
FINITE LINEAR GROUPS OF PRIME DEGREE 

DAVID B. WALES 

1. Introduction and notation. If G is a finite group which has a faithful 
complex representation of degree n it is said to be a linear group of degree n. 
I t is convenient to consider only unimodular irreducible representations. For 
n S 4 these groups have been known for a long time. An account may be 
found in Blichfeldt's book (1). For n = 5 they were determined by Brauer 
in (4). In (4), many properties of linear groups of prime degree p were deter­
mined for p a prime greater than or equal to 5. 

In a forthcoming series of papers these results will be extended and the 
linear groups of degree 7 determined. In the first paper, some general results 
on linear groups of degree p, p ^ 7, will be given. These results will later be 
applied to the prime p = 7. 

We only consider linear groups which are primitive. This means that for a 
prime degree p the representation cannot be written in monomial form. 
Equivalently, the group has no normal abelian subgroups not contained in 
the centre. If G is an imprimitive linear group of degree p, there is a normal 
abelian subgroup K such that G/K is isomorphic to a subgroup of Sp, the 
symmetric group on p elements. 

In § 2 a bound is obtained for the order of a £-Sylow group of a primitive 
linear group of degree p. In § 3 a certain configuration described in (4) is 
shown to exist only in a trivial case. In § 4, it is shown that the character of the 
representation is rational or at least real when restricted to certain p-regular 
elements. This is used to restrict the power of certain primes other than p in 
the group order. Finally, in § 5 we prove a short theorem which states that for 
primes p/2 < q < p and q ^ 7 the g-Sylow group is abelian. This is also true 
if q — 5 but the proof is more involved. As it is only needed for p = 7, it is 
treated later when linear groups of degree 7 are considered explicitly. 

Notation. Let G be a finite group with a faithful irreducible representation X 
of degree p over the complex numbers. We denote by x the character associated 
to X. Here X will be assumed primitive and unimodular; p is a prime greater 
than 5. If 5 is a subset of G, we let |5| be the cardinality of S, N(S) the normal-
izer of S, and C(S) the centralizer of S. If H is a subgroup, the centre of H, 
C(H) C\H, is denoted by Z(H). The centre of G, Z(G), is denoted by Z. 
Let \G\ = g = pa - go, (P, go) = 1. It was shown in (4, § 4) that if a = 1, 
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then Z = e\ if a > 1, then Z is cyclic of order p. If q is a prime, then a g-Sylow 
group is denoted by Pq. If q = p we drop the subscript and write P . 

Let 4̂ be an abelian group and T a faithful representation of it. Suppose 
that r = 2^T=i a£u with a* integers and £* distinct linear characters of A. 
The number m is called the variety of A. 

We denote by K the splitting field of G given by Q with the gth roots of 
unity adjoined. As is standard, we let Ov(G) {Ov>(G)) be the maximal normal 
p-group (p'-group), of G and Ov(G) (Op' (G)) the minimal normal group whose 
quotient is a ^-group (pf-group). 

Acknowledgement. I wish to thank Professor R. Brauer for his help and 
encouragement. 

2. A bound for the value a. Our goal in this section is to show that 
a ^ \{p + 1). This is done by showing that there is an element £ in a 
^-Sylow group P of G such that X(£) has %{p — 1) eigenvalues e = e2vilv, 
\{p — 1) eigenvalues e, and one eigenvalue 1. For p ^ 7 this contradicts 
Blichfeldt's theorem (1, p. 96). Blichfeltd's theorem states that if G is primitive, 
the eigenvalues of X(£) for any £ in G — Z cannot all lie within 60° of any 
particular eigenvalue of X(i~). 

We need notation for some standard concepts. If £ is an integer not congruent 
to 0 (mod p) let at be the permutation of the set {1, 2, . . . , p\ mapping j onto 
<Tt(j)y where <rt(j) = tj (mod£). Here j — 1, 2, . . . , p. Let D be the set of 
diagonal p X p matrices with diagonal entries complex numbers. If (d) t D, 
let (d)u be the number in the ML row and ith column of (d). Let Rt be the 
map of D to itself defined by 

(Rt(d))iti = (0<r,(0,<rf(i)-

I t is clear that Rt permutes the diagonal entries of d. One sees easily that if 
d\ and do are in D and u ^ 0 (mod p), then 

Rtfadt) = Rt(d1)Rt(d2)1 Rnidi) = ^«{^(rfi)}. 

We assume now in this section that a ^ 4. The structure of a ^-Sylow group 
P of G has been determined in (4, § 4). These results show that P contains 
normal abelian subgroups A u i = 1, 2, . . . , a — 1, with |.4*| = pa~\ There 
are independent elements £i, £2, • • . , £a-i of order £ such that ^4* is generated 
by ia-u L-i+i, • • . , £«-i for each i = 1, 2, . . . , a — 1. We denote ^4i by A. 
A basis for the representation space can be chosen so that 

(X(£a-k))ij = àij€ 
Here 

k = 1, 2, . . . , a — 1, and i, j = 1, 2, . . . , p. 
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Also, (X(£))ij denotes the element in the ith row and j th column of the matrix 
-3T(£) with respect to this basis. 

Let D\ be the subset of D consisting of matrices X(%) for £ Ç A. The map 
Rt is a group homomorphism of Di onto a set Rt(Di). We will show that, in 
fact, Rt(Di) is Z>i itself and hence Rt is a group homomorphism of Z)i to Z>i. 
In fact, we show the stronger statement that Rt{X(Aj)} = {X(A3)\ for 
j = 1, 2, . . . , a - 1. 

THEOREM 2.1. 7w eachj,j = 1,2, . . . ,a — 1, ^er£ are integers Sji, 5 j 2 , . . . , S ^ 
« « * *Aa/ £,(*(*«-,)) = X(£ ' a -y \ where £'*., = (£a_x) ^ f c - 2 ) * ' 2 . . . (&-,) 5 " . 
Furthermore, Sji, . . . , 5 ^ are unique (mod £) 7£u% S^ = ^ _ 1 (mod p). 

