing rj
by r)i, i = 1,2. Hence it is obviously true that if r,, = a(0) then r,,, < rm.

On the other hand, if r,,, > or(O) then for every r € [a(0), rni) we have

0 > fl(T,»j,) > B(r,?j2),

and we obtain r,, < zm again.
Then we can say that Gr)2 is an upper solution of the initial value problem (Pni)

and Grji > a, so problem (Pni) has a minimal solution between a and Grj2- Since the
minimal solution of that problem between a and fi is Gr)u we have that Gr)\ < Gr?2-

By condition (3) in (F) there exists \j/ 6 Ll(J) such that

\(GtjYU)\ < ifr(t) fora.a. r e J and all rj e [a, fi].

Now we define for k = 0, 1 , . . . , m the function u(/) = ft \j/(s) ds with r € Jk. It
is easy to see that G satisfies (2.3) with this function v.

By Lemma 2.5, G has a minimal fixed point JC. € [a, fi] which, moreover, satisfies

x t = m \ n { x € [ a , f i ] : Gx < x } . (4.2)

Finally, if x is a solution of (2.1) in [a, fi] then #(*(()),x) = 0 and x(0) €
[a (0), /5(0)], which implies that x(0) > r ,̂ by the definition of rx, and hence Gx <x.
Thus, by (4.2), we conclude that JC. < x, that is, x, is the minimal solution of (2.1) in

[«. fl-
To deduce the existence of the maximal solution of (2.1) in fa, fi] it suffices to

redefine G in the obvious way.
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5. Nonlinear problems (II): global solvability

Finding an upper and a lower solution for a problem of type (2.1) is not a simple
matter in many practical situations. From this point of view it is useful to have
sufficient conditions for the existence of upper and lower solutions. Moreover, it
would be convenient to be able to be sure that one can find a lower solution, a, and an
upper solution p, such that a < P on J and that all the solutions belong to [a, p].

In this sense, and following the spirit of [9, Proposition 6.1] and [10, Proposi-
tion 2.3.1], we present the following result.

THEOREM 5.1. Suppose that conditions (F), (I) and (B) are satisfied. Assume also
that the following set of assumptions is fulfilled:

(a) There exist p,quq2 € L\J) such that p(t)x + qdt) <f(t,x) <p(t)x+q2(t)
fora.a. t € J and all x e K, and f {•, u()) is measurable whenever v e Q.
(b) There exist constants ck e (0, oo) and d\k, d2ik, £ K k = 1,2,... ,m, such that

ckx + dUk < Ik(x) < ckx + d2,kfor allx e l and allk— 1, 2 , . . . , m.
(c) There exists a nondecreasing linear mapping L: PC(J) —*• R and there exist

constants a € (0, oo) and Xlt k2 e R such that

au - L(£) + A.] > B(u, £) > au - L(£) + k2,

for all (u,^) e l x PC(J).

If

Lhv-+ Y\ckef°p(s)ds] <a (5.1)

then problem (2.1) has extremal solutions among all its solutions.

PROOF. The following impulsive problem

y'(O = p(t)y(t) + q2(t) fora.a. t e J,

y(O = cky(tk) + d2,k, k=l,2 in,

= (l/a)Uy)-X2/a,

has a unique solution, fi, by virtue of condition (5.1) and Proposition 3.1.
By assumption (a) we have that P'(t) = p(t)P(t) + q2(t) > f(t,P(t)) for a.a.

/ € J. By condition (b), P(tk
+) = ck0(tk) + d2ik > hiPih)) for k = 1, 2 , . . . , m, and,

finally, condition (c) implies that B(/3(0), P) > a /?(0) - L(P) + X2 = 0, and hence
p is an upper solution of (2.1).
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Similarly, if a denotes the unique solution of the problem

y'(t) = p(t)y(t) + qt(t) fora.a. t € J,

y(tk) = cky{h) + dlk, k = 1, 2 , . . . , m,

then a is a lower solution of (2.1).
If we denote v = p — a, we have that

v'(t) = p(t)v(t) + q20)-qi0)>p(t)v(t) fora.a. t e J,

v(t?) = ckv(tk) + d2,k - duk > ckv(tk),
1 Xt -k2 1

u(0) = -L(v) +
aa a a

so, by Lemma 3.2, we conclude that a < fi on J.
Now, by virtue of Theorem 4.1, we can affirm that problem (2.1) has the extremal

solutions in the interval [a, /?].
Finally, one can prove that any solution of (2.1) belongs to [a, f}]. Indeed, let x be

a solution of (2.1) and call w = x — a. Assumptions (a), (b) and (c) allow us to use
Lemma 3.2 to deduce that w > 0 in J, that is, x > a in J. Similar arguments show
that* < ft in J.

