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1. Introduction

A multi-partite number of order j is a j dimensional vector, the components
of which are non-negative rational integers. A partition of (n, ns, ..., 1)
is a solution of the vector equation

zk(nlk, n2k, ceny njk) = (nl, nz, ooy nJ) ........................ (1)

in multi-partite numbers other than (0, 0, ..., 0). Two partitions, which differ
only in the order of the multi-partite numbers on the left-hand side of (1),
are regarded as identical. We denote by p,(n,, ..., n;) the number of different
partitions of (n,, ..., n;) and by p,(ny, ..., n;) the number of those partitions
in which no part has a zero component. Also, we write p;(ny, ..., n;) for the
number of partitions of (n,, ..., #;) into different parts and p,(n,, ..., n;) for the
number of partitions into different parts none of which has a zero component.

By adaptations to j>1 of the celebrated Hardy-Ramanujan method (1)
for the j = 1 case, several authors have recently obtained asymptotic expressions
for p(n;, ..., n;), which are valid under certain restrictions upon the relative
rates at which the different », tend to infinity. Auluck (3) obtained a formula
for p,(n,, n,), where n, and n, are large but of the same order of magnitude,
i.e. the ratio n,/n, is bounded above and below, and, under the same conditions,
Wright (7) found asymptotic expressions for p.(ny, n,), where r =1, 2, 3
and 4. In his article, Wright also gave without proof the first few terms of
an asymptotic formula for log p,(n;, ..., n;), where every n, is of the same
order of magnitude. Meinardus (4) had just previously published a paper
in which he had found the first term of this formula for multi-partites. Later,
Wright (8) obtained asymptotic expressions for p.(n;, n,) which hold for
ni*®<n,<n?~ %, where r = 1,2, 3 and 4 and ¢, and &, are any fixed positive
numbers. This is a substantial relaxation of the restrictions imposed upon n,
and n, in both (3) and (7). In his article, Auluck also obtained a formula for
p1(ny, n,) when n, is fixed and n, is large, and Nanda (5) has shown that this
formula remains valid when n, is large, provided that n, = o(n?). In an article
in preparation, I extend Wright’s method to derive formulz for p,(n,, ..., n))
for r=1,2, 3 and 4 and n,...n;<A*!7%, where fi = min n, and &, is any
fixed positive number. In this article, I evaluate p,(n,, ..., n;) for r = 1 and 3
when one particular »; tends to infinity more rapidly than the fourth power
of every other n; by means of an extension of Nanda’s method 1 and I also

1 This problem was suggested to me by Professor E. M. Wright to whom I am also
grateful for much valuable advice in the course of the investigation.
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obtain an asymptotic formula for p,(n;, ..., n;) for r = 2 and 4 when one
particular #; tends to infinity more slowly than the cube root of every other n,.

The letters h, k, [, m, n, N, q, r, R, R’ and v represent non-negative integers
which may be fixed or variable according to the context and j is used for a
fixed integer greater than unity. C is a positive number, not necessarily the
same at each occurrence, which may depend upon j but not upon any #,.
When there is no statement to the contrary, the symbols O( ), o( ) and ~
refer to the passage of the #,; to infinity.

2. Asymptotic Formule for p,(n,, ..., n;)

It is easily seen that p,(n,, ..., n;) is a symmetric function of n,, ..., n; and
so, without any loss of generality, we may suppose that n;=n,=...2n;
Nanda (5) has shown that the asymptotic formula

3n2
pi(ny, ny)~ (%) {4/3n,(n,1)} " texp {n\/(%)}

J
as n;— o0 holds for n, = o(n}). If we write R ;= Y n,, the above formula
2

is seen to be a particular case of the following more general theorem.
Theorem 1. If n, = o(n?) for 2<I<j, then

pi(ny, ..oy mp)~ ('6%)%& <4J3n1 ﬁ n,!>—1exp {n\/<gﬂ>}
4 1=2 3

as ny—oo.
Asymptotic formulz can also be obtained for p.(n,, ..., n;) when r = 2, 3
and 4, and indeed the following theorems will be proved.

