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We propose a self-supervised cluster-based hierarchical reduced-order modelling
methodology to model and analyse the complex dynamics arising from a sequence
of bifurcations for a two-dimensional incompressible flow of the fluidic pinball. The
hierarchy is guided by a triple decomposition separating a slowly varying base flow,
dominant shedding and secondary flow structures. All these flow components are
kinematically resolved by a hierarchy of clusters. The transition dynamics between these
clusters is described by a directed network, called the cluster-based hierarchical network
model (HiCNM). Three consecutive Reynolds number regimes for different dynamics are
considered: (i) periodic shedding at Re = 80, (ii) quasi-periodic shedding at Re = 105 and
(iii) chaotic shedding at Re = 130, involving three unstable fixed points, three limit cycles,
two quasi-periodic attractors and a chaotic attractor. The HiCNM enables identification
of the dynamics between multiple invariant sets in a self-supervised manner. Both the
global trends and the local structures during the transition are well resolved by a moderate
number of hierarchical clusters. The proposed HiCNM provides a visual representation of
transient and post-transient, multi-frequency, multi-attractor behaviour and may automate
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the identification and analysis of complex dynamics with multiple scales and multiple
invariant sets.

Key words: low-dimensional models, wakes

1. Introduction

Fluid flows generally involve complex, high-dimensional and nonlinear dynamics, which
makes them hard to understand. However, even at high Reynolds numbers, the flow
dynamics keeps trace of the instabilities undergone at increasing Reynolds number
(Huerre & Monkewitz 1990). Stationary laminar flows are generally stable with respect to
infinitesimal perturbations at sufficiently low Reynolds number. This steady state becomes
unstable when the Reynolds number increases beyond a critical value Rec, where a
bifurcation occurs. On the way towards a fully turbulent regime, the flow may undergo
a succession of bifurcations with increasing Reynolds number. Ruelle & Takens (1971)
shows that the flow can reach a chaotic regime after a small number of bifurcations.
The complex flow dynamics can be seen as the result of the interactions between the
fundamental structures of different instabilities (Chomaz 2005; Bagheri et al. 2009b). A
reduced-order model incorporating the underlying mechanisms is always the promising
solution for flow analysis (LeGresley & Alonso 2000; Amsallem & Farhat 2008) and
control (Choi, Jeon & Kim 2008; Bagheri et al. 2009a; Barbagallo, Sipp & Schmid 2009).
Numerous reduced-order models (ROMs) have been developed and applied (Taira et al.
2017). The classical method starts with projecting the full system into a low-dimensional
subspace, where the high-dimensional dynamics can be approximated with the optimal
basis. This process is so-called Galerkin projection, which leads to a Galerkin system
describing the dynamics in reduced-order ordinary differential equations. According to the
dimensionality reduction techniques and the model selection strategies, there exist many
different projection-based ROMs. Proper orthogonal decomposition (POD) (Berkooz,
Holmes & Lumley 1993; Holmes et al. 2012) is the most popular one, which has many
empirical variations, for example, balanced POD (Rowley 2005) with balanced truncation.
The POD–Galerkin method can be optimized and extended to incorporate the pressure
term (Bergmann, Bruneau & Iollo 2009), with numerical stabilization (Iollo, Lanteri &
Désidéri 2000), with variational multiscale methods (Iliescu & Wang 2014) and with
closure modelling strategies (Wang et al. 2012). Based on first principles, the mean-field
theory of Landau (1944) and Stuart (1958) is the lowest dimensional mean-field model to
account for a supercritical Hopf bifurcation. Weakly nonlinear mean-field analysis has also
been applied to more complex situations in which the flow has undergone two successive
bifurcations, such as in the wake of axisymmetric bodies (Fabre, Auguste & Magnaudet
2008), the wake of a disk (Meliga, Chomaz & Sipp 2009) or the wake of the fluidic pinball
(Deng et al. 2020). Gomez et al. (2016) and Rigas et al. (2017b) included mean-field
considerations in their resolvent analysis, decomposing the flow in time-resolved linear
dynamics and a feedback term with the quadratic nonlinearity.

Alternatively, data-driven strategies show their advantage in pattern and system
recognition without prior knowledge about the flow dynamics (Brunton, Noack &
Koumoutsakos 2020), like Koopman analysis (Schmid 2010; Mezić 2013) using
dynamic mode decomposition (DMD) (Tu et al. 2014; Kutz et al. 2016), data-driven
Galerkin modelling (Noack et al. 2016) using recursive DMD, and multiscale POD
(Mendez, Balabane & Buchlin 2019) using a matrix factorization framework to enhance
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feature detection capabilities. The above mentioned methods still start with a modal
decomposition of the original flow fields. The advances in machine-learning algorithms
provide huge potential for data-driven ROMs, for example, using artificial neural network
(ANN) to stabilize projection-based ROMs (San & Maulik 2018) or to build the ANN
ROMs (San, Maulik & Ahmed 2019), turbulence modelling with deep neural networks
(Kutz 2017), feature-based manifold modelling (Loiseau, Noack & Brunton 2018) with
sparse identification (Brunton, Proctor & Kutz 2016).

Inspired by centroidal Voronoi tessellation ROMs in Burkardt, Gunzburger & Lee
(2006), Kaiser et al. (2014) proposed the cluster-based reduced-order modelling (CROM)
method to partition the flow data into clusters and analyse the flow dynamics with a
cluster-based Markov model (CMM). CROM provides us with a novel modelling strategy,
liberating us from the issue of choosing a low-dimensional space of the traditional
projection method. Nair et al. (2019) applied CROM to the nonlinear feedback flow control
and introduced the directed network (Newman 2018) for the dynamical modelling. With
the clusters being the nodes and the transitions between clusters being the edges, an
extended Markov model with a directed network was built, emphasizing the non-trivial
transitions between clusters. Fernex, Noack & Semaan (2021) and Li et al. (2021)
further proposed the cluster-based network model (CNM) for time-resolved data by
introducing local interpolations between clusters with the pre-specified transition times.
The CNM can be seen as an extension of the traditional CMM, using the network model
instead of the standard Markov model to describe the transient dynamics. Networks of
complex dynamical systems have attracted a great deal of interest, forming an increasingly
important interdisciplinary field known as network science (Watts & Strogatz 1998; Albert
& Barabási 2002; Barabási 2013). The network-based approaches have been used in fluid
mechanics to describe the interactions among vortical elements (Nair & Taira 2015), detect
the Lagrangian vortex motion (Hadjighasem et al. 2016) and model and analyse turbulent
flows (Taira, Nair & Brunton 2016; Yeh, Gopalakrishnan Meena & Taira 2021). Together
with the clustering approaches, networks have been also used to extract key features of
complex flows (Bollt 2001; Schlueter-Kuck & Dabiri 2017; Murayama et al. 2018; Krueger
et al. 2019). The critical structures modifying the flow can be identified by the intra-
and inter-cluster interactions using community detection (Gopalakrishnan Meena, Nair
& Taira 2018; Gopalakrishnan Meena & Taira 2021). Theories and techniques in the field
of network science may play a crucial role in the modelling, analysis and control of fluid
systems.

The accuracy of the cluster-based model depends on the number of clusters. However,
too many clusters will increase the complexity of the Markov/network model. A high level
of human experience is required to achieve a good compromise between resolution and
a simple model. The focus of this paper is to optimize the data-driven cluster analysis
by introducing a hierarchical structure and a systematic self-supervised way to model the
transient and post-transient flows in the case of multiple unstable solutions and multiple
attractors. The hierarchical modelling strategy shows good consistency with the Reynolds
decomposition from the mathematical foundation. The systematic data treatment process
shows its great potential for multiscale and multi-frequency modelling.

Inspired by the hierarchical Markov model (Fine, Singer & Tishby 1998), we apply a
scale-dependent hierarchical clustering to the classic network model under the mean-field
consideration. The time scales of the different flow components provide a good indicator
for figuring out the typical structures in multiscale flows, and enable the hierarchical model
to address the complex dynamics of multiscale problems. The resulting cluster-based
hierarchical network model (HiCNM) can systematically identify complex dynamics
involved in the case of multiple attractors. Both the global trends and the local structure
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during the transition can be well preserved by a smaller number of clusters in the
hierarchical structure, which leads to a better understanding of the physical mechanisms
involved in the flow dynamics.

We consider the two-dimensional incompressible flow configuration of Bansal &
Yarusevych (2017), defined as the unforced ‘fluidic pinball’ in Deng et al. (2020). With
increasing Reynolds number, the wake undergoes a first instability leading to a periodic
vortex shedding, then a static symmetry breaking and finally a transition to a quasi-periodic
regime before transiting to a chaotic regime. HiCNMs are built for these flow regimes,
which have multiple invariant sets and exhibit different transient dynamics. We provide a
principle sketch of our HiCNM framework in figure 1.

The manuscript is organized as follows: § 2 describes the numerical plant of the
fluidic pinball and the flow features at different Reynolds number. Section 3 discusses
the different perspectives on the cluster-based hierarchical network modelling strategy.
In § 4, we discuss the HiCNMs applied to the transient and post-transient dynamics of
a flow configuration involving six invariant sets, for three different Reynolds numbers,
respectively associated with a periodic, a quasi-periodic and a chaotic dynamics. Section
5 summarizes the main findings and gives some suggestions for improvement and future
directions.

2. Flow configuration and flow features

We consider two-dimensional incompressible flows in the fluidic pinball (Noack &
Morzyński 2017) as the benchmark configuration for our hierarchical modelling strategy.
The flow configuration and the direct Navier–Stokes solver are described in § 2.1. The
transient and post-transient dynamics at different Reynolds numbers are illustrated in § 2.2.

2.1. Flow configuration and direct Navier–Stokes solver
Figure 2 shows the geometric configuration of the fluidic pinball, consisting of three fixed
cylinders of unit diameter D. Their axes are placed on the vertices of an equilateral triangle
of side 3D/2 in the (x, y) plane. The upstream flow is in the x-axis direction with a uniform
velocity U∞ at the inlet of the domain. The computational domain Ω is bounded by
a rectangular box of size [−6D,+20D]× [−6D,+6D]. A Cartesian coordinate system
is used for description, and its origin is placed in the middle of the back two cylinders
considering the symmetry of this configuration. Since no external force is applied to these
three cylinders, a no-slip condition is applied on the cylinders, and the velocity in the far
wake is assumed to be U∞. The Reynolds number is defined as Re = U∞D/ν, where ν

is the kinematic viscosity of the fluid. A no-stress condition is applied at the outlet of the
domain.

The fluid flow is governed by the non-dimensionalized incompressible Navier–Stokes
equations in scales with the cylinder diameter D and the velocity U∞, which read

∂tu+∇ · u⊗ u = ν�u−∇p, ∇ · u = 0, (2.1a,b)

where p and u are respectively the pressure and velocity flow fields and ν = 1/Re. The
advection time scale is D/U∞ and the pressure scale is ρU2∞, where ρ is the unit fluid
density for the incompressible flow. It is assumed that there exists a solution (us, ps)
satisfying the steady Navier–Stokes equations

∇ · us ⊗ us = ν�us −∇ps, ∇ · us = 0. (2.2a,b)
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Figure 1. Overview of the cluster-based hierarchical network modelling framework exemplified at Re =
80. (a) The flow dynamics involves six invariant sets associated with three unstable fixed points, three
limit cycles, as shown in the three-dimensional phase portrait of the drag and lift forces. (b) Under the
mean-field consideration, the flow can be decomposed into a slowly varying mean flow, the coherent and
incoherent components, separated by the dominant frequency of the coherent part. The non-coherent fluctuating
component is weak in this case, and the third term of the triple decomposition can be ignored. (c) Therefore, a
HiCNM with two layers is enough to extract the global trend and the local dynamics of the varying mean-flow
field. The transient and post-transient dynamics, characterized by multiple frequencies and multiple invariant
sets, are introduced in § 2.2. The hierarchical network modelling strategy is discussed in § 3.2.2 under the
mean-filed consideration in § 3.1.1. The dynamics reconstruction of the resulting hierarchical network model is
given in § 3.2.3.
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y

x

6

3

0

–3

–6
–5

U∞

0 5 10 15 20

Figure 2. Configuration of the fluidic pinball and computational grid for the simulated domain. The upstream
velocity is denoted U∞. An example vorticity field at Re = 130 is colour coded in the range [−1.5, 1.5] from
blue to red.

