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Abstract

We consider a finite dam under the P M
λ,τ policy, where the input of water is formed by a

Wiener process subject to random jumps arriving according to a Poisson process. The
long-run average cost per unit time is obtained after assigning costs to the changes of
release rate, a reward to each unit of output, and a penalty that is a function of the level
of water in the reservoir.
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1. Introduction

Since Faddy (1974) introduced a P M
λ policy to a finite dam with input formed by a Wiener

process, the model has been generalized in various ways by many authors. Lam (1985) and
Lam and Lou (1987) introduced a more general policy, the P M

λ,τ policy, to the finite dam with
input formed by a Wiener process and obtained the long-run average cost per unit time after
assigning costs to the changes of release rate, a reward to each unit of output, and a penalty
depending on the level of water. Lee and Ahn (1998) applied the P M

λ policy to an infinite
dam with input formed by a compound Poisson process. Abdel-Hameed (2000) studied the
P M

λ,τ policy in the infinite dam in which the input process is a compound Poisson process with
positive drift. Bae et al. (2003) generalized Abdel-Hameed’s model to the case of a finite dam
when the input is formed by a compound Poisson process and the level of water between inputs
decreases linearly at a constant rate. Bae et al. (2003) obtained the long-run average cost per
unit time after assigning the same costs to the dam as used by Lam (1985).

In this paper, we consider a finite dam under the P M
λ,τ policy, where the input process is

a Wiener process subject to compound Poisson jumps. The level of water is initially set at 0
and thereafter follows a Wiener process with drift µ (−∞ < µ < ∞), variance σ 2 > 0, and
reflecting barriers at both 0 and V , where V is the capacity of the reservoir. Meanwhile, the
level of water also increases in jumps due to instantaneous inputs, such as rain, which occur
according to a Poisson process with rate ν > 0. The amounts of instantaneous inputs are
independent and identically distributed with distribution function G and mean m. If the level
of water exceeds V after an instantaneous input, then we assume that the amount of water
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exceeding V overflows immediately, so that the level of water becomes V . We also assume that
νm + µ > 0 so that the water level eventually increases. At the moment when the water level
increases to cross a threshold λ (0 < λ < V ), we start to release water at a constant rate M > 0.
Note that the water level now follows the Wiener process with drift µ − M and variance σ 2,
which still has 0 and V as reflecting barriers and is subject to compound Poisson jumps. We
continue to release water until the level reaches τ (0 < τ < λ), and at this moment we stop.
We do not release any more water until the level of water exceeds the threshold λ again.

Our model reduces to the model of Lam (1985) when ν = 0, and to that of Bae et al. (2003)
when σ 2 = 0 with µ < 0. After we assign the same costs to the dam as used by Lam (1985)
and Bae et al. (2003), we determine the long-run average cost per unit time.

2. Long-run average cost per unit time

Let Z(t) denote the level of water at time t > 0. We assign four costs to the dam. The
cost of changing the release rate from 0 to M is given by K1M , and the cost of changing the
release rate from M to 0 is given by K2M . A reward is given to each unit of output while the
water is being released. A penalty function f (z) is assigned to the dam per unit time when
Z(t) = z (0 ≤ z ≤ V ). Consider the points where Z(t) falls to τ for the first time after we
start to release water. These are the points at which we close the gate of the dam. Note that
the sequence of these points forms an embedded delayed renewal process. From now on, we
call the period between two successive renewal points a cycle. Let T0 and TM denote, in a
cycle, the time periods of the release rate being equal to 0 and M , respectively. That is, T0 is
the time period from a renewal point to the point where Z(t) increases to cross λ for the first
time and TM is the time period from the latter point to the next renewal point. Note that, in the
model of Lam (1985), the level of water increases to cross λ always in a continuous path and in
Bae et al. (2003) always by a jump. In our model, however, Z(t) increases to cross λ in both
ways. We denote the water level process by Z0(t) during T0 and by ZM(t) during TM .