Proof. We recall that 
l - l x 

(X(£a-j))ii _ Q-i) 

If we replace <r* by c, we have: 

Mi)-1\ 

(Rt(X(^)))tt = ê  ' - 1 ; , i=l,2,...,p. 

We must find integers 5 ;i , . . . , S^ such that 

(2.i) / ^ = / ô V ^ C i 1 ) ^ _ _ _ e £ i > « 

for i = 1, . . . , p;j = 1, . . . , a — 1. This is equivalent to 

<»>* (f.-.O-Co'K+CT'K 

Let x be an indeterminant over the integers. Consider the polynomial 
equation 

(2.2) u - D("JZ /) - o - DI{(* ; ')s,. + (* 7 ^s,, 

The coefficients are all integers as each side is multiplied by (j — 1)!. Here, 
j = 1, 2, . . . , a — 1. Since a ^ £ — 1, (j — 1)1 jk 0 (mod£). Suppose that 
(2.2) is satisfied for integers 5yi, . . . , SJJ. By letting # = i = 1, 2, . . . , £ 
and reducing (mod p), we see that (2.1)* is satisfied as <r(i) = it (mod £) . I t 
is only then necessary to show that (2.2) can be satisfied. 

We now show that Sjr can be defined inductively to satisfy (2.2) in terms 
of SJk, k < r. For r =. 1, set x = 1. Equation (2.2) is then 

<5:l)-«-0 ' - l ) ! l - :J=( / ' - l ) !S , i . 
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This shows that SjX = 0_î). In general, setting x = rf (2.2) becomes 

o - » { j : J) - « - «"{(' ô ' K + ( r T ')*<•+• • •+4 • 
This shows that SjT can be defined inductively. The values Sjr obtained for 
r = 1, 2, . . . , j satisfy (2.2) for x = 1, 2, . . . ,7. Furthermore, (2.2) is a 
polynomial equation in x of degree j — 1. As both sides agree for j values of x, 
both sides agree for all values of x. We note that the coefficient of xj on the 
left of (2.2) is tj~l. On the right it is SJJ. This shows that SJJ = tj~l. The values 
5̂ -1, . . . , Sjj can be seen to be unique (mod p) by noticing, as for (2.2), that 
Sjr can be defined inductively in terms of Sjk, ft = l , 2 , . . . , r — 1. The 
proof of the theorem is complete. 

We can now define a homomorphism St of A to A in the following way. 
If £ e A, then St(£) = £', where 2?,(X(f)) = X(g). This is well-defined as X 
is faithful. Furthermore, i ^ has kernel / , where / is the identity p X p matrix. 
This means that St has kernel e, the identity of G. We see that St is an auto­
morphism of A. Since RtRu — Rtui we have StSu ~ Stu, where t, u ^ 0 (mod p). 

The automorphism St can be considered as a linear transformation of the 
vector space A. Here A is a vector space of dimension a — 1 over the integers 
(mod p).As usual for linear transformations we can describe St by a matrix (50. 
We use the basis (£a-i> . . . , £i). Thej th row of (50 is (5^i, . . . , 5;;-, 0, . . . , 0). 
Let yi, . . . , 3>a_i be integers (mod £) . If the element 

&_!)^&_2)^... fe)^"1 

is denoted by (yu . . . , ya_i), St maps (?i, . . . , ya_i) onto (yu . . . , ya_i)(S,). 
We now come to the main theorem of this section. 

THEOREM 2.2 (cf. 4, 4C). If \G\ = pag0j p à 7, then a g, %(p + 1). 

Proof. Suppose that a ^ \{p + 3). Let J be a primitive root (mod p). The 
matrix (St) has eigenvalues 1, t, t2, . . . , ta~~2. The matrix (50 2 has eigenvalues 
1, t2, t\ . . . , *<*-2)2# Since a ^ | ( H 3), there are at least \{p + 1) rows in 
(St)

2. The eigenvalue in the \(p + l )s t row is /2(P-D2
 = i This m e a n s that 

(50 2 has two eigenvalues 1. As the eigenvalues of St are distinct, St can be 
diagonalized. This means that (St)

2 can be diagonalized, and hence there are 
two independent eigenvalues with eigenvalue 1. This also follows since (50 
has order prime to p. One of the eigenvectors is (1, 0, . . . , 0). Let an inde­
pendent eigenvector be (n, . . . , ra_i). The element £ in A corresponding to 
this vector satisfies 5*2(£) = £, or Rt(X(^)) = X(£). The permutation <rt* is 
the permutation (1, t2, . . . ,/<*-*>)(*, t\ . . . , t • ^ - 3 > ) . This means that the 
coefficients of X(£) in rows 1, t2, £4, . . . , P^v 3^ are equal. The same is true for 
the rows t, £3, . . . , t • /2(2,~"3). An appropriate element £r(£a-i)s has one eigen­
value l,%(p — 1) eigenvalues e, and J(£ ~" 1) eigenvalues e. Here, e = e2iri/p. 
This contradicts Blichfeldt's theorem (2, p. 96) and shows that a ^ ^(/? + 1). 
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3. Non-abelian Sylow intersection groups. We now turn to a discussion 
of the case described in (4) for which non-abelian £-Sylow intersection groups 
occur. In this situation there are two ^?-Sylow groups P and PM, AI £ G, such 
that P C\P» = D. Here D is non-abelian of order pz and N{D)/D ^ SL(2, p). 
The following theorem shows that this case arises only in the special case 
that N(D) = G. 

The idea for the proof of the following theorem was suggested by D. Goren-
stein of Northeastern University. 

THEOREM 3.1. If G contains a non-abelian Sylow intersection group D, then 
a = 4, D<3 Gy and G/D ^ SL(2, p). 

The following proof holds for p = 5 as well. The theorem for p = 5 can 
also be found in (4, 9A). 

Proof. The proof is in several parts. The idea is to consider C(rj)f where rj 
is an involution in N(D). We will show that the only involution in C(r)) is 77 
itself. This shows that a 2-Sylow group of G contains only one involution. 
Results of (6) can be applied to yield a = 4 and D <\ G. 

