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ON THE ALGEBRA OF MULTIPLIERS 

ROSHDI KHALIL 

A commutative Banach algebra is called symmetric if, regarded as a 
function algebra on its maximal ideal space, it is closed under complex 
conjugation. Varopoulos, [5], proved the asymmetry of the tensor 
algebra C(T) <§) C(T)> where T is the unit circle. It is the object of this 
paper to prove the asymmetry of the Schur multipliers of the space 
L2(T, m) <8> L2{T,rn), where m is the Lebesgue measure. In the second 
part of the paper we study the Hankel multipliers of the space l2(Z) ® 
l2(Z) and give an application to it. 

1. The asymmetry of M(L2(T) <g> L\T)). Let C{T) denote the space 
of continuous functions on T and A(T) be the space of those functions 
in C{T) that have absolutely convergent Fourier series. Consider the 
mapping F: C(T) -> C(T X T) defined by F(f)(xy y) = f (x + y). If 
|| ||m denotes the multiplier norm in M(L2(T) (§) L2(T)), then we have 

THEOREM 1.1. The following are equivalent: 

(i)f£A(T) 
(ii)F(f) € C(T)® C(T). 

Further \\f\\MT) = | | F ( / ) | | m . 

Proof. For the equivalence of (i) and (ii) one can consult [7]. To prove 
the isometric property of F on A (T), l e t / £ A (T), so 

co oo 

f(t) = ^ areirt and X) WA < °o • 
r=—co r=—<x> 

Hence 

F(f)(*,y)= £ aTeiT\elT\ 
r=—co 

Since \\eirx\}œ = 1 for all r, it follows that \\F(f)\\m ^ | | / |U( r ) . 
To show the other inequality define a mapping 

P: C(T X T) - > C ( r ) 

such that P(<p)(x) = JT9?(^ — y, y)dy. Clearly P o F: C{T) -* C(T) is 
just the identity mapping. Let F(f) G C( r ) ® C(T) and S^i0 0^^ O ^ , 

Received January 23, 1979. The author would like to thank Professor S. Drury for 
stimulating discussions and support during the preparation of this work. 

786 

https://doi.org/10.4153/CJM-1981-060-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-060-8
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be any representation of F(f). Then 

CO 

p(F(f)) = E wrr* 
It follows that 

| |PW)) IUr)^ \\F(f))\\„. 

However the function 1 ® 1 Ç L2(T) (8) L 2 ( r ) , so we have 

I W ) H r r = | l ^ ( / ) - l ® l | | r r 

= | |F( / ) |U- | |1® l||rr 

= \\Hf)hr 
Hence \\P(F(f))\\MT) = \\F(f ) \ \ M . This completes the proof. 

Now, we need the following technical lemma. 

LEMMA 1.2. Let fa and fa be any two elements in the unit ball of 
^{L2 ® L2). Assume, further, that sup^i C fij = Xi X Fi, sup<£2 

C 122 = X2 X F2, zej/̂ re Xi P\ J ^ = Fi H F2 = 0, ^ e empty set. Then 
there exists a function <t> £ *Jt{L2 ® L2) such that 

4>\ni = 4>i,i = 1,2 and ||tf>||̂  = maxz-=i>2||4>z|L. 

Proof. Define the following function <j> on J1 X 7" 

<£i if (x, ;y) G Œi 

and <t> = 0 on the complement of 12i W 122. We claim that the function <j> 
is the required function. First, since </> = fa + #2, it follows that 
0 G ^(L2 ® £2) . It remains to estimate the multiplier-norm of </>. To 
do so, l e t / (g) g be any atom in the unit ball of L2 0 L2. Since 

/®g=^fr2(ll/l |2-|k||2)1 /2-|^j ;(| |/ |k||g||2)1 /2 , 

we can assume that || / ||2 = ||g||2 S 1. Further since the support of <t> is 
contained in 121 KJ 122, we let supp( / ) C ^ i ^ ^ 2 and supp(g) C Fi U F2. 
Se t / i = / \xi and g< = g\Yi, i = 1, 2. T h e n / = / i + / 2 and g = gl + g2. 

