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Low-profile tunable radiator for small
satellite application
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A tunable radiator for space application has been developed to meet stringent requirements in terms of electrical and envir-
onmental specifications but also low mass, simple manufacturing and low cost. The element is based on the folded planar
inverted F-antenna, with size of one quarter of wavelength. It is mechanically tunable to adjust input impedance for any
various positions on the satellite body and possible obstacles and protrusions. Results in terms of radiation pattern, S para-
meters, shock and vibration tests are presented. The antenna operates in ultra-high frequency band (400 MHz) in linear
polarization. It has been designed to act as the basic element for miniaturized multi-function antenna systems on board
of small satellites that can operate in three different radiating modes and in both left and right hand circular polarizations.
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I . I N T R O D U C T I O N

Several future missions foresee the use of small satellites or
small descending units, landers, and rovers, in particular for
Mars exploration. These kinds of systems have the advantage
of a low weight and a reduced launching cost and are for these
reasons an attractive alternative to larger options.

The natural trend toward miniaturization in both mechan-
ical and electronic fields is a key enabling factor for the small
satellite market: the use of a distributed antenna system with
minimal spacecraft surface requirement offers the potential
to reduce mass and mitigates accommodation constraints.
This requires miniaturized and easily tunable radiating ele-
ments (REs), characterized by low mass, simple manufactur-
ing, and low recurring cost. The concept presented here is
intended to enable the reduction of satellite mass and size
for Space Science and Exploration missions.

To achieve this goal a miniaturization technique will have
to be applied to develop a RE in the targeted ultra-high fre-
quency (UHF) band. Theoretical studies of small antennas
are very well documented in the literature [1–4] concluding
that size reduction of an antenna will result in reduction of
bandwidth and/or radiation efficiency. The miniaturization
techniques mainly used consist of loading the antenna with
lumped elements, high-permittivity dielectric materials, or
with conductors, also, using ground planes and short circuits

[5]. Other methods include optimizing the antenna geometry
or using the antenna environment to participate to the radi-
ation. Several possible candidates for RE have been consid-
ered. Helical antennas, although benefiting from high gain,
all-metal design, and wide bandwidth, have the size essentially
comparable to the wavelength [6]. SAP (shorted annular
patch) and PEC (patch-excited cup) antennas are already
proven to be a good solution for satellite applications due to
the high directivity, wide bandwidth and all-metal design [7]
(http://www.ruag.com/en/Space/Space_Home) but, also in
this case the size prevents their usage in the UHF band.

The folded planar inverted F-antenna (PIFA) is a moder-
ately miniaturized antenna whose bandwidth of about 2%
can fit the UHF band application [8]. A design without any
dielectric can be envisaged, resulting in an all-metal antenna
design, except for the dielectric in the SubMiniature version A
(SMA) feed. Additionally, the structure is completely Direct
Current-grounded. For these reasons, the PIFA turns out to be
the proper choice for this application.

I I . R E Q U I R E M E N T S

The RE has been designed in the scope of the ESA (European
Space Agency) funded project Miniaturized Multi-function
Antenna System (MMAS) that is aimed at having three differ-
ent operational modes at UHF band, precisely at 400 MHz.
The return loss of the whole system is to be larger than
20 dB in all these operational modes, while the REs need to
be perfectly tuned to the desired frequency. The axial ratio
of all three modes is aimed to be ,3 dB. Depending on the
mode the antenna system is working in, the gain of the
whole system is aimed to go up to 5 dB. The RE is linearly
polarized, while the antenna system is circularly polarized in
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all three modes of operation. Therefore, the Radio Frequency
(RF) response and radiation pattern of the element are
designed to support these requirements.

For the environmental tests, the RE must withstand space
requirements regarding vibration and shock exposure.
Variation of 5% maximum of the resonance frequencies due
to vibration test can be allowed between two successive tests.

The shock test is intended to demonstrate operational cap-
ability before and after exposure to shock environments. The
shock requirements are specified in Table 1.