Theorem 2. If n; = o(n}) for 1<I<j—1, then
pa(ny, . nj)N(nl"'nj—l)nj_l{(nj_1)!}1_j(nj!)_l
as n;—> oo for 115 j—1.
Theorem 3. If n, = o(n?) for 2<1<, then

ARy i -1
ps(nys ..., ny)~ (12?1> (4.3*n§ 11 n,!> exp {n\/(%)}
n 1=2

as n,—co.
Theorem 4. If n; = o(n}) for 1<I<j—1, then

pa(ny, s n)~(nynp )V (= DI ()

as n;—oo for 15I<j—1.

3. Two Lemmas

We put
al(hl, ceny hj) = az(hl, ceny hj) = (1—xT...x.'}j)_1
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and
a3(h1, ceey hj) = a4(h1, reny hJ) - 1+x'{l...x.';j,

where | x; | <1 for 1</<j. Then we write

ﬁ(xl, ceey xj) = 1—[ a,.(hl, ceny hl)’
h hy

1 e
where, for r = 2 and 4, h,, ..., h; each take all positive integral values, while,
for r =1 and 3, h,, ..., h; each take all non-negative integral values except
hy = ...=h;=0. If we put p,(0, 0, ..., 0) = 1, we can easily verify from the
definitions of p,(n,, ..., n;) that

oo O
filxe o x) =3 ... Y pAny, ..., nxP X}
m=o m=o

forr =1, 2, 3 and 4.
Before proceeding with the proof of Theorem 1, we require the following

lemma.
Lemma 1. If, when 2<k < C and n; = o(n}) for 21k,

Pi(ys oo ) = (6%)%(4\/%1 1 n,!)_lexp{n \/(23&)}{1+ kaIO(rn;%’)}
n 1=2 r=1

as n,—> o0, and if

k o

q =]
S1(es s X0) ;.H H1 A=-xm~1= Y .. ZOEN:-..N(,(”I’ vy BOXT L XPK,

=1 1= m=0 m=

where N,21 for 1 <h=<gq, then, provided that

R =

=~
e

Nh = 0("?)’
1

63N;...Nq(nls teey nk)

' Rr+gq '} -1 k+R+
o o )

as ny— o0, where the constants implicit in the *“ O terms on the right-hand
side of (2) are independent of q.

Before we prove Lemma 1, we prove

Lemma 2. If k=0, m=1 and p is any fixed positive number, then
[4m~ 1]

(n—mr)¥*=Dexp {p,/(n—mr)}
= (2/pm)n** = Dexp (p/m){1+0(kn™ )+ 0(mn %)} ......... 3
as n— oo, provided that k = o(n*) and m = o(n?).

In order to prove Lemma 1, it is sufficient to show that Lemma 2 holds
when k and m are each o(n?), but it is evident from the following proof that
Lemma 2 remains true provided that k and m are each o(n?). If 0<r<%

E.M.S.—C

r=0
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and k=2, then
1-tkt=(1-D¥<1.

Also, for 05r<1,
1-3t-42 2(1-*<1 -4+

and 1f0-)"=s(1-0"'cs0-n"¥g1+4t

and, for all £1=0,
1—t=Zexp(—19).

Hence, for all k=0,

[4m=1n] k 2.2 _
r;() (1— —21':1—"><1— p';n: )exp( \/n> <T*n~ ¢ Dexp(—py/n)

tim” *n) dmr mr
5 (1) ee (- 20)
where X* denotes the sum on the left-hand side of (3). Therefore, since
= o(n?) and m = o(n?),
(2/nlpm){1 + O(kn™*)+ O(mn™*)}
<T*n= 6= exp (— py/m) S (2/nlpm){1+O(mn™H)}

and Lemma 2 follows immediately.
We now prove Lemma 1. From the definition of @y, (n,, ..., #;), we have

IA

N '] N 'md
aNl(nl, ceey nk)= Z cee 2 pl(nl—val, ooy nk—vak).