Further | | / | | 2
2 = H/^,2 + ||/2||2

2 and ||g||2
2 = | | ^ | ] 2

2 + |]g2||2
2, since 

2 2 

n x, = n F, = 0. 

Now, consider 

4>mf ® g = fa-fi® gi + fa -h ® #2. 
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Since \\<t>i\\j( ^ 1, i = 1, 2, we deduce 

CO 

CO 

E l^ lh- I I^ IMIWh- IWk 
Again, as above, we can assume that | | / i | | 2 = ||g*||2 and ||w/°||2 = |l»;(i)l|2 
for i = 1, 2 and j ^ 1. It follows that 

CO 

£ H^ll,1* 11/41/ 
CO 

E l l ( i) I I 2 ^ I I I I 2 • -, o 

M»/ ||2 ^ ||gi||2 , t = 1,2. 
Now define the following functions 

<y y /̂ - j I LV j 

for all j ^ 1. Then 

CO 

<t>'f®g = X) fe® Wj) • l(XiXFi)U(X2UF2), 

where 1# denotes the characteristic function of the set E. But since 

N | 2 2 = lk- ( 1 ) | |22+ | |^ ( 2 ) | |22 

IW|2
2 = ||^ (1 ) | |22+ |K-(2)||22, 

it follows that 

CO 

\\<t>'f ® g\\rr ^ ] £ IWI2IKH2 
3=1 

z t ( l k ( 1 ) l | 2
2 + l k < 2 ) l h 2 ) l / 2 - ( l k a ) l | 2

2 

+ lh ( 2 , l | / ) 1 / 2 

* ( g ( IK ( 1 ) l | 2
2 +l l« / 2 , lh 2 ) ) 1 / 2 

• ( £ ( l k ( 1 , l | 2
2 + l k ( 2 ) l | 2

2 ) ) 1 / 2 

^ ( | | / 1 | | 2
2 + HM|2

2)1 / 2-(lbl |2
2 + lbl |2

2)1 / 2 

Since/ ® g was an arbitrary atom in the unit ball of L2 ® L2, it follows 
that | |0 | |^ ^ 1. This completes the proof of the lemma. 

Now we prove 
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THEOREM 1.2. The space ^ ( L 2 ® L2) is not symmetric. 

Proof. To prove the asymmetry of a space it is enough to produce an 
element in such a space which has independent powers, [7]. 

Let P be a Cantor independent set which is not Helson in T. The 
existence of P is illustrated in [4]. Take v to be a non-negative measure 
concentrated on P U ( — P). Then v has mutually singular convolution 
powers, and if we choose HHIMCD = 1 > w e obtain 

È A,/ = t, IU 
r=l \\M(T) r = l 

for all Xr £ C and n f N . Since discrete measures on T are dense in M{T) 
in the weak-* topology [1], then we can find a sequence (vn)n=iœ of finitely 
supported discrete measures (the support of each vn is a finite subgroup 
of T) such that 

h(j) -> p(i) 
for all j Ç Z. That P is not Helson enables us to choose v such that 
||P||œ is as small as we like and v to be real. If En denotes the support of 
vn, then we can find a sequence (/M)n==1°° of real functions on T such that 

\\fn\UEn) Û 1 ( » è 1), 

I All 0 as w -> oo . 

SUP E ^r/nl = Z) |Xr|, 
w l l r = l Il4(i&n) /"=1 

for all 5 G N and Xr G C. 
Now, let (X n

0 ) ) „ = r Î' = 1,2, be two sequences of sets in T such 
that X^v C\ Xjv = 0 for n 7̂  w, i = 1, 2 and X„(î) has the same 
cardinality as i v Identify, then, Xn

( î ) with En for every n ^ l , and 
* = 1,2. If F: C(T) —> C(T X T) is the function defined in Theorem 
1.1, then set <j>n = F ( / n ) , n ^ 1. A simple application of Lemma 1.1 
implies that 4>n 6 <Jé(L2 ® L2) and 

W ^ ^ 1 (ne 1); 
11*11 

sup 

• 0 as w —> oo 

Z.J ^r<t>nT = E IM 
for all s £ JV and Xr Ç C. Using Lemma 1.2 repeatedly we construct a 
sequence of real functions (^w)n==1

œ in ^{L2 ® L2) such that 

W u r ^ l ( » è l ) ; 

supp ^n = U Xy 

HlUo 

(1) XXj ( 2 ) . 