It can be shown that the expected total cost during a cycle is given by

(K1 + K2)M + E

[∫ T0

0
f (Z0(t)) dt

∣∣∣∣ Z0(0) = τ

]
− M E[TM ]

+ E

[
E

[∫ TM

0
f (ZM(t)) dt

∣∣∣∣ ZM(0) = Z0(T0), Z0(0) = τ

]]
.

By making use of the renewal reward theorem (Ross (1983, p. 78)), we can see that the long-run
average cost per unit time is given by

C(M, λ, τ) = E[cost during a cycle]
E[length of a cycle]

= KM + w(τ) − M E[TM ] + E[u(Z0(T0)) | Z0(0) = τ ]
E[T0] + E[TM ] ,

where K = K1 + K2,

w(x) = E

[∫ T0

0
f (Z0(t)) dt | Z0(0) = x

]
, for 0 ≤ x ≤ λ,

u(x) = E

[∫ TM

0
f (ZM(t)) dt | ZM(0) = x

]
, for τ ≤ x ≤ V.
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3. Evaluations

In this section, we evaluate the functions w(x) for all 0 ≤ x ≤ λ, u(x) for all τ ≤ x ≤ V ,
and the distribution of Z0(T0), given that Z0(0) = x for all 0 ≤ x ≤ λ, by establishing
backward differential equations and converting the equations into renewal-type equations. Then
w(τ) is nothing but w(x)|x=τ and E[u(Z0(T0)) | Z0(0) = τ ] is easily obtained from u(x) by
conditioning on Z0(T0) while setting x = τ . Note also that E[T0] and E[TM ] can easily be
derived from w(τ) and E[u(Z0(T0)) | Z0(0) = τ ] by setting f ≡ 1. Throughout this paper,
we denote the Wiener process with drift µ, variance σ 2, and reflecting barrier 0 by B0(t), and
the Wiener process with drift M∗ = µ − M , variance σ 2, and reflecting barrier V by BM(t).
We also denote the increment of B0(t) in an interval of length h by �0, and the increment of
BM(t) in an interval of length h by �M .

3.1. The function w(x) for 0 ≤ x ≤ λ

To evaluate w(x), we first need to show that w(x) satisfies the boundary conditions given in
the following lemma.

Lemma 1. We have w(λ) = 0 and w′(0) = 0, where the prime denotes differentiation.

Proof. It is clear that w(λ) = 0, since the water level is already at λ. To show that w′(0) = 0,
we adopt a similar argument to that given by Cox and Miller (1965, pp. 231–232). Suppose
that Z0(0) = 0. After time h, let p be the probability that B0(t) in Z0(t) makes an increment
�0 = O((h)1/2) and let q be the probability of B0(t) still being at 0. Then

w(0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E[w(�0)] + O(h) with probability (1 − νh)p,

w(0) + O(h) with probability (1 − νh)q,

E[w(Y )] + O(h) with probability νhG(λ),

O(h) with probability νh(1 − G(λ)),

where Y is the random variable with distribution G. Hence, we obtain

w(0) = (1 − νh)(p E[w(�0)] + qw(0)) + νh

∫ λ

0
w(y) dG(y) + O(h).

Making a Taylor series expansion of w(�0) about 0 gives

w(0) = (1 − νh)(p[w(0) + E[�0]w′(0)] + qw(0)) + νh

∫ λ

0
w(y) dG(y) + O(h).

Solving this equation for w′(0) and letting h → 0, we can see that w′(0) = 0.

We now derive the backward differential equation for w(x). Suppose that Z0(0) = x,
0 ≤ x ≤ λ. Conditioning on whether or not a jump occurs during [0, h] gives

w(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

[∫ h

0
f (B0(t)) dt + w(x + �0)

]
if no jump occurs,

E

[∫ h

0
f (B0(t)) dt

]
if a jump occurs and Y ≥ λ − x − �0,

E

[∫ h

0
f (B0(t)) dt + w(x + �0 + Y )

]
if a jump occurs and Y < λ − x − �0.
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Hence, we obtain

w(x) = (1 − νh) E

[∫ h

0
f (B0(t)) dt + w(x + �0)

]
+ o(h)

+ νh E

[∫ h

0
f (B0(t)) dt

∣∣∣∣ x + �0 + Y ≥ λ

]
P(x + �0 + Y ≥ λ)

+ νh E

[∫ h

0
f (B0(t)) dt + w(x + �0 + Y )

∣∣∣∣ x + �0 + Y < λ

]

× P(x + �0 + Y < λ).