(1) Set M = N(D). We will show in this part that M contains a subgroup 
Mo isomorphic to SL(2, p). By (4, 5C) we have M/D ^ SL(2, p). Let 77 be 
an involution in M. Clearly, q is not in D as \D\ = pz. As M/D has exactly 
one involution, it must be 77, where rj is the image of rj under the canonical 
homomorphism of M into M/D. Any involution in M must therefore be of 
the form rjd, where d G D. 

Let D* be the group (D, 77) of order 2pd. Clearly, (77) is a 2-Sylow group, 
and hence all involutions in D* are conjugate to 77 by an element of D. The 
number of such conjugates must be \D\/\CD(rj) \. Here CD(v) — C(rj) C\ D. The 
isomorphism M/D = SL(2, p) is obtained by noting the way in which any 
element of M transforms D/Z under conjugation. The involution 77 inverts 
elements in G/Z. Its matrix is 

The only elements in D centralized by 77 are the elements of Z. The number of 
conjugates of 77 in D* is therefore p3/p = p2. This means that there are p2 

conjugates of 77 in M. 
Let Mi = CM (y) = £(77) ^ M. As there are p2 conjugates of 77 in M, we 

see that \M:Mi\ = p2. Since D H Mx = Z, this yields MJ) = M. By the 
isomorphism theorem, SL (2, p) ^ M/D ^ MXD/D ^ Mi/(Mi Pi D) ^ Mi/Z. 
We can use Griin's theorem (14, p. 173) on Mi to obtain a subgroup ikT0 = MÎ 
such that MQ = SL(2, p). Griin's theorem on Mi yields a normal subgroup Mo 
of index p as Z £ Z(Mi). This subgroup could not contain Z, otherwise Mi 
would be a £'-group and thus Mi would be ^-solvable. Clearly, M1 = Mo X Z, 
and therefore Mo = Mx

f and M0 = Mi/Z ^ SL(2, p). Clearly 77 6 M0. 
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(2) Again consider the group D* = (D, 77). Since X\D is irreducible, X\D* 
is irreducible. Since jZ>*| = 2pz, X is of 2 defect 1 and thus has (77) as a cyclic 
defect group. This implies that x(v) ~ ± 1 . A more elementary way to see 
this is to note that the centralizer in D* of r? has order 2p. U x(v) ^ ±1> the 
sum (x(??))2 over the p — 1 conjugates of x is greater than 2p. 

The sign of x(v) can be determined by the unimodularity of X(r]). We see 
that X(TJ) must have \{p + <5) eigenvalues 1 and \{p — ô) eigenvalues — 1. 
Here, ô = 1 if p = 1 (mod 4) and ô = — 1 if £ = = 3 (mod 4). This implies 

thatxO?) = 5. 
(3) Let £ be an element of order p in M0. We can assume that £ is in P . The 

notation of (4) will be used. Here D — (r, £a_2, £a-i)- Furthermore, 
yl = (£a_i, £a_2, . . . , £1) and Z = (£a_i). We have the relations (r)*a-« = 
r f c - ^ i ) - 1 for t = 2, 3, . . . , a - 1. Since £ G C(ij), we have x(£) ^ 0 for 
if x(£) = 0, the constituents of X(£) are all distinct and so by (4, 3F), 
2 K |C(£)|. This implies that £ € A, as for elements £ g P - 4 , x(£) = 0 . Let 
Xi, x2, . . . , xa_i be integers, 0 S xt ^ £ — 1, such that 

We know that £ normalizes D as £ G ikf. Our relations yield 

Since Z) = (r, £a_i, £a_2) and r* G D, we must have x4 = x-b = . . . = xa_i = 0. 
This means that £ 6 Aa-% — (£a_i, £a_2, L-3). By (4, 4E), the characteristic 
roots of X(£) have multiplicity at most 2. 

(4) Let Wi = C(ri). Clearly I 0 Ç I 1 Ç Wx. Since 17 6 Z(PFi) and X(v) 
has è(£ + 5) eigenvalues 1, \{p — ô) eigenvalues — 1 , X|JFi must split into 
components Fi and F2 of degrees \{p + 1) and \{p — 1), respectively. 
Yi(r}) has eigenvalues 5; F2(rç) has eigenvalues — d. 

Since Mo £ IFi, we can consider F*|Mo, i = 1,2. These are representations 
of M0 = SL(2, p). There are five irreducible characters of SL(2, p) whose 
degrees are smaller than p — 1. These are in two ^-blocks, B0(p) and Bi(p). 
In BQ(p) there is the principal character and two ^-conjugate characters of 
degree \{p + 5). The kernel of these ^-conjugate characters is (rj). In B\(p) 
there are two ^-conjugate characters of degree \{p — 5). These characters are 
faithful. 

Let t be a primitive root mod p and 

è(p-3) è(p-3) 

Z ( 0 2 s V ( 0 2 s + 1 

s=0 s=0 

The exceptional characters have value coi or co2 on a ^-element if the degree 
is i(p — 1) and wi + 1 or w2 + 1 if the degree is \{p + 1). In each case, the 
corresponding eigenvalues are all distinct. 

The representations Yt\Mof i — 1, 2, must have characters corresponding 
to sums of these characters. Let yt be the character of Yt. The eigenvalues of 
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X(£) have multiplicity at most two and are not all distinct. If any of the 
Yt\Mo are the identity, the multiplicity is greater than 2 except in the case 
p = 5. In the case p = 5, if F2 |M0 is the identity, rj is in the kernel of X. 
The value of x(£) must be yi(£) + y2(£) which can only be 1 + «i + wi or 
1 + co2 + co2. By replacing X by a conjugate or £ by a power, we can assume 
that x(£) = 1 + 2wi. Clearly yi(Ç) = 1 + «i, y2(£) = wx. We know that 
F1O7) = SI, F2(?j) = —SI. The representation Y{\Mo such that F<(ij) = — I 
must be irreducible and in Bi(p). The other component Y}\M must then 
correspond to an exceptional character and, by comparing degrees, be irre­
ducible. I t is in Bo(p). 