• 0 a s n- oo. 
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Clearly, the sequence WOn-i" converges uniformly to a function 
\p £ ^£(L2 ® L2). Furthermore 

U\\jl = SUpJ&JI^. 

Hence 

E ^ r 
= S IXrl-

1^ r=0 

This completes the proof of the theorem. 

As a corollary of the previous theorem we have 

THEOREM 1.3. The space ^é{L2 ® L2) is not separable. 

Proof. The functions (\l/n)n=i° in Theorem 1.2 have the property that 

Hn ~ K\\M è « > 0 for « ^ w. 

This proves the claim. 

2. The Hankel mul t ip l i e r s of /2(Z) <g> /2 (Z). L e t / e /°°(Z) and <*> be 
a function on Z X Z defined by </>(r, 5) = / ( r + s). If </> £ ~^(/2(Z) ® 
/2(Z)), then </> will be called a Hankel multiplier of /2(Z) (g> /2(Z). It is the 
purpose of this section to characterize the Hankel multipliers of 
/2(Z) <g> /2(Z). 

Let M(T) denote the space of all complex valued regular bounded 
Borel measures on T. Set B(Z) to be the set of functions/ G /°°(Z) such 
t h a t / = ? for some v Ç M"(T). 

THEOREM 2.1. Letf 0 G /°°(Z X Z) be defined by: 4>(r, s) = f(r + s) for 
some f £ /°°(Z) then the following are equivalent: 

(i) <f> £ ^ ( / 2 ( Z ) <g> /2(Z)). 
(ii)ftB(Z). 

Furthermore, | | / | | B ( Z ) = II^IL-

Proof, (ii) => (i). Let v be any element in M(T). It is well known, 
[1], that there exists a sequence of discrete measures in M(T) such that: 

K(j) -*v(j)for a11 i> a n d ll^lU(r) ^ IIHU(7> 

For any discrete measure v, we have 

00 00 

v = Yl afitj, v(r) = X «^~ ir°'i a n d 

00 

IWIBCZ) = Z) W < °°> 

where <5,y is the unit mass at the point tj. Now, let 

0(r, s) = v{r + 5) = f(r + s). 
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Then 

<t>(r,s) = £ aje-
Ur+s),i 

oo 
V ^ „—irt—istj 

= 2^ aJe e 

j=l 

S e t t i n g / » = c ^ - z r ^and gj(s) = e~uti, we see that <t> G lœ(Z) ® F°(Z). 
Further 

oo 

| |0 |U = ll^llnz) ^ Z) k;| = H/||B(Z). 

For </>(r, 5) = f(r + 5), where / is any function in B(Z), we have 

</>0, 5) = limn/n(r + 5), 

where/n(r + 5) = Pn(r + s) for some discrete measure vn and || /J|#(z) ^ 
||/IU(z)- Hence the function </> is the pointwise limit of a uniformly 
bounded sequence of elements in lœ ® f°. It follows, [5], 

<P e V(Z) = HZ) ® /*(£)* and | |«| |? (z ) ^ | | / |U ( Z ) . 

Hence, [3], 0 Ê ~#(/2(Z) ® /2(^)) . Further 

Conversely (i) => (w). Let F: /°°(Z) —>/°°(Z X Z) be the mapping 
f(u)(r, s) = u(r + s), and £ be the set of functions <j> in ^(l2(Z) ® 
l2(Z)) such that 0 = F(«) for some w in Z°°(Z). It follows, [3], that 
E C V{Z). Hence if 4>n =F (/>UnXz„, then 

0n ç r{zn) ® r(zn). 