vy =0 vie =0

From Lemma 2, we obtain

-1
(4N, n1] #(Ric+ 1) k -1 .
Z pl(nl—val, n2, ceny nk) = ( > < \/3n1N1 IHZ n,!
vi=0 =

X eXp {n\/(zg )}{ i O(rnl'*)+0({Rk+3}nf*)+0(N1n1"*)}

6n1 AR+ 1) k -1 2n1 Rr+N¢+1 .
() ) (o8}

Clearly, when v, > BNflnl],
pi(ny—=Nyvy, nyy s m)Spy(3my], 135 . 1)
and therefore,
N7 'l
pi(ny —Nyvy, ny,y ooy 1)

vi=[4N] ml+1
4R k -1
<CN;1n1<:i"—;> (4\/3n1 I n,!> exp {n \/(%)}
4 1=2
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It follows that

IN] 'nal
Z pi(ny—Nyvy, nyy ooy my)

vi=0

4(Rk+1) k -1 /
= <6L21> (4\/3n1N1 I n,!) exp {n\/(gﬂ>}
n 1'=2 3
Rx+Ni+1
X {1+ > O(rnl"*)}.
r=1
Hence,

Oy, (nys .. 1)

4(Rit+1) -1 Rx+Ni+1

(8 ) e (]
T r=1
« ﬁ 1Mt ! 6n1 '*N‘_’_ n! 6&)'"‘
( 1)' (nl—le)! 77:2

n,! 6n, \ 4N 'nIN

+...+ —
(nl_[Nl_lnl]Nl)!<n2> }

6n, \HEEHD) k -1 2n, Rt Nyt1 -
=(n—2> <4\/3n1N1’H2n,!) exp{n\/(T)}{1+ Z1 0(""1*)},

since n, = o(n?) for 2<I<k. Next, if we assume that (2) holds for any positive

q
integers g, Ny, ..., N, such that Z N, = o(n?), an argument exactly similar
h=1
to the above shows that (2) remains true when ¢ is replaced by g+1 and
Nyp1 = o(n?). Lemma 1 follows immediately by inductive reasoning.

4. Proof of Theorem 1

The generating function of p,(n,, ..., n;+4) is

Ji(X 15 s Xy 1) = H (A=xit X~
hiy oo B4t
where the product is taken over all non-negative integers A, ..., b4, except
hy = ... = by, = 0. It follows that, for k=1,
fl(xl, seey xk+1) =f1(x1, seey xk)h H’: (l—x'il...xﬁ";f)"l, ......... (4)
1s eovs Ak +1

where the latter product is taken over all non-negative A, ..., i, and all
positive A, ,,. We write
[¢]
[T A=xtxf)™ =1+ Y AXfers oo 5)
Biy ooy B+t = .

where

Ay =Y TT Copp woevvervemreervenereenseenreeneeen. (6)
(n) m
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the sum being taken over all partitions of n of the form n =) mv,, and the

m

product over all the different parts m of the partition, and ¢, is the coefficient
of y" in g(y), where

g(y) = H H (1—=x}t. . xpy) ™!

hy = hk=0

and | y |<1. Also

I
]
118

log () Z log (1—x{'...x%y)

and so,

It follows that

m

k -
(21‘[ A {m 11:[1(1—x,"')} T et 0)

where the sum is taken over all partitions of n of the form n = va and
the product over all the different parts m of the partition.
. We now prove by induction that, if n, = o(n?) for 2</<j, then

pi(nys oy m))

- (%) (avam 11, m) ene{n (22 o+ ' 06ni ) 0
P 1'=2 r=1

as n;—0o0. In (5), Nanda has already demonstrated that (8) is true for j = 2.
Here, we assume that (8) holds for j = k, where k is any fixed positive integer
greater than unity. From (4) and (5), p,(ny, ..., ny+1) is equal to the coefficient
of x1'..x¢% in 4, fi(x1, ...» x,). We see from (6) that there is a one-to-one
correspondence between the terms of A, and the partitions of n. We therefore
divide the partitions of » into classes in which each partition has the same
number of parts and we make a corresponding division of the terms of A4,
into sets. For0<g=<n—1, the (g+ 1)th set has p{" ?(n) terms, where p"~9(n)
denotes the number of partitions of n into exactly n—gq parts. In the first set
there is only one term and its contribution to p,(n, ..., #;+1) 18 equal to the
coefficient of x{'...x* in ¢, , fi(*y, ..., X;). Also, from (7) and Lemma 1, the
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coefficient of x7'...x;* in ¢, , f1(Xy, ..., X;) is asymptotically equal to