The inner product of two square-integrable velocity fields u(x) and v(x) in the
computational domain Ω reads

(u, v)Ω :=
∫

Ω

dxu(x) · v(x). (2.3)

The associated norm of the velocity field u(x) is defined as

‖u‖Ω :=
√

(u, u)Ω. (2.4)

The direct numerical simulation (DNS) of the Navier–Stokes equations (2.1a,b) is based
on a second-order finite-element discretization method of the Taylor–Hood type (Taylor &
Hood 1973), on an unstructured grid of 4225 triangles and 8633 vertices, and an implicit
integration of the third-order in time. The unsteady flow field is calculated by an unsteady
solver with Newton–Raphson iteration until the residual is less than a prescribed tolerance.
This approach is also employed to calculate the steady solution by a steady solver for the
steady Navier–Stokes equations (2.2a,b). The direct Navier–Stokes solver used herein has
been validated in Noack et al. (2003) and Deng et al. (2020), and the grid used for the
simulations provides a consistent flow dynamics compared with a refined grid. A relevant
numerical investigation for this kind of equilateral-triangle configuration can also be found
in Chen et al. (2020). The data-driven HiCNM method is exemplified on this benchmark
configuration with a blockage ratio B = 0.21, defined as the ratio of the cross-section
length of the cluster of three cylinders 5D/2 to the width of the computational domain 12D,
which mimics the experimental set-ups in Raibaudo et al. (2020). The numerical results
with the current computational domain remain similar compared with a larger domain
with B = 0.025, as detailed in Appendix A.

2.2. Flow features
As shown in figure 3, the flow undergoes a supercritical Hopf bifurcation at Re1 ≈ 18,
a supercritical pitchfork bifurcation at Re2 ≈ 68 and a Neimark–Säcker bifurcation at
Re3 ≈ 105, before entering the chaotic regime beyond Re4 ≈ 115 with increasing Reynolds
number (Deng et al. 2020). Depending on the Reynolds number, the wake flow may
present a rich transient dynamics due to multiple exact solutions of the Navier–Stokes
equations, associated with the co-existing invariant sets in the state space. For instance, for
Re1 < Re < Re2, the symmetric steady solution us is the only fixed point of the system.
This exact solution of the Navier–Stokes equations is unstable. The only attractor in
the state space is a symmetric limit cycle, associated with the cyclic release of vortices
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Figure 3. Post-transient flow state for different flow regimes at the Reynolds numbers marked in red. The
critical values of the supercritical Hopf bifurcation Re1, the supercritical pitchfork bifurcation Re2 and the
Neimark–Säcker bifurcation Re3 before the system entering into chaos at Re4 are marked in black on the
Re-axis.

in the wake of the cylinders, forming a von Kármán street of regular vortices. For
Re > Re2, three fixed points are solutions of the steady Navier–Stokes equations, one
symmetric us and two asymmetric steady solutions u±s , and all three points are unstable.
Meanwhile, the unsteady Navier–Stokes equations have three periodic solutions. The
symmetric limit cycle, associated with symmetric vortex shedding, is unstable. The two
mirror-conjugated asymmetric limit cycles, associated with asymmetric vortex sheddings,
co-exist as attractors of the flow dynamics in the state space. For Re3 < Re < Re4, the
two attracting asymmetric limit cycles thicken into tori by introducing an additional
low frequency, which modulates the vortex shedding quasi-periodically. Beyond Re4, the
vortex shedding dynamics is chaotic. The interested reader can find more details on the
route to chaos in the fluidic pinball in Deng et al. (2020).

The flow features can be illustrated by the forces exerted on the body. The drag FD
and lift FL forces are the projection on ex and ey of the resultant force F = FDex + FLey,
obtained by integrating the viscous and pressure forces over the cylinder surfaces. The
flow dynamics is analysed with the lift coefficient CL,

CL(t) = 2FL(t)
ρU2∞

. (2.5)

We apply the DNSs at Re = 30, 80, 105 and 130 starting close to the symmetric steady
solution (for Re > Re1) until t = 1500 and the asymmetric steady solutions (for Re > Re2)
until t = 1000. The time evolutions of the lift coefficient CL are shown in figure 4, where
different transient dynamics are observed, from the steady solutions to the asymptotic
regimes.

At Re = 30, as shown in figure 4(a), the lift coefficient CL starts to oscillate visibly
at t ≈ 800, indicating that the flow leaves the neighbourhood of the symmetric steady
solution. Then, CL oscillates around a vanishing value with increasing amplitude until
converging to a fixed amplitude. This state refers to a symmetric vortex shedding, as the
instantaneous flow is oscillating around a geometrical symmetric mean-flow field.

At Re = 80, as shown in figure 4(b), the primary transition is the same as at Re = 30.
Next, the slowly varying mean lift coefficient 〈CL〉T , averaged over the oscillation period
T , goes from 0 to 0.04. This indicates that the oscillatory dynamics in the permanent
regime has lost the statistical symmetry, and the flow state refers to an asymmetric
vortex shedding. Starting nearby either one of the two asymmetric steady solutions, CL
directly evolves to the asymmetric vortex shedding regime that shares the same asymmetry.

At Re = 105, CL visibly increases at t ≈ 580 starting with the vanishing value of the
symmetric steady solution, as illustrated with the black curve in figure 4(c). However,
the initial transition reaches a non-oscillating value equal to the initial value of the red
curve, which refers to one of the two asymmetric steady solutions. It eventually enters a
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Figure 4. Transient and post-transient dynamics starting with different steady solutions, illustrated with the
time evolution of the lift coefficient CL at Re = 30 (a), 80 (b), 105 (c), 130 (d).

quasi-periodic state, the vortex shedding oscillations being modulated at a low frequency.
Starting from the other two asymmetric steady solutions will directly evolve into the
permanent quasi-periodic state with the same asymmetry.

At Re = 130, the initial transition of the black curve in figure 4(d) is similar to the
initial transition at Re = 80, but the dynamics enters a chaotic regime shortly after the
symmetric vortex shedding has started. Simulations converge to the same chaotic attracting
set, starting with all the three different steady solutions.

3. Cluster-based hierarchical reduced-order modelling

In this section, the general approach of the cluster-based hierarchical reduced-order
modelling is described and discussed. In § 3.1, we present the relevant background on the
flow decomposition and the standard CROM. The cluster-based reduced-order modelling
with hierarchical structure is described in § 3.2, as well as the relevant analysis of the
HiCNM.

3.1. Background
The standard CROM is obtained in two steps: the snapshots are first clustered into
coarse-grained representative states before building either a Markov or a network model
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for the analysis of the dynamics. Clustering all transients and post-transients at once can
suffer from the inability to accurately capture the dynamics at different scales. Under the
mean-field consideration, we introduce a hierarchical structure of clusters for the flow
dynamics of different time scales, resulting in a cluster-based hierarchical reduced-order
model (HiCROM).

3.1.1. Flow decomposition with mean-field consideration
The starting point of the HiCROM is the triple decomposition of the flow field similar to
Reynolds & Hussain (1972)

u(x, t) = 〈u(x, t)〉T︸ ︷︷ ︸
ω	ωc

+ ũ(x, t)︸ ︷︷ ︸
ω∼ωc

+u′(x, t)︸ ︷︷ ︸
ω�ωc

, (3.1)

where the dominant angular frequency ωc is defined as the dominant peak in the Fourier
spectrum of the velocity field. Here, the velocity field is decomposed into a slowly varying
mean-flow field 〈u〉T , a coherent component on time scales of order 2π/ωc, involving
coherent structures ũ, and the remaining non-coherent small scale fluctuations u′. This
kind of decomposition can also be found in the low-order Galerkin models of Tadmor
et al. (2011) and the weakly nonlinear modelling of Rigas, Morgans & Morrison (2017a).

The slowly varying mean-flow field 〈u〉T can be defined as the average of the velocity
field u over one local period T ≈ 2π/ωc of the coherent structures,

〈u(x, t)〉T := 1
T

∫ t+T/2

t−T/2
dτu(x, τ ), (3.2)

which eliminates both the coherent contribution from ũ and the non-coherent contribution
from u′. Unlike the mean-flow field defined by the post-transient limit,

ū(x) = lim
T→∞

1
T

∫ T

0
u(x, τ ) dτ, (3.3)

the finite-time-averaged flow field considered in this study owns a slowly varying
dynamics. From the mean-field theory of Stuart (1958), the slowly varying mean-flow field
evolves out of the steady solution under the action of the Reynolds stress associated with
the most unstable eigenmode(s). The mean-flow field deformation uΔ is used to describe
the difference between the slowly varying mean-flow field and the invariant steady solution
us(x), which reads

〈u(x, t)〉T = us(x)+ uΔ(x, t). (3.4)

3.1.2. Clustering algorithm
We consider the state vectors, for instance, the velocity fields u(x, t) in the computational
domain Ω , which is sampled at times tm = m	t with a time step 	t, where the superscript
m = 1, . . . , M is the snapshot index. The clustering process aims at partitioning the M
time-discrete states (snapshots) um = u(x, tm) into K clusters Ck, k = 1, . . . , K. Snapshots
of a given cluster share similar attributes featured by its cluster centroid ck. The distance
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between the snapshot um and the centroid ck is defined as

Dm
k := ‖um − ck‖Ω. (3.5)

Each snapshot is partitioned to the cluster of the closest centroid by argminkDm
k , and the

characteristic function is defined as

χm
k :=

{
1, if um ∈ Ck,

0, otherwise.
(3.6)

A cluster index km, m = 1, . . . , M, indicates the cluster assignment of the corresponding
snapshot with um ∈ Ck, and records the visited clusters consecutively. The number of
snapshots nk in cluster k is given by

nk =
M∑

m=1

χm
k . (3.7)

The cluster centroids ck are defined as the average of the snapshots belonging to the cluster
Ck:

ck = 1
nk

M∑
m=1

χm
k um. (3.8)

The performance of clustering is judged by the within-cluster variances

J(c1, . . . , cK) =
K∑

k=1

M∑
m=1

χm
k ‖um − ck‖2Ω. (3.9)

The clustering algorithm minimizes J and determines the optimal centroid positions,

copt
1 , . . . , copt

K = argminc1,...,cK
J(c1, . . . , cK), (3.10)

by iteratively updating the characteristic function and the centroid positions.
To solve the optimization problem (3.10), we use the k-means++ algorithm (Arthur &

Vassilvitskii 2006). Comparing with the traditional k-means algorithm, the k-means++
algorithm selects the initial centroids as far away as possible to avoid any bias from
the initial conditions. The remaining steps of the two algorithms are the same. At each
iteration, the snapshots are divided into clusters of the nearest newly determined centroids.
The optimal centroids are obtained by iterating until either convergence or when the
maximum number of iterations is reached.

3.1.3. Cluster-based network model
Based on the clustering result, Kaiser et al. (2014) derived a CMM, which provides a
probabilistic representation of the system using a Markov process, with the assumption
that the fluid system is memoryless. Nair et al. (2019) removed the transitions residing in
the same cluster and emphasized the non-trivial transitions between two different clusters.
In these two works, the transitions are only characterized by probabilities. The CNM
proposed in Fernex et al. (2021) and Li et al. (2021), inherited the idea of focusing on
the non-trivial transitions, and further introduced time scale characteristics by recording
the transition times. We here briefly review some concepts of the CNM, as they will be
used in our benchmark of HiCNM.
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Cluster j Cluster i

tn tn+1 tn+2 t

Tij

Figure 5. An illustration of the residence time in the cluster-based network model; • remarks the entering
time into new clusters.