Let S i = i / ï ® gi be a representation of </>„ in lœ(Zn) ® lœ(Zn). Then 

</>n0, s) = (F(u))n(r, s) 

= t,Mr).gi(s) 

= è /,(«)• git?) (*) 

for all a and 0 in Z such that a + /3 = r + 5. For each w G N, define a 
mapping P n on £ as follows: 

P n : E - r ( Z ) , 
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The function Pn(4>) is independent of the representation of <t>„, for 

= ^iri£(i:i/^-iK(i)) 

Let A(Z) be the space l2(Z)*l2(Z) which is, by the Plancherel theorem, 
the same space as FLl(T), the Fourier transforms of Ll(T). Then 
Pn(<t>) Ç A(Z) C (£Z). Further, if || ||Tr denotes the norm in l2(Zn) <§> 
l2(Zn) and lZ n is the characteristic function of Znt then 

| | P n ( « ) I U ( Z ) ^ ( 2 n + l ) - 1 ' | k | | r r 

^ ( 2 t t + I ) " 1 ' l l ^ - l z , ® l z j l r r 

S ( 2 n + l ) - 1 - | | 0 w | U - | | l Z n ® l z J | r r 

^ ll̂ nlU 
^ ll*IU (**). 

On the other hand, since </> = F(u), 

Pn{ )(*) =P, . (F(«))(*) 

Hence Pn(F(u))—> u pointwise. Since (Pn(F(u))n==iœ is a uniformly 
bounded sequence in A (Z) which converges pointwise to u, we obtain 
that u £ B(Z). Furthermore, relation (* *) implies that 

This completes the proof of the theorem. 

A similar result was proved by Varopoulus [5], where he proved the 
isometry of B(Z) and its image under F in the tensor algebra norm. 

As an application of Theorem 2.1, we estimate the multiplier norm of 
the matrix \[/, as an element in ^(12{Z) ® l2(Z)), where 

i r .v il HO <i+j ^n 
* ( ^ ) = l 0 otherwise. 

LEMMA 2.3.1. | |^||^ '—' C * log n, where C is a constant independent of n. 
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Proof. L e t / be a function defined on Z as follows: 

^t} \ o otherwise. 

Clearly \p (i, j) = f(i + j). Since/ has a finite support in Z, then/ G B (Z). 
Let / = v for some y G M(T). By the Riesz-representation theorem, 
there exists a continuous linear functional 5 : C(T) —» C such that 
5(A) = fThdv and ||5|| = H^HMCD, where 

| | 5 | | = s u p ^ ^ , AG C(T). 
n \\h\\ 

It follows from Theorem 2.1 that 

IWL = II/IIB(Z) = HHI^m = ||5||. 

Hence it is enough to estimate the norm of 5. Further, since the trigono­
metric polynomials are dense in C(T) under the supremum norm, it is 
enough to take A, in the definition of ||5||, to be a trigonometric poly­
nomial. Setting 

P(r) = f eirtdv(t) = / ( r ) , 

irt. j 1 if 0 < r ^ n 

we see that 

S(eirt) — 
(0 otherwise. 

Thus if h(t) = £*=-* afiin, then 

l ^ a i if & > « 
5(A) = < \ 

V^oij if k < n. 

Consider the following function in C(T): 

Dn{t) = £ *"« 
7 - = l 

= XI cos ̂  + ^ 22 sin rt 
r=l T=1 

where Dn is the Dirichlet kernel and Dn is the conjugate kernel to Dn. A 
classical result in harmonic analysis, [2], asserts that ||Aj|i œ a log n 
and ||Z)w||i œ log #, where || ||i denotes the norm in Ll(T). Hence 
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IIAJIi œ c log n for some constant c independent of n. Next we observe 
that 

£ «, = (A,*A)(0), 

from which we conclude 

|S(ft)| = 
n 

3=1 

= |0,*A)(O)| 

^ llA.Hi-11*11» 

VII ; log w • 11*11-
Hence 

IISII 
|5(*)| < , 

This completes the proof of the lemma. 
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