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ON THE ALGEBRA OF MULTIPLIERS
ROSHDI KHALIL

A commutative Banach algebra is called symmetric if, regarded as a
function algebra on its maximal ideal space, it is closed under complex
conjugation. Varopoulos, (5], proved the asymmetry of the tensor
algebra C(T) ® C(T), where T is the unit circle. It is the object of this
paper to prove the asymmetry of the Schur multipliers of the space
L*(T, m) ® L*(T, m), where m is the Lebesgue measure. In the second
part of the paper we study the Hankel multipliers of the space 12(Z) ®
12(Z) and give an application to it.

1. The asymmetry of M(L3(T) ® L*(1)). Let C(T") denote the space
of continuous functions on 7" and 4(7") be the space of those functions
in C(T") that have absolutely convergent Fourier series. Consider the
mapping F: C(T) — C(T X T) defined by F(f)(x,y) = f (x + y). If
| l|lm denotes the multiplier norm in M (L2(T") ® L*(T)), then we have

THEOREM 1.1. The following are equivalent:
Wfeam
(i) F(f) € C(T) ® C(T).
Further || f [lacoy = |FC(f)ln-

Proof. For the equivalence of () and (iz) one ¢an consult [7]. To prove
the isometric property of Fon A(T), let f € A(T), so

fit) = i ae”t and i la,| < .

T=—co T=—00

Hence

F(f)(x,y) = i a,e'™ . e

T=—c0

Since |le'™||, = 1 for all 7, it follows that |F(f)|ln £ | flacr-
To show the other inequality define a mapping

P: C(T X T) - C(T)
such that P(p)(x) = [ro(x — ¥, ¥)dy. Clearly P o F: C(T') — C(T’) is
just the identity mapping. Let F(f) € C(T) & C(T) and Z,"% . Q¢ ,
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ALGEBRA OF MULTIPLIERS 787
be any representation of F(f). Then
P(EW) = 3 UV
It follows that

IPCECf M) acry £ NFCF))lere
However the function 1 ® 1 € L*(T) ® L*(T), so we have

= [FOUHlwe- 11 ® 1],
= ”F(f)”./lt'

Hence [|[P(F(f))||acry £ |F(f)|l.4 This completes the proof.

Now, we need the following technical lemma.

LEMMA 1.2. Let ¢1 and ¢s be any two elements in the unit ball of
M(L2 ® L?). Assume, further, that supé; C @ = X; X Vi, supes
CQ =X, XYV, where X1 N\ Xoo= Vi Y, =0, the empty set. Then
there exists a function ¢ € M (L* ® L?) such that

dlo; = ¢t =1,2 and [¢|4 = maxioi.fé .4
Proof. Define the following function ¢ on 7" X T°

_ ¢ if (x,y) €
¢(xyy) - {¢2 lf (x’y) 6 92

and ¢ = 0 on the complement of @, \U Q,. We claim that the function ¢
is the required function. First, since ¢ = ¢; + ¢, it follows that
¢ € M (L*® L?). It remains to estimate the multiplier-norm of ¢. To
do so, let f ® g be any atom in the unit ball of L2 ® L2. Since

___f__ . 12, __ £ . 172
f®g—“f||2(|,fll2 IlgH?) HgHZ (”f||2 Hg“2) )

we can assume that || f ||s = |/g[ls £ 1. Further since the support of ¢ is
contained in €; \J @, we let supp(f) C X1 U Xsand supp(g) C V1 U Y..
Setf, = f|x;and g; = g|ly;, 2 =1,2. Thenf = f1 + foand g = g1 + go.

Further [|f[l2* = [[ il + [| full2* and [lg]ls* = llgsllo* 4 [gall2?, since

S

Yi:ﬂ.

i=

Il

2
N X;=
1 i=1

Now, consider

- fR®g=0¢1-f1® g1+ 2 fo ® go.
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788 ROSHDI KHALIL
Since ||¢]|4 £ 1,7 = 1, 2, we deduce

$: ‘fi ® g = Z uj(i) ® vj(i)

=1
Zl H”a‘mlh‘ [o; 1)H2 < I fallz- lgalle
pa
Again, as above, we can assume that || fi||s = ||gi|2 and [|#, P2 = [lv;?]]»

for7 =1,2and j = 1. It follows that
;;1 s 1" = 17l
2 sl
=1

Now define the following functions

Zj = uj(l) ._I_ uj(2)
w, = 0,0 4 9,®

for allj = 1. Then

I\

ledl, =12,

©

¢ f®g= Zl (2; ® w;) * Laxixyn U (x2 U ¥

j=

where 1z denotes the characteristic function of the set £. But since

llzslle? = [loe; Pl 4 [lae,@]]5?
lwills* = [lo, V2 + [lo, 2],

it follows that

1A

lo-F @ el S 2 lailaliw]l

:
3 el (o 12
+ 1l 1125

lIA

I\

© 1/2
(21 (Hous 1" + Il”’]‘(2)||22))
=

o) 1/2
(5 amt+ m10)

Ul + DY - lealls + [lgal 1)
< [Iflle - llelle < 1.