Let L and K(C) be the \{p - 1) X \{p - 1) matrices 

L = 

« 0 • 
0 e'2 0 

0 

0 
0 

.0 0 • • 

0 1 0 -
0 0 1 0 

K(C) = 

0 
É«(P-3) 

0 0' 
0 

0 • 
C 0 

0 0 
0 1 0 
• 0 1 
• 0 0 

There is an element <j> in M0 such that £* = £(P~3. If £ has the representation 
in SL(2, p) as (J Î) we can let $ be (ô °"-2). The basis for the representation 
spaces can be chosen so that 

F2(£) = L, Fité) = L © 1; 
F2(<*>) = X ( - 1 ) , Fx(*) = X ( 1 ) 0 - 1 

7,(0) = £ ( 1 ) , Fxft) = X ( - l ) 0 -

Each Yi\M0 is irreducible, and hence each Y\ is irreducible on Wi. 
(5) Let PQ be a ^-Sylow group of Wi containing £ and Z. If £0 is in P0 , then 

if p s 1 (mod 4) ; 

if/> s 3 (mod 4). 
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£o commutes with rj and thus x(£o) ^ 0 (4, 3F). Let Q be a £-Sylow group 
of G containing P 0 , say Q = PMi with jui G G. If p is in Q and not in A»i, 
x(p) = 0. This shows that Po Q AH. We see that Po must be abelian since 
AH is abelian. Elements in P 0 therefore commute with £. This means that 
F*(£) commutes with F*(£0) and since the eigenvalues of F*(£) are all distinct, 
the matrix Ff(£o) must be diagonal. Let 

i(p-D 

F2|PO = e £ x* 

with the \i linear characters of Po. 
As rj centralizes Po, X\P0 must have a multiple constituent (4, 3F). We 

know that F*(£) has distinct constituents and so F*|P0 must have distinct 
constituents. This means that Fi |P0 and F2|Po must have a constituent in 
common. In the basis chosen, we can apply the matrix F ^ ) , \{p — 1) times, 
to obtain: 

i(p-D i(p-D 

(3.1) F 1 | P o = © E (X<0Xp), F 2 | P o = e £ X,. 

Here \v is a linear character of Po. 
(6) Let Li be the kernel of Yif i = 1,2. Suppose that £0 G Po H L2. WTe 

have F2(£0) = ^, and hence X^(£0) = 1, J = 1, 2, . . . , \{p — 1). This implies 
that Xp(£o) = 1, and thus £0 = e. If £0 € Po H Li, we have \j(%o) = 1, 
j = 1, 2, . . . , \{p — 1), p, and again £0 = e. This shows that P 0 H Lt = e, 
i = 1,2. Consequently, p^\Lt\. Furthermore, we know that LiC\L2 = e 
since Fx 0 F2 = X| JFi is faithful. 

(7) In this section we show that |P0 | = p2. Suppose then that |P0 | — Ph, 
b > 2. Fi and F2 are representations of W± of degree less than p — 1 and 
thus Feit's theorem (8) can be applied. Here Yt is a faithful representation 
of Wi/Li. We set \Wi/Lt\ = £&co*, where (p, co*) = 1. Feit's theorem gives 
two normal subgroups Rt such that Lz- <] Rt <] PF*, |P*/Li| = £& or £&-1. If 
|P 2 /Li | = ph, there would be a normal series £ <| Lt <\ Rt <\ W\ and W\ 
would be ^-solvable. This is impossible since M0 C Wi, and ikf0 == SL(2, p) 
is a ^-unsolvable group. This means that |i?*/L<| = ^&"1. 

Clearly, |PiP2 | is divisible by £&-1 as |Pi| is divisible by pb~x. Suppose that 
ph | |PiP2 | . This would imply that a full ^-Sylow group of W\ would be 
contained in P iP 2 and so M0 would be in PiP 2 . This would imply that P iP 2 

was ^-unsolvable. However, we have 

P i P 2 > P 2 > L2 > e, jRx > Lx > e, 

p*-i p> p*-i p> 

P i P 2 / P 2 ^ P i / ( P i n P 2 ) . 

Clearly, P i P 2 is ^-solvable. This shows that 

|PiP2 | =P»-1r, (r,p) = 1. 
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Since Ri and R2 are normal in R\R2j Ri and R2 must have the same ^-Sylow 
groups. For if not, let r be a ̂ -element in Rx not in R2. This element permutes 
the ^-Sylow groups of R2. As the number of ̂ -Sylow groups is congruent to 
1 (mod p), there must be a fixed 1. This implies that/?h \ \RiR2\, a contradiction. 
Therefore any ^-element in Rx is in R2. Similarly, ^-elements of R2 are con­
tained in Ri. 

Let T be the subgroup of R\R2 generated by these p-Sylow groups. Clearly 
\T\ = ph~H, (p, t) = 1. We will show that T = Z which will be a contradiction 
as we are assuming that b > 2. 

Since T is characteristic in Rt and Rt <| Wi, we have T <\ W\. We have 
\Rt/Li\ = pb~\ p*~l | \T\, TQRt and thus TLt = Rt. Furthermore, 
T/(T H Lt) ^ TLi/Lt = Rt/Lt. This implies that T C\Lt = Op>(T). We see 
that r H Li = r H L 2 I Since LtHL2 = e, T H Lx = T C\ L2 = e. This 
shows that Ri/Lt == T and so |T| = £&_1. We know that T is abelian and 

We can apply Clifford's Theorem to Yt\T, By (3.1), we have 

YI\T = {Xi e . . . e x(p_i)/2 e x^ir , 
F 2 | r = {Xx e . . . e x(p_1)/2}|r. 

The characters Xi, . . . , X(p_i)/2, Xp restricted to T must all be conjugate in W\. 
The number of distinct conjugates divides %(p + 1) and \{p — 1). This 
number can only be one. We have X\T = (e)rI and thus T C Z. Clearly, 
T = Z and we have a contradiction. We now assume that b = 2. 

(8) Gain's theorem can be used to obtain a subgroup TF0 £ Wi such that 
Wx = WoX Z, |TFo| = £co with (£, co) = 1. We know that M0 C t^i. Either 
M0JF0 = Wi or TF0. Suppose that M0W0 = Wi. Then 

Z ^ PTi/TTo ^ M o W ^ o ^ Mo/(Mo H WO. 