The M consecutive snapshots define M − 1 transitions, containing trivial transitions
staying in the same cluster and non-trivial transitions between two different clusters. The
number of transitions from Cj to Ci reads

nij =
M−1∑
m=1

χm
j χm+1

i . (3.11)

Considering the non-trivial transitions, nj is the total number of departing snapshots from
Cj, with nj =

∑K
i=1(1− δij)nij. The direct transition probability Pij reads

Pij = (1− δij)nij

nj
, i, j = 1, . . . , K, (3.12)

where the non-migrating transition njj is eliminated. All the non-trivial transitions are
identified with the direct transition matrix P.

The residence time matrix T relies on the time information of the snapshots. After
clustering, each snapshot um = u(tm) is associated with the closest centroid with a cluster
index km. Assuming that N (N < M) non-trivial transitions occur along the trajectory, the
moments of transition tn, n = 1, . . . , N – including the initial time t0 = t1 – are defined as
the time entering into a new cluster,

tn = tm if um−1 ∈ Ck & um /∈ Ck, (3.13)

with ascending order t0 < t1 < · · · < tN . The cluster index km remains unchanged in a
time range [tn, tn+1). The sequence of visited clusters over time can be simplified with the
first entering snapshot for each non-trivial transition with km taken from the moments of
transition tn.

For a simple transition from Cj to Ci as illustrated in figure 5, where the trajectory first
enters in Cj at time tn, and leaves Cj for Ci at time tn+1, the residence time in Cj is defined
as

Tij := tn+1 − tn. (3.14)

In the case of multiple trajectories of transition from Cj to Ci, the residence time will be
averaged according to the number of trajectories.

At this point, the time-resolved snapshots um can be represented by cluster centroids
ckm with the time evolution of the cluster index km. The transient dynamics is described
by both the direct transition matrix of non-migrating transitions P and the residence time
matrix T .

3.2. Hierarchical modelling with mean-field consideration
As introduced in figure 1, the framework of cluster-based hierarchical network
modelling contains the following three steps. The hierarchical clustering with mean-field
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consideration is introduced in § 3.2.1. Based on the identified clusters, the network
modelling with hierarchical structure is derived in § 3.2.2 for the mean-field model of (3.1)
under a small number of general assumptions. Section 3.2.3 introduces the autocorrelation
function and its root mean square error of the rebuilt flow for the validation of the HiCNM.
An introductory example is introduced in Appendix B.1 to clarify the primary form of the
HiCNM.

3.2.1. Hierarchical clustering inspired by the triple decomposition
To better understand the global and local properties of the data, we present a novel
hierarchical clustering algorithm inspired by the triple decomposition introduced in § 3.1.1.
The principle of hierarchical clustering is to divide the snapshots into layers of clusters.
Snapshots belonging to clusters of the parent layer are further partitioned into clusters
of the child layer. Hierarchical clustering algorithms are generally divided into two
categories:

(a) The agglomerating (‘bottom-up’) hierarchical clustering begins with the smallest
clusters at the bottom, each snapshot being an elementary cluster. The two
closest clusters are merged to generate a new cluster according to certain criteria,
introducing an additional layer from the bottom. This merging is repeated until all
snapshots belong to one cluster at the top of the hierarchy.

(b) The divisive (‘top-down’) hierarchical clustering starts with only one cluster, which
owns all the snapshots. In our case, the centroid of the top cluster would be the
mean-flow field from ensemble averaging. From the top to the bottom, the snapshots
in each cluster of the parent layer are divided into multiple clusters in the child
layer, according to certain criteria. The bottom layers will be associated with the
small scale fluctuations of the flow field. The division can be continued until each
snapshot is a cluster.

We employ a divisive hierarchical clustering to distil the different features in a hierarchy,
which is consistent with the triple decomposition of (3.1). For instance, fluid flows
characterized by multiple frequencies require only a finite number of layers to describe
the different components bounded by frequency.

Transient and post-transient dynamics are statistically non-homogeneous due to the
existence of multiple invariant sets. If so, a scale sub-division of the flow-field
decomposition like in (3.1) is used during the clustering process. Accounting for the
Reynolds stress contribution, the slowly varying mean-flow field 〈u〉T is enough to
describe the global trend. Next, the local dynamics around 〈u〉T can be zoomed in,
considering the coherent structures involved in ũ. This scale sub-division can still be
extended to a hierarchical structure with more layers, which involve secondary frequencies
in the case of quasi-periodic dynamics or turbulence from u′, as illustrated in figure 6. In
order to clearly describe the clusters in the hierarchy, we systematically name the clusters
from top to bottom. The sole cluster on the top L0 contains the ensemble of input data, and
we define it symbolically as C0. The sub-division of this cluster leads to K1 subclusters in
the first layer L1, named as C0,k1, k1 = 1, . . . , K1. The first subscript k0 = 0 can be ignored
because there is only one cluster in L0, and the second subscript k1 indicates the index
of the subcluster in L1. The second sub-division works on each cluster Ck1 separately,
and generates refined K2 subclusters for each of them. The cluster index in the current
layer L2 is presented by an additional subscript k2 = 1, . . . , K2, which is written as Ck1,k2 .
For a higher layer number LL∈N, L � 3, more subscripts kL, l = 1, . . . , L, are needed to
record the cluster index in each layer Ll from the top to the bottom, written as Ck1,...,kL .
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Frequencies

resolved

Low

Layer 0 (Invariant)Layer 0 (Invariant)Layer 0 (Invariant)

High

Layer 1

Layer 2

Layer 3

〈u〉T + ũ + u′

〈u〉T + ũ

〈u〉T

ū

Figure 6. An illustration of the hierarchical structure with different scales in the triple flow decomposition in
§ 3.1.1. Layer 0: the top layer is characterized by the invariant mean flow ū. Layer 1: the global trend is described
by the slowly varying mean-flow field 〈u〉T . Layer 2: the coherent part ũ is added for the local dynamics around
the varying mean-flow field. Layer 3: the non-coherent part u′ is considered in the case of turbulent flow.

This naming method can clearly trace out all clusters in the hierarchy, and also works
for other properties of clusters, e.g. the centroids ck1,...,kL and the characteristic function
χm

k1,...,kL
. In this work, two or three layers (L � 3) will be enough to extract the transient

dynamics out of multiple invariant sets.

3.2.2. Hierarchical network modelling
The starting point is the hierarchical Markov model of Fine et al. (1998), which introduces
the hierarchical structure to describe the stochastic processes, comparing with the standard
Markov model. Each state of a Markov model in the parent layer is considered separately,
and a new Markov model of the sub-states of a state is built in the child layer. As the
layer increases, the state is continuously sub-divided. Therefore, the hierarchical Markov
model records a sequence of states in different layers. In our case, each cluster is seen as a
state. When a cluster in the parent layer is activated, its subclusters in the child layer turns
activated recursively. Meanwhile, the refined dynamics between the subclusters can be
described by a Markov model. Hence, the hierarchical Markov model can more effectively
solve the problem of subsets.

In this work, we derive the HiCNM by replacing the Markov model by the network
model. The hierarchical structure is identical, and the only change is the way to describe
the transient dynamics between clusters.

A typical structure between the parent and child layers is shown in figure 7. We start
with cluster Ck1,...,kl−1 in the parent layer Ll−1, where the leading subscript k1, . . . , kl−2
refers to the cluster number in each upper layer. For convenience, when the context is
unambiguous, the cluster will be only referenced by its number in the current layer,
e.g. Ckl−1 . As indicated with the sequence of cluster numbers in its complete name, this
cluster comes from the sub-division of the cluster Ck1,...,kl−2 in the parent layer Ll−2. We
suppose that M snapshots um, m = 1, . . . , M, exist in this cluster and are divided into
Kl−1 subclusters by a sub-division clustering algorithm. The subcluster Ckl−1 contains
nkl−1 snapshots, calculated from (3.7) with the characteristic function χm

kl−1
. A standard

network model for the cluster Ck1,...,kl−2 can be derived with the direct transition matrix
Pk1,...,kl−2 and the residence time matrix T k1,...,kl−2 , as recorded in § 3.1.3, which describe
the dynamics between the subclusters Ckl−1 .

In the following, we focus on the trajectories passing through cluster Ckl−1 . The
snapshots entering and leaving from Ckl−1 are marked out for each trajectory, with the
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P1kl
Pkl

 Kl

Qe, kl
Qo, kl

Ckl−1
, 1 Ckl−1

, Kl

Ckl−1

Ckl−1
, kl

Figure 7. An illustration of the transitions between the parent and child layers in the hierarchical network
model. The trajectories pass through the cluster in the parent layer: the entering and exiting snapshots are
marked with red dot and the blue dot. After clustering, a classic network model is built between N subclusters,
with transition probability P. The vertical transitions indicate the ports of entry and exit of the subclusters with
probabilities Qo,j and Qe,j.

following characteristic function:

χm
o,kl−1

:=
{

1, if um−1 /∈ Ckl−1 & um ∈ Ckl−1,

0, otherwise.

χm
e,kl−1

:=
{

1, if um ∈ Ckl−1 & um+1 /∈ Ckl−1,

0, otherwise.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.15)

The entering snapshots are denoted by the subscript ‘o’, and the exiting snapshots by the
subscript ‘e’. The number of entering snapshots no and of exiting snapshots ne read

no =
M∑

m=1

χm
o,kl−1

, ne =
M∑

m=1

χm
e,kl−1

. (3.16a,b)

In the child layer Ll, the nk snapshots in the cluster Ckl−1 have been divided into the
subclusters Ck1,...,kl , kl = 1, . . . , kL. Without loss of generality, a standard network model
for the cluster Ckl−1 can be built with its subclusters with the direct transition matrix
Pk1,...,kl−1 and the residence time matrix T k1,...,kl−1 .

The snapshots um are approximated by the time evolution of the cluster centroids
ckm

1 ,...,km
l

in Ll,

ûm
Ll
= ckm

1 ,...,km
l
. (3.17)

The residence time elements of T k1,...,kl can be assembled in order to determine the
moments of transition based on the sequence of visited clusters in Ll.

The entering and exiting snapshots defined in (3.15) can be used to describe the vertical
transitions. Although they are not necessary to describe the dynamics of the fluidic pinball,
the probability of the vertical transitions Qo,j and Qe,j, described in Appendix B, completes
all possible transitions in our hierarchical structure and makes it consistent with the classic
hierarchical Markov model of Fine et al. (1998).

3.2.3. Dynamics reconstruction of the hierarchical network model
The reconstructed flow in (3.17) is a statistical representation of the original snapshot
sequence by a few representative centroids, which is a highly discretized description
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compared with the full dynamics. The approximations in the different layers provide
different metrics for the flow dynamics.

The cluster-based hierarchical model uses the centroids ckm
1 ,...,km

l
in the original data

space together with the time evolution of the cluster index km
l to simplify the description

of the original flow, which is more intuitive and closer to the original flow than the POD
reconstruction. For input data with I-dimensional state vectors of the velocity field and
M snapshots, a POD reconstruction truncated to R modes will lead to a I × R matrix
of POD modes and a R×M matrix of mode amplitudes. A HiCNM with K centroids
leads to a I × K matrix of centroids and a sequence of the N visited clusters of length
N 	 M. In this sense, the compressive ability of HiCNM is more powerful for the
large amount of continuously sampled data, as I × K < (I +M)× R. In addition, the
hierarchical clustering works as a sparse sampling technique, extracting the representative
states according to the clustering subspace.