Since f ® g was an arbitrary atom in the unit ball of L2 ® L?, it follows
that [|¢||, < 1. This completes the proof of the lemma.

IIA

Now we prove
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THEOREM 1.2. The space M (L* @ L?) is not symmetric.

Proof. To prove the asymmetry of a space it is enough to produce an
element in such a space which has independent powers, [7].

Let P be a Cantor independent set which is not Helson in 7". The
existence of P is illustrated in [4]. Take » to be a non-negative measure
concentrated on P\U (—P). Then » has mutually singular convolution
powers, and if we choose ||v||s(ry = 1, we obtain

Z A
=1
forall \, € Cand n € N. Since discrete measures on 7 are dense in M (7T)
in the weak-* topology [1], then we can find a sequence (v,),=1" of finitely
supported discrete measures (the support of each v, is a finite subgroup
of T') such that
9,(j) — 2(j)
for all j € Z. That P is not Helson enables us to choose » such that
17| is as small as we like and 7 to be real. If E, denotes the support of
vn, then we can find a sequence ( f,),=1" of real functions on 7 such that
“fn”A(En) =1 (nz1),

| falle— 0 as n— o0,
2, N,

s
2 M
r=1 A(En) r=1

forall s € Nand ), € C.

Now, let (X,?),-1° 7= 1,2, be two sequences of sets in 7" such
that X, "N X, =@ for n #m, 1 =1, 2 and X,? has the same
cardinality as E,. Identify, then, X,» with E, for every n = 1, and
1=1,2. If F: C(T) »> C(T X T') is the function defined in Theorem
1.1, then set ¢, = F(f,), » = 1. A simple application of Lemma 1.1
implies that ¢, € A#(L* ® L?) and

4]l > 0asn— o0

E )\r¢nr = Z ')‘Tl;
=0 M =0

for all s € N and N\, € C. Using Lemma 1.2 repeatedly we construct a
sequence of real functions (,),=1" in 4 (L? ® L?) such that

Wallw =1 (nz1);

n

= Z [)‘rlv

M(T) r=1

S

I

sup
n

sup
n

Supp z//n — k}l X](l) X X](2);
=

Yal xnDxx, @ = @y,

[¥alle > 0asn— 0.
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Clearly, the sequence (¥,),—1~ converges uniformly to a function
v € ML Q L?). Furthermore

H‘/’“./Il = Supn”‘/’n“./ft'
Hence

This completes the proof of the theorem.

As a corollary of the previous theorem we have
THEOREM 1.3. The space M (L* & L*?) is not separable.

Proof. The functions (¥,),=1” in Theorem 1.2 have the property that
W — ¥nlly =2 a>0 forn#=m.

This proves the claim.

2. The Hankel multipliers of /2(Z) ® i (Z). Let f € I”(Z) and ¢ be
a function on Z X Z defined by ¢(r,s) = f(r + ). If ¢ € M (2(Z) &
12(Z)), then ¢ will be called a Hankel multiplier of 1*(Z) ® 12(Z). It is the
purpose of this section to characterize the Hankel multipliers of
2(Z) & 1(Z).

Let M(T) denote the space of all complex valued regular bounded
Borel measures on 7". Set B(Z) to be the set of functions f € I°(Z) such
that f = 5 for some v € M(T).

THEOREM 2.1. Let ¢ € [°(Z X Z) be defined by: ¢(r,s) = f(r + s) for
some [ € I°(Z) then the following are equivaleni:
(i) ¢ € M1INZ) ® I}(2)).
(i1) f € B(Z).
Furthermore, || f llsczy = ||él .4
Proof. (it) = (7). Let v be any element in M(7"). It is well known,
[1], that there exists a sequence of discrete measures in M (7" such that:
9,(7) = 9(j) for all j, and [[vu|larcr) = ¥l arco)-
For any discrete measure v, we have

e
v= 2 ap,, )= Zl ae ", and
=

j=1

(e}
|Plls = Zl la;| < 00,

where §,; is the unit mass at the point ¢;. Now, let

¢(r,s) = o(r+s) = fr+s).
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Then

o)
¢(r, s) — Z aje—z(r+s) tj

j=1
et
—irt —istj
= D, aje TeTHY.
j=1

Setting f;(r) = a,e~"'iand g,(s) = e~'*'i, wesee that¢ € I°(Z) ® I°(Z).
Further

lolle = l¢llre = ; las| = [Ifllzc-
For ¢(r,s) = f(r + s), where f is any function in B(Z), we have