Y [T tm= 2 (6_"21_>*‘R"+E.'m>
T

(tc+1) m
k -1
x(4\/3n 11 n,!) exp{n\/
=2
LRics1 k+1 -1
= (6—’12'-> (4\/3n1 I1 n,!) exp {n\/
n 1="2

provided that
- —_2y [ 6R '}(zv:"—nm. 1) Ri+1+1 _
nk+1! z H(vm!) 1m 2Vm (_21) m = 1+ Z O(rnl ’%)' ........ (9)
(me+1) m b =D

It is easily seen that any partition of n,,, into n,,,—q parts, where
g<4n,.,,, must contain at least n, ., —2q units. Therefore, for any particular
partition ), mv, of m, into my,—gq parts, []vn!2A,., -2, where

Ay —2g =gy —2q)! for g<idng.q and A, ,,—2,=1 for g24in,,,. Also,
P(1"k“_q)("k+1) = pi(q) for g<4n,,; and P(lm‘“ q)("k+1)<l’1(4) for g>3m .
Hence, in order to prove (9), it is sufficient to show that

ne+1—1 6n1 —4q -1 Ryiy1+1 _

Zl pl(Q) ? (nk+1!)Ank+l_2q = Zl 0("’11 %) ............. (10)
q= r=

The Hardy-Ramanujan formula (1) for p,(g) shows that, for all g>0,

p1(@)<Cq™* exp {n/(24/3)}.
Therefore,

ney1—1 6111 —4q _4
q;z pl(q) — (nk+l!)Ank+1‘2q

T

41— 1 —4q
q=2 3 e
meyr—1
=C ) exp {n\/<2ﬁ> ~logg—1q log( 26'1' )}
g=2 3 TN+

Agse1—1 6n1
<C ) expq—3qlog|5—
7=2 TR+

= 0("1?+ 1"1—*)

since ng 4, = o(n?), and (10) follows immediately.

To complete the proof of (8), we have only to show that the contributions
to py(ny, ..., nyy ) from the other terms of 4,,,, can be neglected. By repeated
applications of a similar argument to that employed in determining the co-
efficient of x7'...x;* in ¢, ,, fi(xy, ..., X;), we can show that the coefficient of
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xit.xg in [e,, fi(xy, ---» X;) is asymptotically equal to
m

6n s}(Ru+§_vm) k -1
(—21> (4\/3n1 I »! Hv,,,!)
1 m

n =2 Rie+Zvm+1
m

X exp {n \/ (%)}{1 + ) O(rnl'z)}.
r=1
It therefore remains to show that

-1 6n1 ‘}(?ﬂ"m""k-ﬂ) Ri+1+1 _
! Y, TTORYD <_ =1+ 'Zl O(rni?);

2
(1) m n

and this follows in exactly the same manner as did (9). Finally, since n, = o(n?)
for 2</<j, Theorem 1 is an immediate consequence of (8).

5. Proof of Theorems 2, 3 and 4
In (1), Hardy and Ramanujan obtained the asymptotic formula

p3(ny) = (4.3*n}) ™ exp {n/(n,/3)}{1 + O(n1 )}
as n;— o0 and we can easily deduce, by a similar method to that employed by
Nanda (5), that

pi(ng, ny) = <%>’m {4,3*n‘{'(n2 D}~ lexp {n \/ (%)}{1+ nzir:l O(rn;i)}
r=1

as n,— o0 for n, = o(n}). The extension to the general j-partite number can
be carried out exactly as in the proof of (8) and Theorem 3 follows immediately,
since n; = o(n?) for 2<I< .