We use the unbiased auto-correlation function (Protas, Noack & Östh 2015),

R(τ ) = 1
T − τ

∫ T

τ

(u(x, t − τ)− us(x), u(x, t)− us(x))Ωdt, τ ∈ [0, T), (3.18)

after normalization with respect to R(0) to check the accuracy of the dynamics
reconstruction of the HiCNM in (3.17). The autocorrelation function without delay R(0) is
twice the time-averaging kinetic energy. The modelled autocorrelation function R̂Ll(τ ) in
layer Ll is based on the rebuilt flow ûLl in (3.17) instead of u in (3.18).

For the discrete snapshots, the root mean-square error (RMSE) of the autocorrelation
function R(τ ) of the reference data and that of the model R̂Ll(τ ) is defined as

Rl
rms :=

√√√√ 1
M

M∑
m=1

(R(τ )− R̂Ll(τ ))2, (3.19)

where M is the number of snapshots um and ûm
Ll

at τ = m	t.

4. Hierarchical network modelling of the fluidic pinball

In this section, we apply the hierarchical modelling strategy to the fluidic pinball
at different Reynolds numbers. With increasing Reynolds number, the flow dynamics
undergoes successive instabilities and bifurcations, introducing multiple exact solutions
of the Navier–Stokes equations and multiple invariant sets for the dynamics. In § 4.1,
the modelling strategy dealing with multiple invariant sets is introduced. We derive the
HiCNMs for the transient dynamics involving six invariant sets at Re = 80 in § 4.2, for the
quasi-periodic regime at Re = 105 in § 4.4 and for the chaotic regime at Re = 130 in § 4.5.

4.1. Hierarchical modelling with multiple invariant sets
The flow field is computed with the DNS described in § 2.1. The resulting flow field is
an ensemble of time-resolved snapshots starting with some given initial condition. The
transient and post-transient dynamics of the flow constitute a time-resolved trajectory
sampled with a fixed time step. Different invariant sets and multiple attractors can co-exist
in the state space, only part of them being explored by each individual trajectory from the
initial condition to the asymptotic regime. All the cases of interest in this paper are such
that Re > Re2, i.e. beyond the supercritical pitchfork bifurcation. The data set consists of
the snapshots computed from four different trajectories: two mirror-conjugated trajectories
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starting in the vicinity of the symmetric steady solution, the two others starting from the
two mirror-conjugated asymmetric steady solutions. The simulations are respectively run
until t = 1500 and t = 1000 for the symmetric steady solution and the asymmetric steady
solutions.

Sampled with time step 	t = 0.1, the input data basis is an ensemble of M = 50 000
snapshots um(x) from four transient trajectories, where the superscript m is the snapshot
index for the successive instants tm = m	t. In order to distinguish the different trajectories,
the snapshot index m is sorted as:

(a) m = 1, . . . , 15 000 and m = 15 001, . . . , 30 000 for the two mirror-conjugated
trajectories starting in the vicinity of the symmetric steady solution;

(b) m = 30 001, . . . , 40 000 and m = 40 001, . . . , 50 000 for the two others starting
from the two mirror-conjugated asymmetric steady solutions.

The time continuity is critically important during the dynamical analysis. Snapshots in
each trajectory are time resolved but have no time relationship in different trajectories.
For a trajectory of M snapshots, it exists M − 1 transitions as described in § 3.1.3. Hence,
M − 4 transitions occur in the four individual trajectories mentioned above.

In our case, a standard network model with 200 clusters is still not enough to distinguish
the transitions starting from three different steady solutions, as shown in § 4.3.1. An
optimal way to achieve correct classification is to hierarchically cluster the ensemble of
snapshots. The hierarchical clustering is performed with the slaving assumption under
the mean-field consideration in § 3.1.1, by applying an unsupervised clustering algorithm
(k-means++) for different time scales. The clusters in the parent layer are split into
subclusters in the child layer, where the clustering result in the parent layer works as
a pre-classified indicator in the child layer. The number of clusters is preset to 10 for
each clustering algorithm, but can be adjusted to the minimal number for an accurate
dynamics reconstruction, typically for the network model in the first layer. The clustering
algorithm in the first layer is meant to distinguish different invariant sets together with
the transitions between them with a limited number of clusters. These clusters will
be used to build a network model for the mean-field distortion, which will further
supervise the clustering process in the second layer. A sketch for this process is shown in
figure 8.

From the mean-field consideration, the slowly varying mean-flow field is the ideal
candidate for the detection of several invariant sets. A fifth order Butterworth low-pass
filter with cutoff frequency 0.2fc is applied to eliminate the coherent ũ and incoherent u′
components of u in the triple decomposition of (3.1). The clustering algorithm applied
to the first layer is described in Algorithm 1. The critical idea of the algorithm is
to map the original data to the bounded low-frequency space, and then calculate the
characteristic function in the low-frequency space. The resulting characteristic function
χm

k1
is applied to the original data to achieve the clustering of the slowly varying mean-flow

field.
The divisive clustering algorithm of the clusters in the parent layer is described in

Algorithm 2, under the supervision of the characteristic function χm
k1

obtained from
the parent layer. The sub-division of the clusters in the parent layer leads to a more
detailed network model of the local structures. According to the spectral content of the
dynamics, multiple layers are introduced to extract the coherent dynamics. The naming
method introduced in § 3.2.1 can clearly locate all clusters in the hierarchy. When dealing
with chaotic flow regime, there is no clear frequency boundary. We stop modelling the
incoherent components u′ with a simple network model which contains all the chaotic
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Figure 8. Sketch of HiCNM applied to the fluidic pinball at Re = 80. See text for the details.

Algorithm 1 Clustering algorithm with slowly varying mean flow

Input: um: snapshots; fc: frequency of coherent part;
K1: number of clusters

Output: χm
k1

: characteristic function; km
1 : cluster indexes of snapshots um;

ck1 : optimal centroids
1: compute the low-pass filtered um with cutoff frequency 0.2fc, named um

LP;
2: apply k-means++ algorithm with K1 clusters to um

LP, and save the characteristic
function χm

k1
and the cluster indexes km

1 ;
3: compute and save the centroids in original data space:

ck1 =
M∑

m=1
χm

k1
um/

M∑
m=1

χm
k1

.

dynamics. Snapshots of velocity field can be highly compressed by a lossless POD to
accelerate the clustering algorithm, as detailed in Appendix C.

4.2. Hierarchical network model at Re = 80
At Re = 80 > Re2, the system has already undergone a supercritical Hopf bifurcation
and two coincidental supercritical pitchfork bifurcations on the steady solution and
the symmetric limit cycle. As a result, three unstable steady solutions, one unstable
(symmetric) limit cycle and two stable (asymmetric) mirror-conjugated limit cycles exist
in the state space and organize the dynamics. Thus, there are six invariant sets, the two
stable limit cycles being the attractors of the flow state.

The HiCNM in the first layer is based on the clustering results of the low-pass filtered
data set (§ 4.2.1). The local dynamics for some typical regimes is further presented with
the subclusters in the second layer (§ 4.2.2).
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Algorithm 2 Divisive clustering algorithm in the child layer under supervision

Input: um: snapshots;
χm

k1
: characteristic function from the parent layer

Output: for each cluster Ck1 in parent layer
χm

k1,k2
: the characteristic function; km

2 : cluster indexes of snapshots um;
ck1,k2 : optimal centroids;

1: for k1 ← 1 to K1 do
2: locate the snapshots um in the cluster Ck1 by the characteristic function χm

k1
, and

record the snapshot index m1 of the resulting nk1 snapshots;
3: extract the snapshots um1 and renumber them sequentially with m2 = 1, . . . , M2;
4: apply k-means++ algorithm with K2 = 10 clusters (as default) to the renumbered

snapshots um2 and save the characteristic function χ
m2
k1,k2

and the centroids ck1,k2 :

ck1,k2 =
M2∑

m2=1
χ

m2
k1,k2

um2/
M2∑

m2=1
χ

m2
k1,k2

.

5: end for

4.2.1. Hierarchical network model in layer 1
The K1 = 20 clusters are used to cluster the snapshots from the low-pass filtered data
set which removes the coherent structures with frequency fc = 0.1074. To visualize the
cluster topology, we apply the classical multidimensional scaling (MDS) to represent the
high-dimensional centroids in a two-dimensional subspace [γ1, γ2]T, while the distances
between the centroids are preserved (Kaiser et al. 2014). As shown in figure 9, the six
exact solutions of the Navier–Stokes equations that organize the state space are well
identified. The vorticity field of the resulting centroids can be understood as the slowly
varying mean-flow field 〈u〉T along the transient dynamics, with T � 2π/ωc. The three
steady solutions belong respectively to clusters C1 (symmetric steady solution us), C12
(asymmetric steady solution u−s ) and C17 (asymmetric steady solution u+s ). The three limit
cycles are caught by the time-averaged flow in clusters C7 (symmetric mean-flow field,
centroid ū0), C9 (asymmetric upward mean-flow field, centroid ū+) and C11 (asymmetric
downward mean-flow field, centroid ū−). A network of four transient trajectories connects
these clusters as follows:

Trajectory 1: C1 (us)→ · · · → C7 (ū0) → C8 → C9 (ū+);
Trajectory 2: C1 (us)→ · · · → C7 (ū0) → C10 → C11 (ū−);
Trajectory 3: C12 (u−s )→ · · · → C16 → C10 → C11 (ū−);
Trajectory 4: C17 (u+s )→ · · · → C20 → C8 → C9 (ū+).

We notice that most of the transitions between clusters are with 100 % probability,
except for the bifurcating cluster C7 with half-probability of transition to clusters C8 or C10.
The transition matrix in figure 10(b) illustrates the probability of all the transitions. The
probability is 1 for the surely directed transitions. By contrast, P7 8 = 0.5 and P7 10 = 0.5
for the bifurcating cluster. After entering into C8 and C10, the flow will surely enter the two
clusters C9 and C11, respectively. The two clusters C9 and C11 catch the permanent regimes,
from which the dynamics cannot escape, imposing all the terms in the ninth and eleventh
columns Pj 9 = Pj 11 = 0, ∀j.

The time ordering of the cluster transitions is illustrated in figure 10(a). The red vertical
line separates the four trajectories. All the trajectories are irreversible transition from one
steady solution to one of the two stable periodic solutions. In figure 10(c), the filled black
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Figure 9. Graph of transitions between clusters in layer 1 at Re = 80. Cluster centroids are marked with the
coloured squares, with their vorticity fields in colour with [−1.5, 1.5]. The snapshots belonging to them are
marked as small dots with the same colours. The transitions between clusters are shown with arrows, where the
line width presents the probability of transition.
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Figure 10. Cluster-based analysis at Re = 80 in layer 1: (a) transition illustrated with cluster label, (b)
transition matrix, (c) residence time matrix. Since subclusters are not considered, the snapshot index in layer 1
m1 is identical to the original index m. The colour bar indicates the values of the terms. Residence time larger
than 100 is marked with a solid black circle and excluded from the colour bar. An extremely long residence
time in a cluster indicates data density, and such a cluster is generally associated with an invariant set.
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Figure 11. Cluster-based analysis in layer 2 at Re = 80 for C9: (a) graph of non-trivial transitions between
clusters, as in figure 9, (b) transition illustrated with cluster label, (c) transition matrix, (d) residence time
matrix, as in figure 10. Two trajectories pass through C9 in the parent layer, one with m2 = 1, . . . , 5430 and
another with m2 = 5431, . . . , 9917.

circles emphasize the transitions starting from C1, C12, C17 and C7. The two attracting
clusters C9 and C11 have no transition to any other clusters. Hence, all the terms in the
ninth and eleventh columns Tj 9, Tj 11 are 0, ∀j. The residence time associated with clusters
C9 and C11 is infinite.

According to the above discussion, the network model in this layer has successfully
identified the six invariant sets of the dynamics, four being unstable, the two others being
the attractors of the system.

4.2.2. Hierarchical network model in layer 2
We apply Algorithm 2 based on the clustering result for the layer L1 in § 4.2.1. In the
second layer L2, we will isolate and analyse the clusters Ck1, k1 = 9, 7, 1 associated with
three invariant sets of the dynamics.