I I I . R E D E S I G N

A PIFA design has been developed to minimize the size and
the cost of the RE, and also to introduce the possibility for
tuning. It is a completely metallic design made of aluminum
alloy treated with Alodine 1200S. The only non-metallic
part is the Teflon dielectric of the SMA connector. In order
to avoid welding the SMA connector pin to the lower plate
of the RE, capacitive feeding is employed. The RE geometry
is shown in Fig. 1.

A) Electrical design
The PIFA structure is folded once more regarding the classical
design, which theoretically further reduces its size from l/4 to
l/8. The total length of the RE including mechanical support
is, however, still comparable with l/4 at 400 MHz. Mechanical
tuning by changing the length of the upper plate has addition-
ally extended the total antenna size regarding the theoretical
minimum. The width and height of the developed RE are
approximately l/6 and l/20, respectively, therefore, the
antenna can be considered as low profile.

The current excited on the RE is concentrated in its vicinity
as shown in Fig. 2. Therefore, the RE can be regarded as a
“standalone” design whose operation is relatively undisturbed

by its position on the satellite body, protruding objects in the
vicinity, or by the satellite shape. However, some influences to
antenna input impedance can occur and the tuning mechan-
ism has been implemented in order to additionally adjust the
antenna for any satellite configuration. The RE has two
degrees of freedom that allow mechanical tuning: the lower
shorting wall and the upper plate. By sliding these parts, the
resonance length of the PIFA is changing, and therefore its
resonant frequency as well. Additionally, when moving the
lower wall (short) closer or further from the feeding point,
the real part of the antenna impedance is directly affected
leading to adjustment of the antenna’s matching level.

On top of this, the tuning optimization algorithm has been
developed that allows finding appropriate tuning parameters
using EM results from ANSYS HFSS simulations.

Return losses of the RE, simulated for different tuning para-
meters are presented in Fig. 3. Each curve presents return loss of
the RE matched at different frequency for corresponding
tuning parameters. The element can be easily tuned around
the central frequency of 400 MHz. Total tunable range of the
antenna is 60 MHz and is proportional to the length of
shift_up and shift_down tuning slots. The design is scalable
up to L band for other frequencies of interest. Required data-
rates for applications in UHF band are typically in the order
of a few kbit/s, therefore the operational bandwidth require-
ment is not stringent. The antenna element has a narrow
210 dB bandwidth of 10 MHz that fulfills the requirements
of the system. RE operates in linear polarization.

B) Mechanical design
The RE presents a lightweight and reliable construction. The
parts withstand all the requirements, including quasi-static
loads as well as random and sine vibration sweeps, shock
and thermo-elastic stresses. Alodine 1200S is applied to all
aluminum parts to ensure good electrical conductivity at the
interfaces to guarantee bonding and grounding. The PIFA
mechanical design is presented in Fig. 4.

The upper mobile patch is an L-shaped structure fixed to
the support structure. The position of this part is adjustable
in longitude direction for tunability. The total movement

Table 1. Shock environmental requirements for antenna element.

Shock environmental requirement

Frequency (Hz) Shock level (g)

100 100
700 500
1600 850
10 000 850∗

∗Flat spectrum from 1600 Hz to 10 KHz.

Fig. 1. Radiating element geometry.

Fig. 2. Current distribution on the radiating element isolated (up) and
fastened to the satellite body (down).
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range is provided by a slit in the fixation feet. The lower fixed
patch is an L shape and is fixed with respect to the support
structure. The mobile wall is interfacing the lower mobile
patch that provides electrical contact between these two ele-
ments. The position of the mobile wall is adjustable on a
same range as for the upper patch. The antenna system is tar-
geted for space applications, therefore the capacitive feed is

chosen for feeding the antenna in order to avoid any solder-
ing. The capacitive feed is constituted by a flat surface, stif-
fened by ribs on the connector side. A drilling placed in the
center allows the attachment to a connector for RF transmis-
sion. The connector body is attached to the support structure.
On the other end, the connector pin is welded onto the capaci-
tive cap.

Fig. 3. Simulation results for radiating element return loss for different values of tuning parameters. The antenna can be mechanically tuned for any frequency in
the designed range.

Fig. 4. Mechanical design of the radiating element.