This is impossible since M0 = SL(2, £). We must have M0W0 = TF0 and thus 
Mo C PFo. 

(9) We now consider the group W0. Here F^Wo is irreducible since F*|Mo 
is irreducible. Furthermore, F*(Mo) has no normal ^-Sylow group and thus 
Yt(Wo) has no normal £-Sylow group. We can apply the results of (13) to 
the linear groups Yi(Wo). This shows that for p ^ 7 there are normal sub­
groups Bi such that Wo/Bi == LF(2, p). For p = 7 there are normal subgroups 
Bt such that Wo/Bi ÊË LF(2,7) or ,47, TF0/^2 ^ LF(2,7). The case 
WQ/BI = AT is impossible here since a composition series would have factors 
A7 and LF(2, 7), and thus 72 would divide \Wç\. The F*(5i) are scalar matrices. 

Clearly pK \Bt\ as p | |LF(2, £) | . Therefore p\ \BXB2\\ Bx C J^Bs £ TT0. 
Since Wo/Bi is simple, BXB2 = 5 i . Similarly, B2 = J5iB2. Set B = Bx - 5 2 . 

Since I? H ikf0 C M0 we have: 

(SL(2fp), 
I o / ( 5 n i o ) ^ LF(2^), 
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Here e is impossible as it would imply that M0 C B and so p \ \B\. Further­
more, Mo/(B H Mo) ^ MoB/B C W0/B ^ LF(2, p). This shows that 
MQ/(B H Mo) ^ LF(2, £) , which implies that MQB/B SE LF(2, />) and so 
ikf0£ = W0. 

(10) Again we fix i such that Yt maps il70 isomorphically, j such that F ; 

maps Mo/(rj) isomorphically. We will now show that 77 is the only involution 
in W\. Suppose then that a is an involution in Wi, a ^ 77. Certainly a is in Wo, 
as elements in W\ not in W0 have order divisible by p. 

Suppose first that a € B. This means that Yt(a) = ± 7 , Yj(a) = ± 7 , 
since the Y{(B), Yj(B) are scalar matrices. In either case, det Yt(a) is 1 as Yt 

has even degree. Since F ; has odd degree, Yj(a) = 7. This means that 
Yt(a) = — 7. We see that a = 77 and so have a contradiction. We can assume 
that a g J5. 

(11) Since Af07> = Wo, we have c = nfr with b Ç 5 , n G ikf0, n ^ 0 and 
since 0- is an involution, (ri&)2 = (ri)2(6)2 = a2 = e. This follows since T* 
and & commute. We see that Y^r^Y^b2) = 7, 7 , ( T I 2 ) F , ( & 2 ) = 7. Since 
F*(&2) and F ;(62) are scalar matrices, F^(ri2) and YJ(TI2) are scalar matrices 
also. 

The only scalar matrix in YJ\MQ is 7 and thus F ;(62) = 7. This shows that 
Yj(b) = db7. The only scalar matrices in Yt\Mo are 7 and —7. If Yt{r2) = 7, 
then Yi(b2) = 7, F*(&) = ± 7 . In this case, b = y or b = e. This means that 
o- £ i7 0 and implies that a = 77. We see that F*(ri2) = — 7. In turn, 
7f(62) = _ / a n d thus 7,(6) = ±il. 

This element & has order 22 and X\(b) has variety 2 (see introduction). By 
(4, 3D), (b) H Z is not e and we have a contradiction. This shows that the 
only involution in C(r]) = W\ is 77 itself. 

(12) This result implies that 77 is the only involution in a 2-Sylow group 
£2 of G. For if not, there is a 2-element r not in W\ which normalizes some 
2-Sylow group of W\. Since 77 is the only involution in Wi, r centralizes 77 and 
hence is in W\. This is a contradiction. 

The theorem of Brauer-Suzuki (6) can now be applied to G. Let K = 02 ' (G). 
This theorem states that 77 is in the centre of G/K. Here 77 is the image of 77 
in G/K. 

Clearly ZQK.UZ = K,rj would be in Z (G/K). However, r" = 7--1 (mod Z) 
and therefore 77 g Z(G/K). Therefore K > Z. Suppose that Z = Op(K). 
Since i£ is of odd order it is solvable (9) and thus Opp> (K) > Z. This implies 
that 0Pp'(K) = Z X 0P'(K) and hence Op>(K) > 6. This is impossible by 
the primitivity of X. We see then that Op(K) > Z and (^^(G) > Z. Set 
P i = Op(G). Clearly P i is in all £-Sylow groups of G. Since P Pi P" = 7>, we 
have P i C 7). If P i = 7), we have G = iV(Z>) and thus by (4), a = 4, 
G/Z> ^ SL(2, p). If P i ^ 7), |Pi | = p2. All such groups in 7) are of the form 
(M r(£a-2)s , Z). The only such group normal in P is (£a-2, Z) = ^4a-2. How­
ever, iV(^4a_2) = N(P) (4, 5C). This shows t h a t P <\ G, a contradiction since 
P" ^ P . The proof is complete. 
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Remark. This theorem in conjunction with (4, 5A, 5C, 6A, 6B) shows that 
the only ^-Sylow intersection groups of P are P , Z, and A. I t is mentioned in 
(4, § 7) that for p ^ 13, A cannot be a ^-Sylow intersection group. If A is 
not a ^-Sylow intersection group, the ^-Sylow groups of G form a T — I set. 

4. Some results on the rationality of %• In this section we show that in 
many cases x is rational or at least real when restricted to ^-regular elements. 
We only consider the case a ^ 3. It is assumed that the case of § 3 does not 
occur, that is, G has no non-abelian ^-Sylow intersection groups. The only 
^-Sylow intersection groups contained in P are therefore P , Z, and A. We 
know from results of (4) that the only ^-defect groups in P are then P , Z, or A. 
Clearly A cannot be one as C(A) = A and hence there is no ̂ -regular element 
R such that A is a £-Sylow group of C(R) (2; 10). Since C{P) = Z, there is 
only one block of full ^-defect B$(p}. All other blocks have ^-defect 1. This 
proves part of the following lemma. Here G = G/Z. 