The permanent regime in cluster C9
Cluster C9 is associated with one of the two asymmetric limit cycles. The k-means++

algorithm is directly applied to the intra-cluster snapshots um ∈ C9. The limit cycle in
figure 11(a) has been divided into K2 = 10 subclusters according to Algorithm 2. The
centroids are distributed on the limit cycle at equal distances. The arrows between the
centroids form a closed loop, which results from the periodic nature of the oscillating
dynamics. The resulting centroids are phase-averaged flow fields along the complete
period of the vortex shedding. The innerjet flows of the centroids in figure 11(a) are all
deflected upwards, as expected for the attractor that belongs to cluster C9.

Figure 11(b) associates the cluster labels with the dynamics. Two different transient
trajectories reach C9 with entering snapshots m = 9571 and 45 514, one issued from
C8, the other from C16, according to the network model in layer L1. According to the
entering time, the original snapshot index m = m2 + 9571− 1 = 9571, . . . , 15 000 and
m = m2 + 45 514− 5431 = 45 514, . . . , 50 000. The flow periodically travels along the
subclusters C9,k2, k2 = 1, . . . , 10 as C9, 1 → · · · → C9, 10 → C9, 1. The limit cycle has a
clear and stable transition matrix, as each cluster only has one possible destination, see
figure 11(c). The residence times in each clusters are uniform as shown in figure 11(d).
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Figure 12. Cluster-based analysis in layer 2 at Re = 80 for C7: (a) graph of non-trivial transitions between
clusters, as in figure 9, (b) transition illustrated with cluster label, (c) transition matrix, (d) residence time
matrix, as in figure 10. Two trajectories pass through C7 in the parent layer, one with m2 = 1, . . . , 2330 and
another with m2 = 2331, . . . , 4665.

The sum of all residence times is 9.51, which is close to the real time period 9.50 of the
vortex shedding in the permanent regime computed from the DNS.

The bifurcating state in cluster C7
Cluster C7 is associated with the symmetric limit cycle. K2 = 10 clusters are used to

classify the snapshots in this cluster.
The resulting limit cycle of figure 12(a) differs from the limit cycle of figure 11 by

its centroids. As expected with the symmetric limit cycle, the inner jet is not deflected
in cluster C7, while it is deflected in cluster C9. In figure 12(b), two different transient
trajectories pass through C7 with entering snapshots m = 6541 and 21 552, the original
snapshot index is m = 6541, . . . , 8870 and m = 21 552, . . . , 23 886. The limit cycle has
a stable transition matrix, as shown in figure 12(c). The sum of the residence times of
figure 12(d) is 9.79, again very close to the period 9.80 of the symmetric transient vortex
shedding computed from the DNS. The bifurcating dynamics cannot be detected with
these subclusters but can be captured in the parent layer.

The destabilizing regime in cluster C1
Cluster C1 is associated with two mirror-conjugated trajectories spiralling out of the

symmetric steady solution. K2 = 10 subclusters are used in the child layer L2. In the
[γ1, γ2]T representation of figure 13(a), the centroids are distributed along two diverging
trajectories spiralling out of the fixed point [0, 0]T.

The first three subclusters C1, 1, C1, 2 and C1, 3 belong to the inner zone of the spirals,
where the distribution of snapshots is dense in the [γ1, γ2]T proximity map of figure 13.
As a result, three non-physical closed-loop cycles are formed between these three clusters,
namely C1, 1 → C1, 2 → C1, 1, C1, 1 → C1, 3 → C1, 1 and C1, 3 → C1, 1 → C1, 2 → C1, 1 →
C1, 3. The remaining clusters belong to the outer arms of the spirals, with a relatively sparse
distribution of the snapshots. The transitions between them form a closed-loop trajectory
C1, 4 → · · · → C1, 10 → C1, 4. The transitions C1, 2 → C1, 4 and C1, 3 → C1, 8 correspond
to the departing dynamics out of the inner zone, due to the growth of the instability. The
varying density of distribution comes from the exponential growth of the instability. The
flow perturbations are small in the beginning of the instability while the flow distortions
evolve faster in the later stages, leading to a multiscale problem in the transient and
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Figure 13. Cluster-based analysis in layer 2 at Re = 80 for C1: (a) graph of non-trivial transitions between
clusters, as in figure 9, (b) transition illustrated with cluster label, (c) transition matrix, (d) residence time
matrix, as in figure 10. Two trajectories pass through C1 in the parent layer, one with m2 = 1, . . . , 5319 and
another with m2 = 5320, . . . , 10 640.

post-transient flow dynamics. In this case, the later stages with larger distortions are
obviously easier to divide into different clusters.

From figure 13(b), two transient trajectories pass through C1 with entering snapshots
m = 1 and 15 001. The original snapshot index is m = 1, . . . , 5319 and m =
15 001, . . . , 20 321, corresponding to the initial stage of destabilization from the
symmetric steady solution. In the transition matrix of figure 13(c), the inner and outer
portions of the spiral are also apparent. The inner zone is the oscillating dynamics between
C1, 1 and C1, 2, or C1, 1 and C1, 3. The outer zone has a more obvious periodic dynamics
through the remaining clusters from C1, 4 to C1, 10. In figure 13(d), the residence time in
each cluster is very short compared with the residence time in C1, 1, which the vicinity of
the steady solution belongs to.

4.2.3. Dynamics reconstruction of the hierarchical network model at Re = 80
Figure 14 shows the autocorrelation function of the DNS and the HiCNM in different
layers. As the autocorrelation function has been normalized by R(0), the unit one presents
the level of kinetic energy of the whole transition. For the transient and post-transient
dynamics, the autocorrelation function vanishes with increasingtime shift, as shown in
figure 14(b). The autocorrelation function of the DNS identifies the dominant frequency.
In layer L1, no oscillation can be identified, due to the centroids by averaging the snapshots
within clusters in the state space. The RMSE of the autocorrelation function is R1

rms =
17.46. In layer L2, the autocorrelation function of the model matches perfectly over the
entire range, with R2

rms = 1.18, which quantifies the accuracy of the cluster-based model.

4.3. Advantages of HiCNM as compared with CNM
In this sub-section, we compare the results of the HiCNM in its second layer with
the standard CNM with the same number of clusters. The hierarchical structure can
systematically present the global trend and local dynamics, which improve the graphic
interpretation of transient and post-transient, multi-frequency, multi-attractor behaviours.
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Figure 14. Autocorrelation function for τ ∈ [0, 1500) from DNS (black solid line) and the hierarchical
network model (red dashed line) in the two layers: (a) L1 and (b) L2, at Re = 80.

4.3.1. Standard CNM at Re = 80
We show a standard network model treating the transient dynamics at Re = 80 with
K = 200 clusters. The directed graph is not shown here as too many clusters overlapped
in the two-dimensional subspace [γ1, γ2]T, losing the interpretation of the dynamics.
In figure 15(a), the six exact solutions are well classified. The three steady solutions
are divided into C1, C192 and C196 separately. The three limit cycles are identified with
three blocks of oscillating labels, from C69 to C99, from C100 to C142 and from C148 to
C191. However, the transient trajectories starting with the asymmetric steady solutions are
misidentified, as both travel through the same clusters from C2 to C68 and even the block of
the symmetric limit cycle. It indicates that the clustering algorithm failed to distinguish the
symmetry breaking in the transient dynamics starting with the different steady solutions.
Too many clusters also make the transition matrix hard to read as illustrated in figure 15(c),
and also for the residence time matrix not shown here. Ignoring the transitions with low
probability in the transition matrix, the transitions in the above-mentioned three blocks are
almost definite, indicating the correct identification of the cycles. However, the transient
dynamics from C2 to C68 is random. We can hardly find any relevant feature for the building
of vortex shedding or symmetric breaking. The cluster distribution directly affects the
analysis of the dynamics.

In summary, a large number of clusters tends to increase the resolution of the identified
network model, but will misidentify the dynamics with the random transitions between
clusters during the transient state. The standard network model fails to describe the
transient dynamics between different invariant sets. This kind of problem comes from
the poor distribution of clusters and can be solved by the hierarchical clustering strategy,
as shown in the following sub-section.

4.3.2. HiCNM at Re = 80 in layer 2
Based on the hierarchical network model at Re = 80 recorded in § 4.2, we build a network
model ensembling all the clusters in the layer L2, which also contains K = 200 clusters.
For ease of illustration, the cluster indexes of two layers Ck1,k2 are denoted with a single
index Ck, with k = 1, . . . , 200.

From figure 15(b), we found that the cluster distribution is very uniform during the
transient states and the post-transient states. The six exact solutions are well classified,
and much fewer clusters are used for the limit cycles. The three steady solutions being
divided into C1, C111 and C161 separately. The three limit cycles are identified with three
blocks of oscillating labels, from C61 to C70, from C81 to C90 and from C101 to C110. Even
the transient states between the limit cycles can also be identified, with two blocks from
C71 to C80, and from C91 to C100. The transient trajectories starting with three different
steady solutions are also well separated. The transition matrix in figure 15(d) are almost
full of definite transitions, which shows clearer transient dynamics than figure 15(c).
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Figure 15. Cluster-based analysis at Re = 80 for the fluctuating flow: transition illustrated with cluster label
and transition matrix of the standard network model (a,c) and the hierarchical network model in the second
layer (b,d), as in figure 10.

The global matrix keeps the local dynamics for each cluster Ck1 in the first layer L1, as
shown in each small block of 10 clusters, and ensembles them together. The transitions
from block to block have a much lower probability, comparing with the cycling transitions
within the block, which makes them hard to see in the figure. However, this kind
of transition between the blocks should be also definite, as shown in § 4.2.1 for the
hierarchical model in the first layer. Analogously, the multiscale problem of the dynamics
in different layers also exists in the global residence time matrix, which makes the small
scale terms unseeable. Therefore, we suggest analysing the slowly varying mean flow and
the local dynamics separately in different layers, as in § 4.2, to avoid the influence of
different scales.

4.4. Hierarchical network model for the quasi-periodic dynamics at Re=105
At Re = 105, the flow dynamics is quasi-periodic (Deng et al. 2020). The inner jet
oscillations are modulated at a non-commensurate low frequency. The flow dynamics
considered in the first cluster layer is low-pass filtered (§ 4.4.1). The basic limit cycle

934 A24-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
05

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1105


Cluster-based hierarchical network model

1

2

2

3

4

5

6 11

10

9

8

71

3

4

5

0

−1
−0.5−1.0−1.5 0.50 1.0 1.5

γ2

γ1

Figure 16. Graph of transitions between clusters in layer 1 at Re = 105, displayed as in figure 9.

associated with the dominant frequency ωc of the vortex shedding is clustered and analysed
in layer 2 (§ 4.4.2). The low-frequency modulations of the vortex shedding are further
described in layer 3 (§ 4.4.3).

4.4.1. Hierarchical network model in layer 1
The frequency of the coherent component ũ is fc = 0.1172. The K1 = 11 clusters are
used on the low-pass filtered data set, following Algorithm 1. The non-trivial transitions
are shown in the two-dimensional subspace [γ1, γ2]T of figure 16. The two attractors
belong to clusters C6 and C11. The symmetric and asymmetric steady solutions belong
respectively to clusters C1, C2 and C7. The transient dynamics observed at Re = 105 is
different from that identified in figure 9 for Re = 80. Figure 16 shows four trajectories,
initiated from mirror-conjugated initial conditions close to the symmetric and asymmetric
steady solutions:

Trajectory 1: C1 (us)→ C2(u+s )→ · · · → C6(ū+);
Trajectory 2: C1 (us)→ C7(u−s )→ · · · → C11(ū−);
Trajectory 3: C2(u+s )→ · · · → C6(ū+);
Trajectory 4: C7(u−s )→ · · · → C11(ū−).

