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Abstract

There was a gap in the proof of Theorem 4-1 of [1]. In this corrigendum, we correct the
error.

1. Introduction

Set-up 1-1. Let Q be a Noetherian ring of finite Krull dimension. Letf = f;,..., f.be a
Q-regular sequence. Set A := Q/(f). Suppose M and N are finitely generated A-modules,
where projdim , (M) is finite. Let I be an ideal of A.

In [1, theorem 3-1], we proved that Un,i20 Ass 4 (Ext;(M, N/I”N)) is a finite set. Com-
plementing this finiteness result, in [1, theorem 4-1], we showed the following asymptotic
stability: There exist ng, iy > 0 such that for all n > ng and i > iy,

Ass 4 (Ext¥ (M, N/I"N)) = Ass 4 (Ext;"(M, N/I"™N)),
Ass 4 (ExtyT'(M, N/I"N)) = Ass 4 (Ext}*" (M, N/I"N)).

1-2. Our strategy to prove [1, theorem 4-1] is as follows:
(i) choose p € U, ;50 Assa (Exty, (M, N/I"N));
(1) for every fixed [ = 0, 1, show that there exist n;, i; 2 0 such that

either p € Assy (Extff”(M, N/I'N)) forall n>n;andi > iy
or  p¢Ass, (ExtiT(M,N/I"N)) forall n>n andi > i.

Localising at p, and replacing A, by A and pA, by m, we may assume that A is a
local ring with maximal ideal m and residue field k. In [1, lemma 4-2], we proved that
the lengths A (Hom 4 (k, Ext3 (M, N/I"N))) and A (Hom 4 (k, Ext3 ™' (M, N/I"N))) are
given by polynomials in n, i with rational coefficients for all sufficiently large n, i. Using
this, we erroneously concluded the fact 1-2(ii). Our assertion would have been correct if
®n,i>o Hom 4 (k, Ext’A(M ,N/I"N )) is a finitely generated module over some appropriate
Noetherian bigraded ring. However, we believe that this module is practically never finitely
generated over the ring . = Z()[t4, ..., t.] we worked with (see [1, section 2]). In this
corrigendum, we correct our oversight. We prove the following:
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LEMMA 1-3. Along with Set-up 1-1, further assume that Q is a local ring with the residue
field k. Then, for every fixed |l = 0, 1, we have that:
either  Hom 4 (k, Ext3™ (M, N/I"N)) 0 forall n,i > 0;
or Hom, (k, Ext3™(M,N/I"N)) =0 forall n,i > 0.

Using Lemma 1-3, one can easily prove the fact 1-2(ii), and hence [1, theorem 4-1].

2. Proof of Lemma 1-3

With Set-up 1-1, further assume that N' = @@0 N, is a graded module over the Rees ring
A1) = @50 1"X". Then EWN) := @, ;50 Ext) (M, N,) turns into a bigraded module
over & = Z(DIty, ..., 1], where t; : Ext’,(M, N,) — Ext\*(M,N,), i > 0, are the
Eisenbud operators, and we set deg(z;) = (0,2) forall 1 < j < c and deg(uX*) = (s, 0)
forallu € I, s > 0; see [1, section 2-3]. Since L := @ngo(I”N/I”“N) and £ =
D, >0 (N/I"N) are graded Z(I)-modules, we obtain that

U= EB Uiy = EL) = EB Ext’, (M, I"N/I""'N), (2-1a)
n,i=0 n,i=0
V=P Vi = EL) = @ Extly(M, N/I"N) (2-1b)
n,i =0 niz0
are bigraded modules over . = Z(I)[t1, ..., t.]. To prove Lemma 1-3, we use:

LEMMA 2-1. Let A be a Noetherian ring and I an ideal of A. Let #(I) be the Rees
ring of 1. Set ./ = Z(I)[ty, ..., t.], where deg(t;) = (0,2) forall 1 < j < c¢ and
deg(I*) = (s, 0) forall s > 0. Suppose L = @(u,i)eNz L. is a finitely generated bigraded
-module. Then, for every fixedl = 0, 1, we have that either L, ;1) = 0 for all n,i > 0;
or L piyn =0 foralln,i > 0.

Proof. By virtue of [3, proposition 5-1], there is (ng, i) € N? such that
ASSA (L(,,’zl‘)) = ASSA (L(n0,2i0)) for all (I’l, l) 2 (I’l(), io);
AsS 4 (Lnait1)) = Ass g (Lag2igrny) forall (n, i) > (n, io).

The result now follows from the well-known fact: for an A-module M, Ass 4(M) is non-
empty if and only if M = 0.

We now give:

Proof of Lemma 1-3. We prove the lemma for / = 0 only. For / = 1, the proof is sim-
ilar. Set f(n,i) := A (Hom, (k, Ext} (M, N/I"N))) for all n,i > 0. By virtue of [1,
lemma4-2], f(n, i) is given by a polynomial in n, i with rational coefficients foralln, i > 0.
If f(n,i) = 0forall n,i > 0, then there is nothing to prove. Suppose this is not the case.
Then we claim that Hom 4 (k, Extii(M, N/I"N)) F+ Oforalln,i > 0.