We now prove Theorems 2 and 4. We denote by p$“ ?(n, ..., n;) the
number of different partitions of (n,, ..., n;) into exactly n;—qg parts in which
no part has a zero component and we write p$”~?(ny, ..., n;) for the number
of partitions of (n,, ..., n;) into exactly n;—g unequal parts in which no part
has a zero component. For any particular partition Y, mv,, of n ; into exactly

n;—q parts, the parts can be arranged in (n;—q)!/ ][ v,! distinguishable ways.

ny—q
If ). ny is any partition of n, into n;—gq parts for 2</< j, then the maximum
k=1

number of distinct partitions of (ny, ..., n;) into n;—gq parts in the set

ny—q
kZ1 (g Moy -1, mjk)s
where, for 2<I< j, my,, ..., my, ,,-, Tun through the distinguishable arrange-

nyj—q
ments of 7y, ..., 1y, n—g is Obtained when )’ ny is a partition of n, into
1

unequal parts. It follows that
R st _ _
P, ey m)S{— W T 800 3 T10a7

By Q)

https://doi.org/10.1017/50013091500025025 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500025025

ASYMPTOTIC FORMULA 39

where the sum is taken over all partitions of n; into n;—q parts of the form
n; =Y mv, We also have
m

POy, -y n)Z {1 H peTOm) X [1omH7"

(nj,q) m

Since
PN ny, ..., n)S PP O(ny, ..., ny)
by definition, we obtain

{(n;— !y * H Py Y, [TD'Sp8 2(ny, ..., 1n))

(nj,q) m

=P Ty, - n)S{(n— P! H Py O(ny) Y, 1'[(v Dt (1D)

(nj, q

Next, we use the formula of Erd6és and Lehner (2),

p®(n)~ kl' (Z_ i)
as n—oo for k = o(n?), in the form, more convenient for our present purposes,
pP(n) = n* "1k — D1} {1+ o(1)}.
We see that
p(n) = p{n—th(k—1)}
= {n—$k(k— D} {ki(k— 1)1}~ {1 +0(1)}
= n* " kW k-1 {1 +0(1)}

as n—co, provided that k = o(n*). Therefore, since n; = o(nf) for 1< j-1,

we obtain
(nyon )T (=g =P Z H(v DTH{1+o(1)} < p " (ny, ..., n))
<Py, s ) E(nymy o)UY 1{(n —g—=D3' Y [T H{i+01)} ...(12)

nqu

from (11). By putting g = 0 in (12), we obtain
(g ) (=D ) T {1+ o)} S P8y, -y 1))
S8y, o n)S(ny.ny o) 1{(nj—1)!}1""(nj!)'1{1+o(1)}

and, since
nyj~—1
Pz("u Rt/ Z p("'l q)(nl’ seey nj)
q=0
and
ny—1
Pa(ny, -y ZOP("’ D (ng, ...y n;,
q=
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we can see from (12) that Theorems 2 and 4 are proved if we show that
nj— 1

q;l (nl...nj_l)"‘{(nj—1)(n_i—2)...(nj—q)}""l(n_,-!)("zq)I"_l[(v,,,!)"1 = o(1). (13)

Now, since any partition of n; into n;—g parts, where g <4n;, must contain
at least n;—2g units, we have ]‘[v,,,!gA,,,_z,,, where A,,_,, = (n;—2q)! for
- m

g<in; and A,,_,,=1 for g24n;. Also, p(z"f"’)(nj) = p,(q) for g<in; and
P~ (n D <p2(q) for g>4n;. Therefore, since the Hardy-Ramanujan formula
(1) for p,(g) shows that, for all g>0,

p2q)<Cq™" exp {n/(24/3)},
the left-hand side of (13) is less than

ey 2q -g,(j+1)
C Y q lexpizn [[ )} (ng...nj— ) {11
a=1 3
nZt 2q Hy...R;
=C exp<im [[ =] —logg—qlog| L——=1
q;l Xp{\/(3> 849—4q g( n§+1 )}

ny—1
<C'S exp {—&q log ("—n”—l>} = o(1),

q=1 5

since n; = o(n}) for 1<I< j—1.
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