The state trajectories start from the symmetric steady solution to one of the two
asymmetric steady solutions, then converge to the corresponding attracting torus. The two
trajectories on the left side have a significant phase delay, while the two on the right side
are almost in the same phase. This phase difference is a random function that depends on
the initial condition. The two tori also look different because the feature vectors associated
with [γ1, γ2]T are asymmetrical from the MDS.

In figure 17(a), the evolution of the cluster label of the snapshots illustrates four
irreversible transient dynamics. The transition matrix in figure 17(b) exhibits two red
diagonals associated with trajectories to the final state, and two yellow elements associated
with the initial state starting close to the symmetric steady solutions in cluster C1. The
transition from C1 to clusters C2 and C7 each have 1/2 probability. The two attracting
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Figure 17. Cluster-based analysis at Re = 105 in layer 1: (a) transition illustrated with cluster label, (b)
transition matrix, (c) residence time matrix, displayed as in figure 10.

clusters C6 and C11, associated with the attractors of the system, have no transition to any
other clusters, as all the terms in the sixth and eleventh columns Pj 6 = Pj 11 = 0, ∀j. In the
residence time matrix of figure 17(c), the filled black circles indicate three typical clusters
C1, C2 and C7, which correspond to the vicinity of the three steady solutions. All the terms
in the sixth and eleventh columns Tj 6, Tj 11 are 0 ∀j, which means that the residence time
is infinite, as expected for attractors.

4.4.2. Hierarchical network model in layer 2
We focus on the permanent regime in the cluster C6, and apply the sub-division clustering
Algorithm 2, which results in K2 = 10 subclusters in layer L2.

As illustrated in figure 18(a), a closed orbit between the 10 clusters is found. Figure 18(b)
shows two transient trajectories pass through C6, the original snapshot index is m =
8124, . . . , 15 000 and m = 44 196, . . . , 50 000, involving the asymptotic regime of an
attractor. The clusters in this closed orbit have a clear transition rule, as is evidenced by
the transition matrix of figure 18(c). The sum of the residence times is 8.45 for the cycle
of C3 → C4 → · · · → C10 → C3 from the residence time matrix in figure 18(d).

4.4.3. Hierarchical network model in layer 3
Based on the detected cycle found in layer L2, the entering snapshots of one subcluster
can be used to sample the quasi-periodic regime. The snapshots recurrently enter into
each cluster of layer L2. The entering states, defined by Tm

o, k1, k2
in (3.15), are the entry

in the clusters. The entering snapshots of a given cluster can be considered as hits in a
‘Poincaré section’ (Guckenheimer & Holmes 2013).

The clustering algorithm in the layer L3 is applied to the snapshots of all the
Poincaré sections. We still apply the sub-division clustering Algorithm 2, with Tm

o, k1, k2
as characteristic function.
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Figure 18. Cluster-based analysis in layer 2 at Re = 105 for C6: (a) graph of non-trivial transitions between
clusters, as in figure 9, (b) transition illustrated with cluster label, (c) transition matrix, (d) residence time
matrix, as in figure 10. Two trajectories pass through C6 in the parent layer, one with m2 = 1, . . . , 6877 and
another with m2 = 6878, . . . , 12 682.
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Figure 19. Cluster-based analysis in layer 3 at Re = 105 for C6, 10: (a) graph of non-trivial transitions between
clusters, as in figure 9, (b) transition illustrated with cluster label, (c) transition matrix, (d) residence time
matrix, as in figure 10. Two trajectories are detected in the ‘Poincaré section’ of C6, 10, one with m3 = 1, . . . , 81
and another with m3 = 82, . . . , 150.

We consider the entry in cluster C6, 10 for illustration, and build a network model in the
third layer L3. In the following, the cluster symbol in the first two layers Ck1=6, k2=10,k3 is
omitted.

As shown by the graph of non-trivial transitions shown in figure 19(a), there
exists a cycle C3 → C4 → · · · → C10 → C3. The periodically changing cluster label in
figure 19(b) indicates the existence of a recurrent dynamics. The original cluster index
corresponds to two sets of discrete snapshots in the Poincaré section, with interval
approximate to the periodic detected in the L2. From the transition matrix of figure 19(c),
the two clusters C1 and C2 are not part of the cycle, but they form the transient part of the
dynamics, before entering the cycle. This indicates that the low-frequency modulations
only start after the high-frequency oscillations have started in the second layer. In other
words, the low frequency does not exist during the building process of the vortex shedding,
but appears after the vortex shedding has developed to a certain degree.
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Figure 20. Autocorrelation function for τ ∈ [0, 1500) from DNS (black solid line) and the hierarchical
network model (red dashed line) in the three layers: (a) L1, (b) L2 and (c) L3, at Re = 105.

From the residence time matrix of figure 19(d), the number of snapshots that belong
to the cycle in the Poincaré section, determined by averaging over multiple trajectories,
is 11.41. The clustering analysis in the second layer L2 indicates that the trajectories
periodically hit the Poincaré section with 8.45, by summing up the elements in the
blocks from C3 to C10 in figure 19(d). Hence, the resulting period of the cyclic process,
considering both frequencies, is around 96.41, which is very close to the real period of
97.10 determined from the DNS.

4.4.4. Dynamics reconstruction of the hierarchical network model at Re = 105
Figure 20 shows the autocorrelation function of the DNS and the HiCNM in the three
layers. The autocorrelation function of the DNS identifies the two dominant frequencies
of the dynamics. In layer L1, no oscillation can be identified, and the RMSE of the
autocorrelation function is R1

rms = 22.20. In layer L2, the autocorrelation function of the
model matches well with the high-frequency oscillations. The low-frequency oscillations
can be also found, but the amplitude does not fit well. The error is R2

rms = 1.52, which is
good enough for the accuracy. In layer L3, the amplitude of the low-frequency oscillations
can be better reproduced. The error is further reduced to R3

rms = 0.77 with higher accuracy.

4.5. Hierarchical network model at Re=130
At Re = 130, the asymptotic dynamics is chaotic. We apply the clustering Algorithm 1 first
to the low-pass filtered data set (§ 4.5.1), before considering some typical flow regimes in
the subclusters (§ 4.5.2).

4.5.1. Hierarchical network model in layer 1
In the first layer, the filtered data set is used to analyse the mean-field dynamics with
K1 = 11 clusters. The detected frequency associated with the coherent component ũ is fc =
0.1225. The clustering Algorithm 1 is applied to the data set, and the non-trivial transitions
are shown in the two-dimensional subspace [γ1, γ2]T of figure 21. Four trajectories are
found, each issued from one of the three steady solutions. The symmetric steady solution
and the two asymmetric steady solutions respectively belong to clusters C1, C8 and C10.
These clusters evolve through C1 → C2 → C3, C8 → C9 and C10 → C11 before entering
into the same chaotic cloud, consisting of the remaining clusters.
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Figure 21. Graph of transitions between clusters in layer 1 at Re = 130, displayed as in figure 9.

There is no obvious periodic block of oscillating dynamics in the transient dynamics, as
illustrated by the cluster labels of figure 22(a). However, the initial destabilizing process
is characterized by a very long residence time in the clusters to which the steady solutions
belong. From the transition matrix of figure 22(b), three transitions lead to the chaotic
region with 100 % probability, as P3 4, P9 6 and P11 4. Each cluster in the chaotic cloud
has at least two possible destinations, with nearly equal probability. The hidden transition
dynamics for this chaotic regime will be analysed in the next layer. The residence time
matrix of figure 22(c) shows four black filled circles associated with clusters C1, C8, C10
and C2. The steady solutions belong to the first three, while the symmetric limit cycle
belongs to C2, as it will become clear in the next sections.

4.5.2. Hierarchical network model in layer 2
In the second layer L2, we focus on the clusters associated with four typical states
detected in layer L1: the destabilizing state from the symmetric steady solution in C1,
the destabilizing state from the (upward) asymmetric steady solution in C10, the transient
state with long residence time before chaos in C2 and the chaotic state in the group of
clusters C4, . . . , C7.

The destabilizing state in the cluster C1
Cluster C1 gathers snapshots in the initial stage of the instability starting from the

symmetric steady solution. In the second layer L2, the snapshots of C1 are dispatched into
K2 = 10 subclusters C1, k2 , with k2 = 1, . . . , K2. Figure 23 shows the transient trajectories
with the centroids in the [γ1, γ2]T plane.

Similar to figure 13(a), the snapshots of figure 23(a) form two diverging trajectories
spiralling out of the centre [0, 0]. A loop is formed between the subclusters C1, 1 and C1, 2
in the inner zone. In the outer zone, a cycle appears with the periodic trajectory C1, 3 →
· · · → C1, 10 → C1, 3. Figure 23(b) shows two trajectories leaving C1, 1. The original
snapshot index is m = 1, . . . , 4878 and m = 15 001, . . . , 19 882, corresponding to the
initial stage of the instability.
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transition matrix, (c) residence time matrix, displayed as in figure 10.
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Figure 23. Cluster-based analysis in layer 2 at Re = 130 for C1: (a) graph of non-trivial transitions between
clusters, as in figure 9, (b) transition illustrated with cluster label, (c) transition matrix, (d) residence time
matrix, as in figure 10. Two trajectories pass through C1 in the parent layer, one with m2 = 1, . . . , 4878 and
another with m2 = 4879, . . . , 9760.

The transition matrix in figure 23(c) corroborates this periodic cycle. The black filled
circle in figure 23(d) marks out the transition with a long residence time, due to the
unstable centre that belongs to cluster C1, 1.

The transitions C1, 1 → C1, 8, C1, 2 → C1, 3 and C1, 2 → C1, 10 correspond to the
departing dynamics out of the inner zone, due to the development of the instability. We
also note the returning transitions C1, 8 → C1, 2 and C1, 9 → C1, 2. However, the latter do
not mean that the flow actually returns back to the destabilizing centre, as both trajectories
are spiralling out of the centre. This confusing result comes from the clustering process.
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Figure 24. Cluster-based analysis in layer 2 at Re = 130 for C10: (a) graph of non-trivial transitions between
clusters, as in figure 9, (b) transition illustrated with cluster label, (c) transition matrix, (d) residence time
matrix, as in figure 10. A sole trajectory passes through C10 in the parent layer with m2 = 1, . . . , 2782.

The edge between the inner and outer zones is not well defined, due to the varying density
distribution of snapshots along the arms of the spirals. Cluster C1, 2 overlaps the outer
zone, to the difference of cluster C1, 1, which fully belong to the inner zone. If we ignore
the loop in the inner zone and merge C1, 1 and C1, 2, it shows a dynamical evolution from
one cluster to the cycle of a group of clusters.

The destabilizing state in cluster C10
Cluster C10 contains the trajectory spiralling out from the upward-deflected asymmetric

steady solution, as shown in figure 24(a). The snapshots are dispatched into K2 = 10 of
subclusters C10, k2 , with k2 = 1, . . . , K2. Together with figure 24(b), it shows a one-way
transition, departing from the unstable centre with a sparse spiral. The original snapshot
index is m = 40 001, . . . , 42 782 for the initial stage of the destabilization from one
asymmetric steady solution.

The graph of figure 24(a) is different from the graphs of figures 13(a) and 23(a),
the latter being associated with the symmetric steady solution. The flow destabilization
from the asymmetric steady solution develops faster than from the symmetric steady
solution, as illustrated by the linear growth rates σsym = 0.032 and σasym = 0.106 of the
respective pairs of unstable eigenmodes. As a result, the distribution of snapshots is sparser
in figure 24(a) than in figure 23(a). As indicated by figure 24(b), 93.2 % of the 2782
snapshots of cluster C10 belongs to subcluster C10, 1. The flow quickly travels through all
the remaining clusters in only 188 snapshots.