o(r,s) = lim, f,(r + s),

where f,(r + s) = 5,(r + s) for some discrete measure v, and || f,||ls(s =
Il f lz(z- Hence the function ¢ is the pointwise limit of a uniformly
bounded sequence of elements in [ ® I°. It follows, [5],

e € V(Z) =1M2) ® 1"(Z)* and |9l = || fllsn-

Hence, [3], ¢ € A (12(Z) & 1>(Z)). Further

ol = llollvcn 1S s

Conversely (¢) = (i2). Let F:1”(Z) —17(Z X Z) be the mapping
f)(r,s) = u(r + s), and E be the set of functions ¢ in A (2(Z) &
12(Z)) such that ¢ = F(u) for some u in [®(Z). It follows, [3], that
E C V(Z). Hence if ¢, = ¢| z.xz,, then

b € I7(Zy) ® I7(Zy).
Let 3%, f; ® g; be a representation of ¢, in I*(Z,) ® I°(Z,). Then
(i)n(f, S) = (F(u))n(rv S)

= ; fi(r) - gu(s)

= 3 i) 58) *)

for all @ and 8 in Z such that @« + 8 = » + s. For each n € N, define a
mapping P, on E as follows:

P, E—1°(2),

1 k
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The function P,(¢) is independent of the representation of ¢,, for

Pu(9)(#) = 577 = (fixg)®)

3

i=1

2n+12 dulk — . 7).

j=—n
Let A (Z) be the space 12(Z)*12(Z) which is, by the Plancherel theorem,
the same space as FL!(T), the Fourier transforms of L'(7). Then
P,(¢) € A(Z) € (BZ). Further, if | ||,, denotes the norm in 12(Z,) &
12(Z,) and 14, is the characteristic function of Z,, then

1Pr@)acn £ Cn+ 1)1 ||dall+r
S @Cn+ 1) dn 1z, @ 1+
S @Cn+ D7 dalla 12, ® 1z,
< |l
< (|9l ().

On the other hand, since ¢ = F(u),
Py( )(k) =P, (F(u))(k)

2n + 1]=Z_ onlk =

1 n
EES Y

= u(k).

Hence P,(F(u)) — u pointwise. Since (P,(F(%)),=1” is a uniformly
bounded sequence in 4 (Z) which converges pointwise to %, we obtain
that # € B(Z). Furthermore, relation (* ) implies that

lullzcz = llella
This completes the proof of the theorem.

A similar result was proved by Varopoulus [5], where he proved the
isometry of B(Z) and its image under F in the tensor algebra norm.

As an application of Theorem 2.1, we estimate the multiplier norm of
the matrix ¢, as an element in #(12(Z) ® 12(Z)), where

1 f0<i4+j=n
0 otherwise.

v6ii =1

LEMMA 2.3.1. ||¥||, ~ C - log n, where C is a constant independent of n.

https://doi.org/10.4153/CJM-1981-060-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-060-8

ALGEBRA OF MULTIPLIERS 793

Proof. Let f be a function defined on Z as follows:

f(i)z{l f0<i<n

0 otherwise.

Clearly ¢ (2, j) = f(z + j).Since f has a finite support in Z, then f ¢ B(Z).
Let f = % for some v € M(T). By the Riesz-representation theorem,

there exists a continuous linear functional S: C(T) — C such that
S(h) = [ hdv and ||S|| = [v]|arcr), where

|S(®)
-]}

It follows from Theorem 2.1 that

[Wllm = £ lac = lpllaeczy = [IS]-

Hence it is enough to estimate the norm of S. Further, since the trigono-
metric polynomials are dense in C(T") under the supremum norm, it is
enough to take %, in the definition of |S||, to be a trigonometric poly-
nomial. Setting

[1S]] = sup ke C(T).

50) = [ e = 10,

we see that
iy Y1 if0<7r=mn
SE™) = {0 otherwise.
Thus if k(t) = X5 a,e’’?, then
‘Z a; ifk>n
Sh) =1 & '
1};% if £ < n.

Consider the following function in C(7):

n

irt
2 e
=1

Dn()

Ii

n

n
= D cosrt+i ), sinzt
r=1

=1

<

= (Dn - %)(t) + D_n(t)v

where D, is the Dirichlet kernel and D, is the conjugate kernel to D,. A
classical result in harmonic analysis, [2], asserts that ||D,|; &~ alog n
and ||D,|: ~ log #, where || || denotes the norm in L!(7"). Hence

https://doi.org/10.4153/CJM-1981-060-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-060-8

794 ROSHDI KHALIL

[ D,]l1 = ¢ log n for some constant ¢ independent of n. Next we observe
that

Z a; = D+ h)(0),

from which we conclude

|S(h)| = ; a;
= (D, * k) (0)]
= [Dally - 7]}
< clog n - ||h|]e
Hence
S(4
111 = sup o) < clog

This completes the proof of the lemma.
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