Fig. 5. The quasi-static stress verification analysis for the radiating element.
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A thermal study has been performed in order to determine
the possible deformation of the structure impacts on the RF
performances of the RE. The study has been done for +130
and for 21508C. The frequency shift generated by highest
and lowest temperatures deformations is lower than the fre-
quency bandwidth at 220 dB of the RE, meaning not big
enough to move the resonance out of 220 dB frequency
bandwidth.

The quasi-static stress verification analysis was done with
120 g acceleration applied in all directions. The compliant
results are shown in Fig 5 and summarized in Table 2.

C) Optimization software
To make the design easier and versatile, some electrical tasks
have been automated. In this sense, the matching of every RE
placed on the cube was automatically done by an internally
developed software tool called Tuning Optimizer. Essentially,
this software finds the tuning settings for each RE so that its
return loss at the operating frequency of 400 MHz is better
than 20 dB. In addition, the radiation pattern can also be
improved by adjusting the excitation values at the RE ports.

This task is carried out by the Radiation Optimizer. In Fig 6
the complete design cycle to obtain the antenna system is pre-
sented. To make it fast and feasible, the complete design cycle
has been implemented in MATLAB, yielding a powerful
routine that accounts not only for the present situation but
also for any situation regarding the placement of REs on a
certain surface under some radiation prescriptions.

The Tuning Optimizer is first used to match every RE. For
that purpose, every RE must have some degrees of freedom,
but the positions of the REs must be the final ones. Once the
REs are tuned, the excitation of every RE is optimized in
terms of amplitude and phase to obtain the prescribed radiation
diagram. In this step, cost functions depending on the radiation
prescription are needed. To build up these cost functions, the
following parameters can be considered: coverage mask, gain,
gain ripple, axial ratio, and cross-polar discrimination.

I V . A N T E N N A S Y S T E M

The RE described here was used in MMAS, shown in Fig. 7.
The system requires eight REs distributed on two opposite
faces of the satellite body and fed by appropriate beam-
forming networks (BFNs). Depending on the utilized BFN,
the antenna system operates in one of the three modes of
operation:

† Mode A: Omnidirectional mode with high coverage; using
eight REs with equal amplitudes and specific phases.

† Mode B: Directive mode for data transmission; using four
REs on one face with equal amplitudes and specific phases.

† Mode D: Mode for RF tracking; using four REs on one face
with equal amplitudes and specific phases for generating
four slanted beams.

Table 2. The quasi-static stress verification analysis summary of the
radiating element.

Part name QSmax (Mpa)

01-upper mobile 60.1
02-upper fix 46
03-lower fix 64.7
04-lower mobile 27
05-base 2
06-feed plate 9
08-connector 75

Fig. 6. Flux diagram of the complete optimization software for tuning (left) and radiation (right).
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All modes operate at UHF and in circular polarization. The
satellite size is 0.5 × 0.5 × 0.5 m3; therefore the length of
the cube side is equal to just two-thirds of wavelength at the
operating frequency.

Additionally, the possibility to have the system radiating in
there different modes with fixed position of all the elements
required precise calculation of excitations amplitudes and
phases. More details on the antenna system and the results
obtained are given in [9].

A) Omnidirectional mode A
In Mode A, all REs are excited such that the energy is radiated
into both hemispheres (around +z-directions), resulting in a
good coverage in circular polarization (theoretically higher
than 80%). When the first BFN port is excited, the phase dis-
tribution at the elements 1–8, respectively, is (0, 290, 180,
+90, 0, 290, 180, and +908), and the excitation magnitudes
are equal. The nearly full-sphere coverage can be realised by
combining the signals from both ports of the BFN.

B) Directive Mode B
In Mode B, only REs 1–4 are excited, resulting in a relatively
directive beam in the +z-direction. Depending on the excited

port of the BFN, the dominant polarization can be right hand
circular polarization (RHCP) or left hand circular polarization
(LHCP). The excitation phases at the elements El1–El4,
respectively, when Port1 is excited are: (0, 290, 180, and
+908), while the excitation magnitudes are equal.