The centroids of figures 23(a) and 24(a) have two main differences: (i) the inner jet is
symmetric in the centroids of figure 23(a) while it is deflected upwards in the centroids
of figure 24(a); (ii) the von Kármán street of vortices of figure 23(a) exhibits positive and
negative vortices well apart from each other in the y-axis. In figure 24(a), the positive and
negative vortices are of a larger strength and adjacent to the x-axis, together with a longer
shear layer.

Transient regime before chaos in cluster C2
Cluster C2 contains two transient trajectories which connect the symmetric steady

solution in C1 to the chaotic cloud, with the original snapshot index m = 4879, . . . , 5966
and 19 883, . . . , 20 969.
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Figure 25. Cluster-based analysis in layer 2 at Re = 130 for C2: (a) graph of non-trivial transitions between
clusters, as in figure 9, (b) transition illustrated with cluster label, (c) transition matrix, (d) residence time
matrix, as in figure 10. Two trajectories pass through C2 in the parent layer, one with m2 = 1, . . . , 1088 and
another with m2 = 1089, . . . , 2175.

Figure 25(b) shows that the flow periodically travels through the ten subclusters in the
child layer L2 of cluster C2. As for the centroids of figure 25, the alleys of vortices do not
cross the x-axis. The closed transition C1 → · · · → C10 → C1 is further evidenced in the
transition matrix of figure 25(c). The residence times of figure 25(d) are rather uniform
and the averaged period is 6.62.

The chaotic state in the group of clusters C4, . . . , C7
When dealing with the chaotic dynamics, considering each cluster C4, . . . , C7 separately

is possible. However, instead of building a network model for each cluster separately, we
can build an overall model for these four clusters in the chaotic regime. Therefore, for
analysing the chaotic dynamics, we consider all the clusters that belong to the chaotic
cloud in layer L1 as a whole.

From figure 22(a), all four trajectories will reach the same chaotic attractor described by
the chaotic clusters, with the original snapshot index m = 6281, . . . , 15 000, 21 301, . . . ,

30 000, 33 365, . . . , 40 000 and 43 068, . . . , 50 000. In figure 26, the closed orbit of the
clusters C1 → · · · → C6 → C1 is formed, with a relatively high probability of transition
between the successive clusters. The flow field of the centroids of the first six clusters
form a complete cycle of vortex shedding. This is interesting, as it recalls the periodic and
quasi-periodic dynamics respectively observed at Re = 80 and Re = 105. The periodic
block of the transition matrix of figure 27(b), from C1 to C6, corroborates the existence
of the periodic dynamics. The centroids of the clusters in the cycle present a similar
structure of coherence, as can be seen in figure 26. There are also other possible transitions
from clusters on this orbit to the remaining clusters with much smaller probability. The
residence times shown in figure 27(c) for each cluster on the orbit are uniform, and the
averaged period along the complete cycle is 7.78 by summing up the elements in the block
from C1 to C6.

The remaining clusters C7, . . . , C10 have multiple destinations with quasi-random
possibilities. Even though the probabilities of these random transitions are small, they
contribute to the chaotic dynamics of the flow field, with recurrent transitions C1 →
C10, C9 → C1, and so on. The flow fields of the associated centroids are shown in figure 26.
Their structure looks like distortions of the vortex shedding cycle formed by the first six
clusters. The network model indicates that the fully chaotic state still contains a main cycle
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10

5

0
1 8720 17 420 24 056 30 989

1

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10 1

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10

1.0
3

2

1

0

0.5

0

km
2

m2

Ck

Cj Cj

Pjk Tjk

Ck

(a)

(b) (c)

Figure 27. Cluster-based analysis in layer 2 at Re = 130 for the chaotic clusters of L1: (a) transition illustrated
with cluster label, (b) transition matrix, (c) residence time matrix, as in figure 10. All four trajectories reach the
chaotic clusters, with m2 = 1, . . . , 8720, 8721, . . . , 17 420, 17 421, . . . , 24 056 and 24 057, . . . , 30 989.

of clusters associated with a periodic vortex shedding, together with the random jumping
to the clusters associated with a stochastic disorder in the wake. In this case, the transition
matrix can be used to build a stochastic model, as shown in Appendix D.
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Figure 28. Autocorrelation function for τ ∈ [0, 1500) from DNS (black solid line) and the hierarchical
network model (red dashed line) in the two layers: (a) L1 and (b) L2, at Re = 130.

4.5.3. Dynamics reconstruction of the hierarchical network model at Re = 130
Figure 28 shows the autocorrelation function of the DNS and the HiCNM in the two
layers. We stop the hierarchical modelling in layer L2, as both the transient and chaotic
dynamics can be fairly reproduced with a limited number of clusters. The autocorrelation
function of the DNS shows chaotic oscillations with a dominant frequency. In layer L1, no
oscillation can be identified, and the RMSE of the autocorrelation function is R1

rms = 6.94.
In layer L2, R2

rms = 3.42. The autocorrelation function of the model matches well with the
dominant frequency of the oscillations, but the R̂L2(τ ) value can hardly match.

5. Conclusion

We have proposed a data-driven modelling methodology, which consists of hierarchical
clustering and network modelling on top of the CROM. The hierarchical structure is
physically consistent with the weakly nonlinear model derived from the mean-field
consideration. The flow field is decomposed into a hierarchy of components, namely
the slowly varying mean-flow field, the dominant vortex shedding and the secondary
components. The resulting HiCROM can automate the modelling process based on
the representative states and systematically trace the flow dynamics on multiple scales,
involving multiple frequencies and multiple attractors. The cluster-based hierarchical
network model (HiCNM) presented in this work is a HiCROM using the directed network
to describe the non-trivial transitions between clusters. Based on the classical CNM, we
derived the HiCNM for the transient and post-transient dynamics of the two-dimensional
incompressible ‘fluidic pinball’, characterized by multiple invariant sets and dynamics, for
different Reynolds numbers.

The considered data set consists of snapshots of the velocity field computed from
the DNS starting with different initial conditions, which refer to four trajectories: two
mirror-conjugated trajectories starting in the vicinity of the symmetric steady solution
and the two others starting from the two asymmetric steady solutions. At the considered
Reynolds numbers, all the steady solutions are unstable. In this sense, the data set contains
the transient and post-transient dynamics involving all the invariant sets of the system.
The hierarchical modelling is based on the hierarchical clustering under the mean-field
consideration. In the first layer, the first k-means++ clustering algorithm is applied to the
low-pass filtered data and partitions the snapshots into different clusters, as in Algorithm 1.
The flow field fluctuations are responsible for the nonlinear mean-field distortions through
the Reynolds stress. As a result, the snapshots in different clusters exhibit different states
of slowly changing mean-flow field. The network model in the first layer focuses on the
global transitions between different invariant sets. The clustering result in the first layer
will guide the clustering process in the second layer. The second clustering process in
Algorithm 2 partitions the snapshots in the same cluster again into subclusters, according
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to the original data. Based on the subclusters, a new network model can be built with a
better interpolation of the local dynamics. The clustering process is similar to the divisive
hierarchical clustering, which can continue until each snapshot is a cluster. However, the
number of layers depends on the number of characteristic scales in the system, such as the
number of coherent frequencies or the fast and slow terms. Hence, two or three layers will
be enough to extract the transient and post-transient dynamics out of multiple invariant
sets and multiple frequencies in our case.

At Re = 80, the six invariant sets were well identified in the first layer of the HiCNM,
including the dynamics around three unstable steady solutions (C1, C12, C17), one unstable
symmetric limit cycle (C7) and two stable asymmetric limit cycles (C9, C11). The transient
dynamics between the multiple invariant sets, and the temporal development of the degrees
of freedom associated with the static symmetry breaking, are identified by the model in
the first layer. We further presented the model in the second layer involving the three
exact solutions: the destabilization of the symmetric steady solution in cluster C1, the
dynamics around the symmetric limit cycle in cluster C7 and the permanent regime on
the asymmetric limit cycle in cluster C9. Compared with a CNM with the same number
of clusters, the HiCNM preserves the advantage of automatable modelling, optimizes the
cluster distribution, and makes it interpretable.

For the quasi-periodic flow regime at Re = 105, the first two layers are identical to the
case at Re = 80. The HiCNM in the first layer identified the different invariant sets, and the
model in the second layer described the local dynamics on the invariant sets. We further
introduced the third layer to characterize the new coherent structures at low frequency.
The sub-division clustering in Algorithm 2 was applied on the entering snapshots of the
cluster C6,10. The low frequency was successfully identified, while the centroids identified
the tiny changes of the oscillating jet in the near wake.

At Re = 130, three unstable steady solutions and one chaotic attracting set have been
caught in the first layer. The chaotic zone was divided into several clusters. In the second
layer, we focused on the local structures around the invariant sets. We determined the
dynamics of the initial transients from the unstable steady solutions in C1 and C10. In
addition, to preserve the continuity of the data, the second clustering process was applied
to the group of clusters in the chaotic regime Ck1, k1 = 4, . . . , 7. An unstable cycle was
identified for the chaotic regime, characterized by random transitions from and to the
chaotic clusters with low probability.

Compared with other reduced-order modelling strategies, HiCROM inherits the
excellent recognition performance of classical CROM, and provides a universal modelling
strategy for identifying transient and post-transient dynamics in a self-supervised manner.
Multiple transient dynamics can be considered at the same time, which gives a global
view of the trajectories between the different invariant sets. Thus, it provides a better
understanding of the complex flow dynamics for the multiscale, multi-frequency and
multi-attractor problem. To summarize, the HiCNM applied in this work has the following
advantages comparing with classical CNM:

(i) A more robust clustering result with the hierarchical modelling under the mean-field
consideration, and a better distribution of the clusters.

(ii) Better ability to identify the topology on the multi-attractor and multiscale problem.
HiCNM identifies transient trajectories between different invariant sets, and locally
constructs new CNMs for the different invariant sets if necessary.

(iii) No need to find a good compromise between the resolution (the number of clusters)
and the network complexity. All clustering algorithms use 10–20 clusters, and
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the number of clusters depends on the accurate representation needs of the scale
involved in the layer. The number of layers depends on the number of characteristic
scales in the system. The clusters of different scales or characteristics can be
systematically distributed in multiple layers with a clear hierarchy.

(iv) The sub-division is flexible according to the actual needs. We can freely choose one
or more object clusters that need to be divided in the next layer to preserve the time
continuity and the local characteristics of the data.

The price is the need for a physical intuition guiding the hierarchical clustering and
modelling by adjusting the design parameters. As exemplified in this work, the HiCNM
at Re = 80 is fully automated. After reaching the second layer, the HiCNM can well
identify the mean flow and the coherent structure with a single frequency. The deeper
layers cannot identify other meaningful dynamics. At Re = 105, the third layer can identify
the secondary frequency with the entering snapshots in one cluster in the second layer. At
Re = 130, we merge the asymptotic chaotic clusters in the first layer together, and build a
model for them in the second layer to maintain their dynamic continuity. This sacrifices
automation but results in a better dynamic representation. We foresee other data-driven
methods for these decisions in future work to promote the automation of the hierarchical
network model.

In summary, HiCNM provides a flexible and automatable cluster-based modelling
framework for complex flow dynamics, and shows its ability and applicability to
identify transient and post-transient, multi-frequency, multi-attractor dynamics. Since the
Reynolds decomposition under the mean-field consideration is common for fluid flows, the
hierarchical strategy should be extendable to other flows. Especially for cases that require
high-resolution analysis with a large number of clusters, HiCNM greatly simplifies the
complexity of the analysis and improves its interpretation. For high turbulence without
frequency boundaries, such as isotropic turbulence, it is reasonable to use a network model
first to check whether there is a grouping relationship between clusters, before deciding
whether a HiCNM needs to be constructed. HiCNM is promising for a variety of potential
applications, such as topology identification of the state space for complex dynamics,
recognition and analysis of the temporal evolution of degrees of freedom associated
with different types of instabilities (Hopf, pitchfork, etc.), and feature extraction of the
dynamical structure when different spatial/temporal scales are involved. An alternative
direction of this work is the HiCNM-based control, with the aim to find an optimized
control strategy from various control laws with multiple scales in different layers.
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Figure 29. Configuration of the fluidic pinball and dimensions of the simulated domain of the blockage ratio
B = 0.025. A typical field of vorticity at Re = 150 is represented in colour with [−1.5, 1.5]. The upstream
velocity is denoted U∞. An observation zone of size [−4D,+20D]× [−4D,+4D] is marked out with a red
dashed box.