LEMMA 4.1. If a è 4, B0(p) is the only block of full p-defect. All other blocks 
are of defect 1 with defect group Z. Each p-block of G corresponds to a 'unique 
block B of G with defect one less (2). If y* is an irreducible character of G in 
B0(p),y*(£a-2) is not 0. 

Proof. If G is not the group described in § 3, all statements are clear except 
the last. If G is the group described in § 3, D cannot be a ^-defect group as 
there is no ^-regular element centralizing D except e. The last statement 
follows since £a_2 is the centre of a ^-Sylow group and thus 

3;*(Ia-2)/degy* ^ O ( m o d ^ ) . 

THEOREM 4.2. Suppose that a ^ 4 and G is not the group described in 
Theorem 3.1. Let H = Op'(G). The representation X\H is primitive. Either 
X is rational on q-elements or there is an element of order pq in H = H/Z. Here 
q is an odd prime other than p. 

COROLLARY 4.3. If there are no elements of order pq in H and g = paqbgi with 
(gu q) = 1, then b ^ [p/(q - 1)] + [p/q(q - 1)] + . . . . 

Proof. As x is rational on g-elements, this follows by a theorem of Schur (12). 

COROLLARY 4.4. If A is not a p-Sylow intersection group and there is an 
element of order pqc in H, then qc\p — 1. 

Proof. Since there are no £-Sylow intersection groups contained in P except 
P and Z, an element R which centralizes an element in P must normalize P . 
Therefore R € N(P). Since A is characteristic in P , N(A) 2 N(P) and since 
A is abelian, X\N(P) is monomial. The diagonal matrices come from A and 
thus N(P)/A is a subgroup of Sv with a normal ^-Sylow group. I t follows 
that qc, the order of R in N(P)/A, divides p — 1 since the order of the normal-
izer of a ^-Sylow group of Sp is p(p — 1). 
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Proof of Theorem 4.2. The proof consists of several parts. 
(1) Let H = Op'(G). Since P C f f , X\H is irreducible. If X\H is not primi­

tive, there is a normal abelian subgroup K of H such that H/K is isomorphic 
to a subgroup of Sv. Let P 0 be a ^-Sylow group of K. Since i£ is abelian, P 0 

is characteristic in K and hence normal in H. I t is therefore in all p-Sylow 
groups of H. This means that it is in all />-Sylow groups of G. Its order must be 
pa-i o r pa^ since X is abelian, P 0 is abelian and thus |Po| = pa~x, Po = A, This 
shows that A <\ G, contradicting the primitivity of X. This shows that X\H 
is primitive. From now on we replace G by H in our considerations and thus 
we can assume that Ov' (G) = G. 

(2) We again assume that a basis is chosen for the representation space as 
in (4). Let ^ = x|P- Suppose that 

(4.1) *f = l+it,am. 
The rjiS are irreducible characters of P , the at integers. Since Z G ker ^ , we 
have Z G ker 77 *. Let 77** be the corresponding character of P . We see that $$ 
represents P faithfully since an element £ in the kernel of tyfy satisfies |^(£) | = /> 
and thus £ £ Z. The 77* have degree 1 or p since P is a ^-group and p2 > p2 — 1. 
I t also follows from I to's Theorem (11) that all irreducible characters of P 
have degree 1 or p. We know that xfôz-2) = 0, and therefore yp\p(£) = 0. In 
particular, the eigenvalues of I 0 X(£a__2) are the pth. roots of 1 all taken 
with multiplicity p. 

Suppose that £a_2 is in the kernel of some rji of degree p. This means that 
X ® X(£) has at least p + 1 eigenvalues 1, giving a contradiction. Therefore 
£a_2 is not in the kernel of any 771 of degree p. On the other hand, since 
P ' = A2 D (£0-2), £a-2 is in the kernel of each linear character 77*. 

The group P is non-abelian since a ^ 4. In fact, the centre of P is generated 
by L-2. There must be some non-linear character 771 occurring in (4.1). For 
this r\u y]i{ia-2) — P*1 for some t, 1 ^ t ^ p — 1. Since 

e 
1 + Z ) û^(£a-2) = 0, 

i-2 

there must be £ — 1 characters yjj of degree p each conjugate to 77* on £a_2. 
We label these 771, . . . , 77P_i. The remaining characters in (4.1) are all linear. 
We label them £1, . . . , £p-i. Equation (4.1) becomes 

(4.2) n = I+ÊIN + ËÉ,. 

(3) We now assume that q is a prime for which there are no elements of 
order pq in G and for which there is a g-element R such that x(P) is not 
rational. Let g = paqbg\, where (gi, g) = 1. The splitting field K is Q with the 
gth root of unity attached. Let K\ be Q with the £agith roots of unity attached. 
Suppose that there is an element a- of G(K/Ki), the Galois group of K over K\, 
for which xax(P) is not rational. 

https://doi.org/10.4153/CJM-1969-114-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-114-0


LINEAR GROUPS OF PRIME DEGREE 1037 

Clearly, xax\R — Xx\P = $$ since a keeps the pXki roots of unity fixed. 
Suppose that x°X = Z)*=i aiJu the yt are irreducible characters of G. Again, 
since Z Ç ker x^X, the yt can be considered as linear characters y* of G. We 
consider the possibilities for this decomposition. 

(4) Let z = X^=i htyu bt ^ au and assume that z\P contains only linear 
characters. Let K = ker z. Clearly £a_2 6 K. Clearly K <\ G and xax\K = 
z\K + . . • = (deg z) • \K + . . . , where 1^ is the trivial character on K. If 
deg z > 1, this implies that x\K is reducible by the primitivity and thus 
K Ç Z. This is not true since £a-2 G K. This shows that deg 2 = 1 . We see 
that there is at most one yt such that yt\P contains only linear characters and 
this yt is linear itself. 