C) Tracking Mode D
In Mode D again only REs 1–4 are excited, but this time four
slanted beams are obtained. The beams are theoretically
slanted 308 off the +z-direction and their projections to the
xy-plane are approximately aligned with +x- and +y-axes.
In this mode the dominant polarization is RHCP. Figure 8
shows the phase distributions required to obtain the four
orthogonal tracking beams D1–D4. The excitation magni-
tudes are equal.

V . V A L I D A T I O N

The manufactured element weights 0.23 kg. It presents a light-
weight, easily manufactured and tunable structure. The
manufactured RE, fastened to the vibration test support is
shown in Fig. 9. In order to validate design and compare the
performances with HFSS simulations, radiation pattern, and
S parameter measurements were performed.

For the eight elements manufactured for testing the
antenna system, design simplifications were applied in order
to reduce the price and weight of the elements, which have

Fig. 7. Minaturized Multi-function Antenna System consisting of eight
radiating elements distributed on two opposite faces of the satellite body.

Fig. 8. Excitation distribution and illustration of the tracking beam directions in Mode D.

Fig. 9. Radiating element manufactured and fastened to vibration test support.
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Fig. 10. Simplified radiating elements manufactured and fastened to the cube representing the satellite body.

Fig. 11. Radiation patterns measurement of radiating element mounted on the mechanical test fixture and the coordinate system: (a) E-plane; (b) H-plane.

Fig. 12. Radiation patterns of radiating element: E-plane (up); H-plane (down). Legend: ../—/-- 395/400/405 MHz; Co-pol measurement; Co-pol simulation;
Cross-pol measurement; Cross-pol simulation.
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limited impact on the RF performances. The so-called “simpli-
fied elements” attached to the metallic cube representing the
satellite body are shown in Fig. 10.

A) Radiation pattern measurements
Radiation patterns in the E- and the H-plane were measured
in linear polarization at three frequencies: 395, 400, and
405 MHz. Co- and cross-polarization components were

examined. With the reference to the coordinate system
shown in Fig. 11, the E-plane is the yz-plane, and the
H-plane is the xz-plane. A typical radiation pattern for a
PIFA on small ground plane has been obtained and results
are presented in Fig. 12. Good agreement between measure-
ment and simulation results can be observed in both principal
planes. In addition, radiation patterns are consistent within
the measured frequency band. The gain in the direction of
maximum radiation was measured as well and the value

Fig. 13. Total gain of radiating element. Legend: V Measurement; Simulation.

Fig. 14. Simulated (up) and (measured) return loss of radiating element tuned to the central frequency of 400 MHz.
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obtained at the central frequency is 3.4 dB. The result of this
measurement is compared with expectations obtained from
simulation and is presented in Fig. 13. The measured and
simulated values at the central frequency of 400 MHz are
practically the same and only a small variation with frequency
can be observed.

B) Return loss measurements
The RE has been tuned to the central frequency of 400 MHz
using predicted values from HFSS simulations. The simula-
tions and measurements of S11 parameter are presented in
Fig. 14. As predicted, the element is well matched and tuned
to the central frequency having the return loss value larger
than 25 dB what is enough for having 20 dB return loss
requirement for the whole antenna system fulfilled.
Although the bandwidth is relatively narrow, this is not con-
sidered critical here since the data-rates in UHF band are in
the order of a few kbit/s.

C) Vibration test and shock test
Both shock and vibration tests were performed with the RE
fully extended to provide the worst case mechanical condi-
tions. Therefore, for the maximum values of tuning para-
meters, the element was not matched any more at 400 MHz.

The vibration tests were done at the EPFL (École
Polytechnique Fédérale de Lausanne) facilities. Two acceler-
ometers were mounted on the antenna, one on the extremity
of the upper mobile patch, and the other one on the lower
fixed patch. The resonance search is performed according to
the levels shown in Table 3 in a sweep up with sweep rate of
2 oct/min. In the same table, sine and random vibration
levels are given for out-of-plane and in-plane axis.

The antenna has been successfully tested. The variation of
the resonant frequencies between two successive tests was
going from 0 to 3.6%. The acceptance criterion of up to 5%

variation between two successive tests is, therefore, reached.
Furthermore, the maximal change between the last and the
initial test is only about 5%.