Making a Taylor series expansion of w(x + �0) gives

w(x) = (1 − νh)

(
E

[∫ h

0
f (B0(t)) dt

]
+ w(x) + E[�0]w′(x) + E[�2

0]
2

w′′(x)

)

+ νh E

[∫ λ−x−�0

0
w(x + �0 + y) dG(y)

]
+ o(h).

Re-arranging this equation, dividing by h, and letting h → 0 yields

0 = f (x) + µw′(x) + σ 2

2
w′′(x) − νw(x) + ν

∫ λ−x

0
w(x + y) dG(y). (1)

For the convenience of analysis, we define w̄(x) = w(λ − x).

Lemma 2. The function w̄(x) satisfies the renewal-type equation

w̄(x) = w̄′(0)x − 2

σ 2

∫ x

0
Fλ(t) dt +

∫ x

0
w̄(x − t) dW(t),

with boundary conditions w̄(0) = 0 and w̄′(λ) = 0, where ρ = νm, Fλ(x) = ∫ x

0 f (λ − t) dt ,
and W(x) = ∫ x

0 (2µ/σ 2 + (2ρ/σ 2)Ge(t)) dt (where Ge(t) = (1/m)
∫ t

0 (1 − G(y)) dy is the
equilibrium distribution of G).

Proof. From (1), we can see that w̄(x) satisfies

0 = f (λ − x) − µw̄′(x) + σ 2

2
w̄′′(x) − νw̄(x) + ν

∫ x

0
w̄(x − y) dG(y). (2)

Integrating both sides of (2) with respect to x, with the boundary condition w̄(0) = 0, we obtain

σ 2

2
w̄′(x) = σ 2

2
w̄′(0) + µw̄(x) − Fλ(x) + ν

∫ x

0
(1 − G(x − y))w̄(y) dy. (3)

If we integrate (3) with respect to x, then we obtain

w̄(x) = w̄′(0)x − 2

σ 2

∫ x

0
Fλ(t) dt +

∫ x

0
w̄(x − t)

(
2µ

σ 2 + 2ρ

σ 2 Ge(t)

)
dt.

Hence, we obtain the given renewal-type equation, as required.
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It is well known (see, for example, Asmussen (1987, p. 113)) that the unique solution of the
renewal-type equation in Lemma 2 is

w̄(x) = w̄′(0)

∫ x

0−
(x − t) dM(t) − 2

σ 2

∫ x

0
M(x − t)Fλ(t) dt, (4)

where M(x) = ∑∞
n=0 W(n)(x). Here, W(n) denotes the n-fold Stieltjes convolution of W , with

W(0) being the Heaviside function. To find w̄′(0), we differentiate (4) with respect to x, and
set x = λ with boundary condition w̄′(λ) = 0; then we obtain

w̄′(0) = (2/σ 2)(
∫ λ

0 M ′(λ − t)Fλ(t) dt + Fλ(λ))

M(λ)
.

Finally, w(x) = w̄(λ − x), 0 ≤ x ≤ λ.

3.2. The function u(x) for τ ≤ x ≤ V

Note again that, in our model, the level of water can increase to cross λ either along a
continuous path or by a jump. Hence, we first assume that V is infinite and obtain the distribution
of L(x) = Z0(T0) − λ, the excess amount over λ, given that Z0(0) = x, 0 ≤ x ≤ λ, which is
needed later to obtain E[u(Z0(T0)) | Z0(0) = τ ].