(5) Suppose that yj\P is rational. If y j is not linear, y0\P cannot contain 
only linear constituents and thus must contain at least one non-linear 
constituent rjr, r = 1, 2, . . . , p — 1. Since yjiia-i) is rational, all 
r)r, r = 1,2, . . . ,p — 1, must occur in yj\P. This implies that xaX ~~ Jj\P has 
only linear constituents and therefore is linear. This means that x°x = yi + y j , 
where yt is linear, or x°X = y j- In the latter case, y* is in B0(p) as its degree 
is p2. However, y*Qa-2) = 0, a contradiction to Lemma 4.1. This means that 
if yj\P is rational, it is either linear or xaX ~ Jt + Jj with yt linear. 

(6) Suppose that £a_2 is not in the kernel of some yu i = 1, 2, . . . , k. If 
K = ker yu K C\ P is a normal subgroup of P not containing £a_2. The only 
such subgroup is Z (4, 4D). However, this implies that K = K0 X Z, where 
Ko = 0P'(K). This implies that K0 = e since x is primitive. We know that 
Z Ç K and thus yi acts faithfully on G. 

(7) Assume now that there are no linear characters among the 
yu i = 1, 2, . . . , k. We have seen in (5) that this implies that yt\P is irrational. 
We know that £a_2 £ ker 3^ by (4), since £a_2 € k e r ^ implies yt\P has only 
linear constituents. Furthermore, since x'xiR) is irrational, some yj(R) is 
irrational. This shows that there is a 3^ which is irrational on R and P. Since 
£a_2 $ ker yJy y j is faithful on G. Since there are no elements of order pq in G, 
this is a contradiction by (3; 7). This shows that some yt is linear. 

Let yi be a linear character. We have 

xx = yi + Z) a^i-
t=2 

Let i£ = ker 3̂ 1. Since Op'(G) = G, we have G/i£ a £-group. Clearly Z £ K 
since £a-2 G i£. This means that x | ^ is irreducible by primitivity. Further­
more, x^xlK has a constituent 1^ and hence x°\K — x\K. Since i? is a g-element, 
R £ K. We see that xx(R) = X°x(-^)- In particular, xx(R) is irrational. 

Let xx = yi + ]Cf=2#/3>/, where the y{ are irreducible characters of G, 
3// is 1. We have seen in (4) that none of the y/ with i ^ 2 are linear. Suppose 
that &' > 2. None of the 3>/|P, / ^ 2, can be rational. For, if one were, by (4), 
it would contain all of the 771 and the others would contain only linear charac­
ters £i. This is also impossible by (5). For at least one i, y/(R) is not rational 
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since xx(R) is n ° t rational. Furthermore, £a_2 is not in the kernel of y/ since 
y/\P does not have linear constituents. This shows, by (6), that y/ is faithful 
on G. Again, as there are no elements in G of order pq, we have a contradiction 
to (3; 7). This shows that i = 2, xx = Ji + 3'2/. 

Since xx (R) is not rational and y\ (R) = 1, we see that y2 (R) is not rational. 
Let 0-1 be in GiK/Kx) such that yt(RYi ^ yJiR). Since 

x'xT1^ = xxx̂ T1 = a + yi'xi + 3 0 = 1 +... 
with no further constituents 1, we see that xfflX is irreducible. The character 
X îx can be considered as a character of G. I t is in B0(p) and x^xCIa-^) = 0, 
contradicting Lemma 4.1. 

We have shown that x'xC^) irrational leads to a contradiction and thus 
Xffx(R) is always rational. 

(8) Let x(R) = M- We know that p is not rational but pap is always rational. 
Let o"2 be an element of G(K/K\) such that pff = p. This is possible since p, is 
a sum of (g)6th roots of unity. We know that pp is rational and thus p2 is 
rational. The minimal equation of /x is x2 — r = 0, where p2 = r. This shows 
that M has exactly one conjugate, — JJL. 

Let pi = e2iri/qb. The Galois group G(K/Ki) is isomorphic to the Galois 
group G(Q[pi]/Q) by the natural restriction from K to Q[pi]. For g 7̂  2, it is 
cyclic of order (q — 1)#&-1. If Si is a primitive root (modg&), G(Q[pi]/Q) is 
generated by a, where o-(pi) = pisi. There is therefore a unique extension of 
degree 2, the fixed field of a2. Let p be e27rî/(Z and let 5 be a primitive root 
(mod q). Set 10 = YJil~ïl)(p)s2%> Clearly, co*2 = co. Also as is well known, co is 
irrational and thus Q[u] is the fixed field. The algebraic integers in Q[cc] are 
of the form a + boo, where a and b are integers. This follows since the algebraic 
integers in Q[p] are in Z[p] and the conjugates of co are linearly independent. 
We see then that p, = a + bœ. Furthermore, co + co ( 7+l = 0. In our case, 
p* — a + frco* = a — &(1 + w) = —a — bœ. This shows that 2a — b = 0 and 
/* = a ( l + 2co). Let I be a prime ideal of the algebraic integers in Z[pi] con­
taining q. Since œ is a sum of \{q — 1) gth roots of 1 all of which are congruent 
to 1 (mod I) we see that 1 + 2co = 0 (mod / ) . This means that p = 0 (mod / ) . 
However, since x has degree p, p. = p (mod 7), giving a contradiction. This 
completes the proof of the theorem. 

We now discuss the case a = 3, \G\ = pzg^ The methods above do not 
apply since P is now abelian. However, we can apply the character theory 
described in (4; 5) to this case. We first show that except for a trivial case, 
Op'(G)/Z is simple. 

THEOREM 4.5. If G does not have a normal p-Sylow group, Z is the only non-
trivial normal subgroup of Ov' (G), and thus Ov' (G)/Z is simple. 

Proof. We assume that G does not have a normal £-Sylow group. Let 
H = Ov'(G). Let K be a non-trivial normal subgroup of H. The proof consists 
of several steps. 
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(1) If K is a pf-group, then Ov> (H) ^ e. Therefore Ov> (G) 9e e, contradicting 
the primitivity of x- This means that K is not a ^'-group. 

(2) Let P be a £-Sylow group of G. Clearly P Q H. Let P0 = P n K. U 
f 6 Po, £ € Z, there is a r G P such that ^ = {(J2)r, <£2) = Z, for any 
r, 0 ^ r ^ p — 1. This implies that Z C P0 . Suppose that P 0 = Z. Then 
I = Z X i^o, where K0 = 0^ (X"). Since i£ ^ Z, i£0 ^ e. This gives a normal 
non-trivial ^'-subgroup K0, contradicting (1). Therefore P 0 ^ Z. If P 0 = P , 
then K = H, giving a contradiction. We see that |P0 | = ^2. 