REMARK. Under the conditions of Theorem 5.1 we can construct a priori bounds
on the solutions: it suffices to consider the functions a and fi which are defined in the
proof.

Note that the explicit expression of a and ft is given by (3.5) and (3.6).

Theorem 5.1 is used to deduce the existence of global extremal solutions in the
next example.

Consider the problem

L teJ = [0,2], (5.2)?=L=
V I ' - 11

(5.3)

k[x(0)]-\fx(s)ds\-x(l) = 0, (5.4)

where k > 0 is a fixed number, [s] denotes the greatest integer less than or equal to
j g K and

\s/\s\, ifs^O,
sgn(s)= o, if, = o.
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The assumptions of Theorem 5.1 are fulfilled if we consider

=-2+

for a.a. t e J\ constants C\ = 1, du — —1, d2A = 0, a = k, A., = 1, A.2 = —k and the
linear nondecreasing mapping L(v) = f0 v(s) ds + v(l) for all v 6 £2.

Now, by Theorem 5.1, we can say that if condition (5.1) is satisfied, then problem
(5.2)-(5.4) has the extremal solution among all its solutions.

Note that in this case, condition (5.1) becomes

f

so problem (5.2)-(5.4) has global extremal solutions for sufficiently large values of
k > 0.

6. What if the impulse functions are not nondecreasing?

In [3] Cabada and Liz and in [7] Frigon and O'Regan show the existence of
solutions for the periodic and initial value problem with impulses without assuming
monotonicity conditions on functions Ik (the authors required these functions to be
continuous). In the following example we show that when some of the impulse
functions are not nondecreasing the conclusion of Theorem 4.1 may fail to be valid.

Consider the following periodic problem:

x'{t) = 3*2/3(r) fora.a. t e [-1,1], (6.1)

x(0+) = -x(0), (6.2)

J C ( - 1 ) = J C ( 1 ) . (6.3)

In this case the unique impulse effect is given by function I(x) = — x for all JC e K,
which is not a nondecreasing function.

A lower solution of (6.1)—(6.3) is given by

«(o = {
| ( r - l ) \ ifr e (0,1],

and an upper solution is
{ ( , + l)-\ if, € [-1.0],
[0, i f / 6 ( 0 , 1].

Note that a < ft, so every condition of Theorem 4.1 is verified except condition (I).
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Now we are going to prove that problem (6.1)-{6.3) has no minimal solution in
[or, ft], which will show that the conclusion of Theorem 4.1 is not valid in general for
this type of impulse function.

Note that x = 0 is a solution of (6.1)-(6.3) in [a, @] and if v e [a, y8] is another
solution we have two possibilities: there exists t0 € (—1,0) such that y(t0) > 0 or
t0 € (0, 1) such that ;y(r0) < 0.

Assume t0 6 (—1,0) such that y(t0) > 0. Since the problem

v'(t) = 3v2/3(t) for all t e [r0, 0], v(t0) = y(t0),

has a unique increasing solution, then y (0) > 0 which implies that y(0+)= — y(0) <0,
so there exists e > 0 such that y(t) < 0 for t e (0, e).

Reasoning in a symmetric way it can be proved that if there exists t0 € (0, 1) such
that y(t0) < 0 then there exists e > 0 such that y(t) > 0 for t G (-£, 0).

Hence we have proved that no nontrivial solution of (6.1)—(6.3) in [a, /$] can be
minimal, because it is not less than or equal to the trivial solution over the whole
interval [—1, 1]. On the other hand, we cannot say that x = 0 is the minimal solution
because there exist nontrivial solutions in [a, /?]: consider, for instance, the function v
defined by

f ( f+ l ) 3 , iff € [ - 1 , 0 ] ,
y t \{t- I)3, if r e (0,1].

On the other hand, when some of the functions Ik are discontinuous and not
nondecreasing, not even the existence of a solution can be assured, as the following
simple example shows:

u\t) = 0, r e [0, 2],

(6.4)

with I(x) = 1 if x G (oo, 0), and I (x) = — 1 if x € [0, oo). Functions a = — 2 and
P — 2 are respectively lower and upper solutions of problem (6.4) but this problem is
unsolvable.
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