Let Pl(x) = P(L(x) > l), l ≥ 0. Then, by an argument similar to that used in Lemma 1,
we have Pl(λ) = 0 and P ′

l (0) = 0 as boundary conditions.

Lemma 3. The probability P̄l(x) = Pl(λ − x) satisfies the renewal-type equation

P̄l(x) = P̄ ′
l (0)x − 2

σ 2

∫ x

0
Gl(t) dt +

∫ x

0
P̄l(x − t) dW(t),

with boundary conditions P̄l(0) = 0 and P̄ ′
l (λ) = 0, where Gl(x) = ρ[Ge(x + l) − Ge(l)].

Proof. Conditioning on whether or not a jump in the water level occurs during the time
interval [0, h] gives

Pl(x) =

⎧⎪⎨
⎪⎩

E[Pl(x + �0)] if no jump occurs,

E[Pl(x + �0 + Y )] if a jump occurs and x + Y + �0 ≤ λ,

P(x + �0 + Y > λ + l) if a jump occurs and x + Y + �0 > λ.

Hence, we obtain, for 0 ≤ x ≤ λ,

Pl(x) = (1 − νh) E[Pl(x + �0)] + νh P(x + �0 + Y > λ + l)

+ νh E[Pl(x + �0 + Y ) | x + Y + �0 ≤ λ] P(x + Y + �0 ≤ λ) + o(h).

Making a Taylor series expansion of Pl(x + �0) gives

Pl(x) = (1 − νh)

[
Pl(x) + E[�0]P ′

l (x) + E[�2
0]

2
P ′′

l (x)

]
+ νh P(Y > λ + l − x − �0)

+ νh E

[∫ λ−x−�0

0
Pl(x + �0 + y) dG(y)

]
+ o(h).
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Dividing by h and letting h → 0, we obtain

0 = µP ′
l (x) + σ 2

2
P ′′

l (x) − νPl(x) + ν P(Y > λ + l − x) + ν

∫ λ−x

0
Pl(x + y) dG(y).

Replacing x with λ − x gives

0 = −µP̄ ′
l (x) + σ 2

2
P̄ ′′

l (x) − νP̄l(x) + ν P(Y > x + l) + ν

∫ x

0
P̄l(x − y) dG(y).

Integrating the above equation twice with respect to x, with boundary condition P̄l(0) = 0, and
using the identity

ν

∫ x

0
(1 − G(t + l)) dt = ν

∫ x+l

l

(1 − G(y)) dy

= ρ[Ge(x + l) − Ge(l)]
= Gl(x),

we obtain

P̄l(x) = P̄ ′
l (0)x − 2

σ 2

∫ x

0
Gl(t) dt +

∫ x

0
P̄l(x − t)

(
2µ

σ 2 + 2ρ

σ 2 Ge(t)

)
dt.

This equation simplifies to the renewal-type equation for P̄l(x).

The renewal-type equation in Lemma 3 has the following unique solution:

P̄l(x) = P̄ ′
l (0)

∫ x

0−
(x − t) dM(t) − 2

σ 2

∫ x

0
M(x − t)Gl(t) dt.

Differentiating the above equation with respect to x and using the boundary condition
P̄ ′

l (λ) = 0, we obtain

P̄ ′
l (0) = (2/σ 2)(

∫ λ

0 M ′(λ − t)Gl(t) dt + Gl(λ))

M(λ)
.

Now, when V < ∞, note that the survival function of L(x) is still Pl(x), for 0 ≤ l < V −λ,
but with a discrete probability PV −λ(x) at l = V − λ.

Remark 1. Note that P0(x) is the probability that Z0(t) increases to cross λ by a jump and
1 − P0(x) is the probability that Z0(t) increases to cross λ along a continuous path.

Now, we evaluate u(x) for τ ≤ x ≤ V . Let ū(x) = u(V − x).