(3) Suppose t h a t P Q Hi Q H. We will compute Op(Hi). Since P is abelian, 
we use Gain's theorem (14) to see that H1/0

p(H1) ^ P H C(Nm(P)). If 
NS(P) T^P, thenC(7V^(P)) = Z by (4, 7A). This means that 0P(H1) = # l B 

If we know that 0P{HX) ^ 5"i, this implies that iV^(P) = P and hence 

(4) Consider the group Pi£. Clearly |Pi£| = pzr0l where \K\ = p2r0. 
Certainly, PK/K is cyclic of order p. This shows that 0p(PK) je PK and 
thus 0p(PK) j* PK. Applying part (3) with Hx = PK, we have NPK(P) = P . 
As P 0 = P H i£ is not a £-Sylow intersection group (4, 7A), NK(P0) = Po 
since any element of K normalizing P 0 must normalize P . Since Po is abelian, 
Po C CK(NK(Po)). By Burnside's theorem (14, p. 169), K has a normal 
^-complement. This normal ^-complement is then normal in G, contradicting 
the primitivity of x unless it is e. We see then that K — P0 , Po <] G. Again, 
since there are no ^-Sylow intersection groups, P <\ G, contradicting the 
hypothesis. This completes the proof of the theorem. 

The following theorem is a collection of several properties of 0P(G). 

THEOREM 4.6. Let a = 3, H = 0P\G). Suppose that H je P . Then the 
character x\H is primitive. If or £ G(K/Q(e)) and xa\H ^ x\H, ^hen xx*\H is 
irreducible. In this case XX = 1 + X2, X2 is irreducible, X2a ^ xt- Furthermore, 
x\H is real on p-regular elements. 

Proof. The primitivity of x\H follows from Theorem 4.5 as there are no 
non-trivial normal subgroups except Z. From now on in this theorem we 
replace G by 0P'{G). 

(1) We first show that if x°X is irreducible for all a Ç G(K/Q(e)) with 
X* 7* X> then x is real on ^-regular elements. Suppose that x ^ X on some 
^-regular element. There is an element in G(K/Q(e)) such that x0" = X for 
^-regular elements. We know that xa ^ X and so y = xaX is irreducible. Let 
y9 be the modular character corresponding to y. Since y has degree p2, it is of 
^-defect 1. However, Z Ç ker^y and thus y can be considered as a character 
of G. Here it is of ^-defect 0 and hence is modularly irreducible. However, 
(xa)d — Xe since \v- — X on ^-regular elements. Certainly, x6X6 is not irreducible 
since the characters corresponding to the symmetric and skew symmetric 
tensors are summands. This shows that (xcx)d is not irreducible, giving a 
contradiction. We see that x is real on ^-regular elements. 
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(2) We now show that xaX is irreducible if x° ^ x- The results of (5) are 
applied. These are described in (4; § 8). We use the notation of (4) here. 

Suppose that xaX is reducible. Since all of the constituents of x̂ X have 
degrees at most p2 — 1, they are all in B0(p). We can therefore write 

/ t 
XX = Z) aiXi + <M 1 ] Xo* 

Since x is zero on P — Z, the multiplicities of xo&, k = 1, 2, . . . , J, are all the 
same. We use an argument similar to (4, § 8). 

Suppose that at ^ 0, bt > 0. Since x*(l) .= bt (modp2), x*(l) = P2 — 1> 
we see that XiO-) — °i- This means that P C ker xu which implies that G is 
in the kernel of x% and that Xi — 1- Further, xa = X» contradicting the 
hypothesis. 

Suppose that at ^ 0, 6f < 0. As in (4), {|6*| + Xi)\P = mpp, w > |6*|, 
where p? is the regular representation of P. We have £2 — 1 ^ x*(l) = 
m£2 — \bi\ ^ j&z|(^2 — 1). This yields bt = — 1 , x*(l) = £2 — 1. This means 
that xaX has a linear constituent which can only be 1 by the choice of G. 
Again x0" = X> giving a contradiction. 

Finally, we have x*X = 0o(Ei-i Xo*). However, (£JLi Xo*(£)) ^ 0, and 
thus a0 = 0 also. We have seen then that x°x must be irreducible. 

(3) Suppose that xx = 1 + y- If y a n d y* had a common constituent, we 
would have 

xa5oC\ = xxx'x^ = (1 + y) (1 + y°) = 1 + (W) + . . . = 1 + 1 + 
This implies that x*X is reducible. This means that in (4, § 8, Case I I ) , 
y = 5Zfc=i Xo*. If y and ya have no common constituents, xo° and (xo*)0- are 
all distinct. This is inconsistent with the results of (4, § 8; 5). We see that 
(4, §8, Case I) occurs and XX = 1 + X2 with X2 irreducible. Furthermore, 
X2° 7* X2. 

5. Abelian Sylow groups. If g is a prime, p/2 < q <p, the g-Sylow group 
must be abelian. This is easy to show if q is greater than five but difficult for 
q = 5. We will prove it in this section for q ^ 7 and save the proof for q — 5 
for a later paper in which linear groups of degree 7 are treated explicitly (see 
p. 1042 of this issue). The proof does not depend on the fact that G is of prime 
degree and so we prove it in general. The proof seems to be well known. 

THEOREM 5.1. If G has a faithful primitive irreducible representation X of 
degree n and q is a prime, n/2 < q < n, 7 ^ g, then a q-Sylow group of G is 
abelian. 

Proof. If a g-Sylow group Pq is non-abelian, X\Pq must have a constituent 
of degree q and n — q linear constituents. Let £ be an element in Z(PQ) C\ Pq

f. 
For an appropriate power £r the eigenvalues of X(£r) are e2iri/Q repeated 
q times and 1 repeated n — g times. This contradicts Blichfeldt's theorem 
(1, p. 96) since q ^ 7 and shows that Pq is abelian. 

• 
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