For the shock test, the two worst cases directions were
tested: the x-direction that is the worst case for screws and
z-direction that presents the worst case for mechanical parts.

Shock tests were successfully performed and, although the
SRS (shock-response spectrum) were well above the target as
shown in Fig. 15, there were no noticeable deformation or
damages detected on the part. All screws remained in place.

D) RF influence of mechanical tests
Return loss measurements of mechanical RE were performed
in the worst mechanical position for the vibration and shock
tests, when the element was not matched any more at
400 MHz. Three different measurements to test vibration and
shock influence on RF performance of RE were performed.
The comparative result is shown in Fig. 16. When looking at
the return loss results, it can be observed that the vibration
has negligible influence on the RF response. However, after
the shock test, the resonant frequency is shifted down of
10 MHz and, since the element has a very narrow band, the
level of matching went down for almost 10 dB.

The most significant parameter that may be affected by the
shock testing is the position of the capacitive feed, most prob-
ably due to the extremely high shock levels that were not
adjusted according to the requirements. A way to improve
the shock resistance, if necessary, is by changing the feeding
mechanism from capacitive fed to direct feeding.

Table 3. Random and sine vibration levels.

Sine vibration levels Random vibration levels

Frequency
(Hz)

Mars lander
mission level (g)

Frequency
(Hz)

Mars lander mission
level (g2/Hz)

20 10 20 0.04
100 10 40–200 0.22†

200–2000 0.22–0c

∗Flat spectrum from 40 to 200 Hz.
†Decaying from 0.22 at 200 Hz to 0 at 2000 Hz.

Fig. 15. Shock Response Spectrum for x and z axes. The shock levels were far above the target.

Fig. 16. Comparison of return loss measurements for radiating element before
and after mechanical tests.
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V I . V I A B I L I T Y O F T R A N S L A T I O N O F
T H E C O N C E P T T O T H E O T H E R
F R E Q U E N C Y B A N D S

The developed RE is capable of operation at UHF (400 MHz),
and has dimensions small enough to fit four of these REs on a
0.5 × 0.5 m cube face. In addition, the realised RE is essentially
a “standalone” solution so translating its operation to other fre-
quency bands would in principle only require a proportional
scaling of its geometry. However, the viability of the frequency
translation of the whole concept (antenna system) depends on
the satellite platform size. In a scenario where the platform size
has to be reduced as well (e.g. proportionally to the wavelength
at higher frequencies), the choice of the RE realized in this
project still seems sound up to S-band. However, some critical
points should be considered. First, the coupling gap in capacitive
feed is already small at 400 MHz. Hence, going up in frequency
should reconsider the feeding technique. Second, the current
tuning system relies on the 0.75 mm mechanical tuning reso-
lution. Higher frequency would require a finer resolution and
probably involve developing a new mechanical tuning approach.

From a manufacturing standpoint, Fig. 17 shows the effect
of the frequency scaling. The current design diagonal size is
252 mm for a 400 MHz working frequency. Scaling up in fre-
quencies implies scaling down in dimension with the same
ratio. Therefore, with the current design and manufacturing
technology a solution could reasonably be found for frequen-
cies up to 2 GHz (diagonal of 50 mm).

At the beginning of S-band (2 GHz), dimensions start to
become critical for the current technology. Above this fre-
quency, parts will become very small and tolerances will
prevent using the same manufacturing technology.
Additionally, adjustment of the element will also become
more and more critical for higher frequencies.

V I I . C O N C L U S I O N

The miniaturized RE based on folded PIFA design has been
developed and its size (including the supporting platform) is
comparable to one-quarter wavelength. The element is
proven to be a good choice for MMAS.

Geometry of the REs is relatively simple and easily scalable
up to L-band. Excited currents are concentrated mostly in the
vicinity of the REs. Therefore, the RF characteristics of RE are
rather independent on the satellite size, shape, and position of
the RE on the satellite. Furthermore, REs are independently
mechanically tunable, which makes them even more suitable
for usage independently on various positions on the satellite
and additional obstacles. The RE has been successfully vali-
dated for electrical and environmental requirements.
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