Appendix A. Blockage effect in the fluidic pinball

We run the DNS with an enlarged computational domain with the blockage ratio B =
0.025, which is bounded by a rectangular box of size [−25D,+75D]× [−50D,+50D],
as shown in figure 29. The unstructured grid has 14 831 triangles and 29 961 vertices as
compared with the grid in § 2.1.

The vortices in the near wake 0 < x < 20D are concentrated in |y| < 4D. Linear
stability analysis of the symmetric steady solution indicates that the critical value of the
primary Hopf bifurcation does not change Re1 = 18, but the next bifurcations are found
for larger Reynolds numbers. The pitchfork bifurcation of the symmetric steady solution
is changed to Re2 = 81, but the transient and post-transient dynamics for different flow
regimes remain qualitatively the same, as shown in figure 30.

Enlarging the computational domain reduces the blockage effect, but the blockage is
practically difficult to suppress or even reduce. In this work, we are interested in the
richness of the dynamics to evaluate our method. The blockage is not critical as we have
similar numerical results for the transient and post-transient dynamics. How the location
of lateral boundaries, as well as upstream and downstream boundaries, affect the bounded
flow will be discussed in our future work.

Appendix B. Vertical transitions in the hierarchical network model

In figure 7, the snapshots entering into and leaving from Ckl−1 are marked out for each
trajectory by the characteristic function (3.15), and can be used to describe the vertical
transitions.

When a cluster in the parent layer Ckl−1 is activated, it also activates a horizontal
transition through all its subclusters in the child layer. The ports of entry and exit for

934 A24-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
05

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1105


N. Deng, B.R. Noack, M. Morzyński and L.R. Pastur
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Figure 30. Transient and post-transient dynamics of the fluidic pinball with the enlarged grid, illustrated with
the time evolution of the lift coefficients CL starting with the symmetric steady solution at different Reynolds
numbers: Re = 30 (a), 90 (b), 120 (c), 150 (d).

the subclusters are indicated by the entering and exiting snapshots. The entering snapshots
belong to the first activated subcluster in each trajectory. The horizontal transition through
subclusters ends with the exiting snapshots, and is forced to return to the parent layer. At
the next time step after the exiting snapshots, Ckl−1 and all its subclusters will deactivate.

With an additional condition from the subclusters of the child layer, the characteristic
function (3.15) can be defined as

χm
o,kl−1→kl

:=
{

1, if um−1 /∈ Ckl−1 & um ∈ Ckl−1,kl,

0, otherwise.
(B1a)

χm
e,kl−1→kl

:=
{

1, if um+1 /∈ Ckl−1 & um ∈ Ckl−1,kl,

0, otherwise.
(B1b)

The number of entering snapshots no and of exiting snapshots ne in each subclusters
Ck1,...,kl read

no,kl =
M∑

m=1

χm
o,kl−1→kl

, ne,kl =
M∑

m=1

χm
e,kl−1→kl

, (B2a,b)

where only the final subscript of the subcluster index in the current layer is indicated, and
as well in the following.

For the cluster Ckl−1 , the probability of vertical transition into and out of the child layer
Qo,kl and Qe,kl , are defined as

Qo,kl =
no,kl

no
, Qe,kl =

ne,kl

ne
. (B3a,b)

Note that
∑kl

kl=1 Qo,kl = 1 and
∑kl

kl=1 Qe,kl = 1.

B.1. An example of the hierarchical network model
An example of HiCNM is illustrated in figure 31. The model is constructed from the
full data set containing one or several individual trajectories of discrete state snapshots,
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Figure 31. An illustration of a hierarchical network model. The vertical structure describes the transitions
between the parent–child layers with dashed arrows: the red dashed arrows present the possible inlet from
the parent layer to the child layer, and the blue dashed arrows denote the outlet back to the parent layer. The
horizontal structure presents the transition between the subclusters with arrows. The numbers indicate the
possibility of each transition.

each starting from different initial conditions and converging toward possibly different
attracting sets. From the top to the bottom of this tree structure, only one cluster in each
parent layer has been chosen and divided into subclusters in the child layer. For the clusters
in each layer, we only indicate the subcluster number in the current layer.

The full data set is treated as one cluster C0 on the top, which ensembles all the
snapshots. The clustering algorithm in the first layer has divided the snapshots in this
cluster into eight subclusters. Two entering subclusters C1 and C6 are sketched with
the same probability, as could be found when the full data set contains two pathways
with equal probability in the state space of the system. The trajectories starting from
the two entering subclusters have no intersecting cluster, and return to C0 from their
respective existing subclusters, C5 and C8, with the same probability. The trajectory in
layer L1, C6 → C7 → C8 is a simple one-way transition. The trajectory C1 → · · · → C5 is
more complex, due to a possible return dynamics from C2 to C1. The clustering algorithm
works on the snapshots in cluster C3 and has divided them into five subclusters in the
second layer L2. For the vertical transition, only one entering subcluster has been found
but with three exiting subclusters, which means that the snapshots leaving cluster C3
belong to one of these three subclusters. The dynamics between the subclusters is a
simple one-way transition, but with a cycle C3,3 → C3,4 → C3,5 → C3,3, which indicates a
periodic dynamics. Next the clustering algorithm is applied to the snapshots in cluster C3,2,
resulting in four subclusters in the third layer L3. Among the subclusters, there exist two
entering subclusters and three exiting subclusters. We notice that C3,2,4 can work as either
an entering subcluster or an exiting subcluster. The reason is that the entering snapshots
and the exiting snapshots of C3,2 belong to the same subcluster in the child layer. A periodic
dynamics exists between the subclusters C3,2,1 → · · · → C3,2,4 → C3,2,1.
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A full dendrogram, as in figure 6, is also available if all the clusters in the parent layer
are divided. However, in actual practice, it is not necessary to divide every cluster in the
state space. The clustering algorithm in the first layer divides different invariant sets and
the transient states into different clusters. A classic CNM is used to describe the transient
dynamics between the invariant sets. In the second layer, the refined dynamics on the
invariant sets exhibits new interesting features. The snapshots are often concentrated close
to the stable/unstable invariant sets. Within the same invariant set, the snapshots have
a relatively homogeneous distribution according to certain rules. The local dynamics is
relatively simple and easy to extract because the clustering result depends entirely on the
distribution in the state space. The transient states from an unstable set to a stable set mix
the dynamical behaviour of different invariant sets. Hence, the clusters close to invariant
sets need to be divided again, namely close to steady solution, to metastable solution, or to
the stable solution. Usually, these clusters have some characteristics, like a large number
of snapshots in the cluster or multiple possible transitions to other clusters.

Appendix C. Clustering with POD

The computational cost can be significantly reduced with POD, as a lossless POD can
highly compress the flow field data to accelerate the clustering algorithm. The clustering
algorithm can be applied to the compressed data instead of the high-dimensional velocity
fields. In this work, the snapshots of velocity field are pre-processed by a POD, where
us(x) is the symmetric steady solution at the Reynolds number under consideration.
Compared with the classical POD method, the symmetric steady solution us(x) has been
used instead of the ensemble-averaged mean flow ū(x), because our analysis deals with
multiple invariant sets and the mean flow is not a Navier–Stokes solution, which has no
dynamical relevance. The fluctuating flow field can be decomposed on the basis of the
POD modes ui(x),

um(x)− us(x) ≈
N∑

i=1

am
i ui(x), (C1)

where the am
i are the mode amplitudes. A complete basis for the modal decomposition

is given when N = M (Berkooz et al. 1993). For our cluster-based analysis, the number
of modes could be reduced to N = 400 without loss of relevant information. The
pre-processing algorithm is detailed in Algorithm 3. The computational cost for the

Algorithm 3 Pre-processing the velocity field by POD

Input: um: snapshots of velocity field; us: symmetric steady solution
Output: ui: leading POD modes; am

i : mode amplitudes
1: compute POD modes ui, i = 1, . . . , N, for the data base {um(x)}, m = 1, . . . , M, with

choosing us as the base-flow;
2: compute the mode amplitudes am

i = (um − us, ui)�;
3: save the leading N POD modes and the corresponding mode amplitudes.

cluster analysis can be significantly reduced in the POD subspace (Kaiser et al. 2014;
Li et al. 2021), thus enabling an accurate compressed sensing of the original datasets.
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Figure 32. Time evolution of the cluster index: the reconstructed dynamics (red curve) with the same initial
cluster of the original dynamics (grey curve with coloured markers) for m2 = 1, . . . , 8720 (a); and probability
distribution of all m2 in figure 27 by a stochastic model using the transition matrix (b), at Re = 130.

The centroids of the velocity field based on the POD mode amplitudes now read:

ck = us + 1
nk

M∑
m=1

χm
k

N∑
i=1

am
i ui. (C2)

We note that this POD process is just an option for data compression to speed up the
clustering process, which can approximate the data distribution in a POD subspace with
high accuracy. We can even apply the cluster-based approach to a feature-based subspace
of the flow data, as Nair et al. (2019) who applied CROM to a three-dimensional phase
space of the drag and lift forces.

In contrast to the nonlinear reconstruction of flows using a POD basis, the cluster-based
approach neither decomposes the flow field nor extracts the dominant structures with the
most fluctuating energies. Instead, it gathers similar snapshots and represents them with
a linear combination of snapshots within the cluster. This combination is always in the
original data space and there is no projection comparing with a POD model. In addition,
the modelling process of the cluster-based method is automated based on the data topology
in the state space, which is even suitable for multiple invariant sets. The differences
between the cluster-based methods and the POD-based model have been discussed in
Kaiser et al. (2014), Li et al. (2021). As an extension, the HiCNM strategy provides a
multiscale solution for describing complex flow with transient dynamics.

Appendix D. Stochastic model for the asymptotic regime

In § 4, we have applied HiCNMs for the identification and analysis of complex dynamics
with multiple scales and multiple invariant sets. The centroids and cluster index provide a
concise representation of the original data set, and we can reconstruct the flow based on
the time evolution of the cluster index. From the cluster analysis, we use a transition matrix
to statistically record the possible motions between clusters, which can be used to predict
the evolution of the cluster index. Hence, the dynamics reconstruction can also come from
the stochastic model based on the transition matrix.

For a single trajectory, the transient dynamics is fully predictable and converges to
the asymptotic dynamics. A stochastic model for the transient dynamics is not suggested
because the clustering result may suffer from the multiscale problem, and some random
walks will be mistakenly introduced into the transition matrix, like the destabilizing stage
from the steady solution. In contrast, if there is no multiscale problem, all the transition
probabilities should be 1 due to the predictable transient dynamics. Hence, there is no need
to build the dynamics from a stochastic model and to discuss the probability distribution.
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The asymptotic limit cycle at Re = 80 and torus at Re = 105 are also fully predictable
as there is no random walk. Only for the chaotic dynamics in the asymptotic regime at
Re = 130, can the transition matrix be used to construct a stochastic model. According to
the current state in one of the clusters, it will choose the next destination according to the
probability of transitions. Based on the local dynamics for the chaotic state in the group
of clusters Ck1, k1 = 4, . . . , 7, the reconstructed dynamics and the probability distribution
provided by the stochastic model are shown in figure 32. The main cycle C1 → · · · →
C6 → C1 and the random walks to Ck2, k2 = 7, . . . , 10 have been fairly reproduced, with
the appropriate probability distribution.
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