For every n > 0, the exact sequence 0 — I"N/I""'N — N/I"*''N — N/I"N — 0
yields an exact sequence of A-modules (for each i):

Ext)y (M, I"N/I""'N) — Ext), (M, N/I"*'N) — Ext), (M, N/I"N)
—> Ext"' (M, I"'N/I""'N).
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Taking direct sum over n, i, and using the naturality of the Eisenbud operators ¢;, we have

an exact sequence U 2, V(,o0) =V LN U(0, 1) of bigraded modules over . =
Z(Dlty, ..., t.], where U and V are as in (2-1a) and (2-1b) respectively. Hence, setting
X :=Image (P), Y := Image (E) and Z := Image (), we obtain the short exact sequences:
0-X—-V1d,00)>Y >0and0 - Y - V - Z — 0. Applying Hom 4(k, —) to
these short exact sequences, we get the following exact sequences:

0 — Hom 4(k, X) — Hom 4 (k, V(1,0)) — Hom4(k,Y) — C — 0, (2-2a)

0 —> Hom,(k,Y) — Hom,(k, V) — D — 0, 2-2b)

where C := Image (HomA(k, Y) > Exti‘(k, X)) and D := Image (HomA(k, V) —
Hom 4 (k, Z )). By virtue of [2, theorem 1-1], U is a finitely generated bigraded .¥’-module,
and hence X and Z are so. This implies that Hom 4 (k, X), Extk(k, X) and Hom 4 (k, Z) are
finitely generated bigraded .¥’-modules. Therefore C and D are finitely generated bigraded
S =RZ(DIn,...,1]-modules. Hence, by Lemma 2-1, we get:

either Hom 4 (k, X(,in)) + 0 forall n,i >0, 23)
or  Hom (k, X(21) =0 forall n,i > 0;

either C, 2y £ 0 forall n,i > 0, either D,y 0 forall n,i > 0,
or C(n~2i) =0 forall n,i > 0; or D(n,2i) =0 forall n,i > 0.

For n,i > 0, the (n, 2i)th components of (2-2a) and (2-2b) yield the exact sequences:

0—> Hom 4 (k, X(u2)) —> Hom 4 (k, Vius1.2y) —> Hom 4 (k, Y(u01)) —> Ciuiy —> 0,
2-4a)
0 — Hom 4 (k, Y(n,2i)) —> Hom 4 (k, V(n,2i)) —> Doy —> 0. (2:4b)

Now we are in a position to prove our claim that Hom 4 (k, Vi )) +O0foralln,i > 0. We
consider the following four cases:

Case 1. Assume that Hom , (k, X(,,,gi)) % 0 for all n,i > 0. Then, in view of (2-4a), we
get that Hom 4 (k, V<n,2,~)) # 0 forall n,i > 0. So, in this case, we are done.

Case 2. Assume that C(, »;) # 0 for all n,i > 0. So again, in view of (2-4a), we have that
Hom 4 (k, Y(n_yz,-)) =% O for all n,i > 0. Hence (2-4b) yields that Hom 4 (k, V(,,,Z,A)) %+ 0 for
all n,i > 0. Thus, in this case also, we are done.

Case 3. Assume that D,y #+ O for all n,i > 0. In this case, (2.-4b) gives that
Hom 4 (k, V(,,,gi)) + O forall n,i > 0, and hence we are done.

In view of (2-3), if none of the above three cases holds, then we have the following:

Case 4. Assume that Hom 4 (k, X(,,Yz,z)) =O0foralln,i » 0, C2y =0foralln,i > 0,
and D, ), = 0 for all n,i > 0. Hence the exact sequences (2-4a) and (2-4b) yield the
isomorphisms: Hom 4 (k, V(,,+1,2,~)) =~ Hom 4 (k, Y(mz,-)) ~ Hom 4 (k, V(,,Yz,v)) foralln,i > 0.
These isomorphisms provide the following equalities:

fn+1,i)= f(n,i) forall n,i > 0. (2-5)
We may write the polynomial expression of f(n, i) in the following way:
i) =ho(i)n" +hy(On"" + -+ + ho1(n + he(i) forall n,i >0, (2-6)

where 1;(i), 0 < j < a, are polynomials in i over Q. We may assume without loss of
generality that A is a non-zero polynomial. Therefore , may have only finitely many roots.
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Let i’ > 0 be such that hy(i) & O for all i > i’. In view of (2-5) and (2-6), there exist some
no (= 0) and iy (= i’, say) such that for all n > ng and i > iy, we have

f+1,0) = f(n,i) and f(n,i) =ho()n® + hi@)n“"" 4 -+ hay (D0 + ha(i).
These equalities imply that @ must be equal to 0, and hence f(n,i) = ho(i) for all n > ng

and i > iy. Thus f(n,i) + 0 forall n > nyand i > iy, and hence Hom 4 (k, V(n,z,-)) + 0 for
alln > ng and i > iy, which completes the proof of Lemma 1-3.
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paper.
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