Lemma 4. Using arguments similar to those used to derive w(x), we have the renewal-type
equation

ū(x) =
(

1 − 2M∗

σ 2 x − 2ρ

σ 2

∫ x

0
Ge(t) dt

)
ū(0) − 2

σ 2

∫ x

0
FV (t) dt +

∫ x

0
ū(x − t) dU(t),
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with boundary conditions ū(V − τ) = 0 and ū′(0) = 0, where FV (x) = ∫ x

0 f (V − t) dt and
U(x) = ∫ x

0 (2M∗/σ 2 + (2ρ/σ 2)Ge(t)) dt .

Proof. Conditioning on whether or not a jump occurs during the time interval [0, h], we
obtain

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

[∫ h

0
f (BM(t)) dt + u(x + �M)

]
if no jump occurs,

E

[∫ h

0
f (BM(t)) dt + u(x + �M + Y )

]
if a jump occurs and Y ≤ V − x − �M,

E

[∫ h

0
f (BM(t)) dt + u(V + �M)

]
if a jump occurs and Y > V − x − �M.

Therefore, for τ ≤ x ≤ V ,

u(x) = (1 − νh) E

[∫ h

0
f (BM(t)) dt + u(x + �M)

]
+ o(h)

+ νh E

[∫ h

0
f (BM(t)) dt + u(x + �M + Y )

∣∣∣∣ Y ≤ V − x − �M

]

× P(Y ≤ V − x − �M)

+ νh E

[∫ h

0
f (BM(t)) dt + u(V + �M)

∣∣∣∣ Y > V − x − �M

]

× P(Y > V − x − �M).

Making a Taylor series expansion of u(x + �M) gives

u(x) = (1 − νh)

(
E

[∫ h

0
f (BM(t)) dt

]
+ u(x) + E[�M ]u′(x) + E[�2

M ]
2

u′′(x)

)

+ νh E

[∫ V −x−�M

0
u(x + �M + y) dG(y)

]

+ νh E[u(V + �M) | Y > V − x − �M ] P(Y > V − x − �M) + o(h).

Dividing by h, letting h → 0, and replacing x with V − x, we obtain

0 = f (V − x) − M∗ū′(x) + σ 2

2
ū′′(x) − νū(x)

+ νū(0)(1 − G(x)) + ν

∫ x

0
ū(x − y) dG(y).

Integrating the above equation with respect to x, and using the boundary condition ū′(0) = 0,
we obtain

σ 2

2
ū′(x) = M∗ū(x) − M∗ū(0) − FV (x) − νū(0)

∫ x

0
(1 − G(t)) dt

+ ν

∫ x

0
(1 − G(x − y))ū(y) dy. (5)
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If we integrate (5) with respect to x, we then find that

ū(x) =
(

1 − 2M∗

σ 2 x − 2ρ

σ 2

∫ x

0
Ge(t) dt

)
ū(0) − 2

σ 2

∫ x

0
FV (t) dt

+
∫ x

0
ū(x − y)

(
2M∗

σ 2 + 2ρ

σ 2 Ge(y)

)
dy.

Hence, we obtain the given renewal-type equation for ū(x).

The unique solution of the renewal-type equation in Lemma 4 is given by

ū(x) =
(

N(x) − 2M∗

σ 2

∫ x

0−
(x − t) dN(t) − 2ρ

σ 2

∫ x

0
N(x − t)Ge(t) dt

)
ū(0)

− 2

σ 2

∫ x

0
N(x − t)FV (t) dt,

where N(x) = ∑∞
n=0 U(n)(x). To get ū(0), we put x = V − τ in the above equation and use

the boundary condition ū(V − τ) = 0. Then we obtain

ū(0) = (2/σ 2)
∫ V −τ

0 N(V − τ − t)FV (t) dt

(1 − 2M∗(V − τ)/σ 2)N(V − τ) − (2ρ/σ 2)
∫ V −τ

0 N(V − τ − t)Ge(t) dt
.

Finally, using u(x) = ū(V − x), for τ ≤ x ≤ V , and conditioning on L(τ) gives

E[u(Z0(T0)) | Z0(0) = τ ] = E[u(λ + L(τ))] =
∫ V −λ

0
u(λ + l) dPl(τ ).
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