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Abstract

The current study explored the impact of genetic relatedness differences (ΔH) and sample size on the performance of nonclassical ACE
models, with a focus on same-sex and opposite-sex twin groups. The ACE model is a statistical model that posits that additive genetic factors
(A), common environmental factors (C), and specific (or nonshared) environmental factors plus measurement error (E) account for
individual differences in a phenotype. By extending Visscher’s (2004) least squares paradigm and conducting simulations, we illustrated how
genetic relatedness of same-sex twins (HSS) influences the statistical power of additive genetic estimates (A), AIC-based model performance,
and the frequency of negative estimates. We found that larger HSS and increased sample sizes were positively associated with increased power
to detect additive genetic components and improvedmodel performance, and reduction of negative estimates.We also found that the common
solution of fixing the common environment correlation for sex-limited effects to .95 caused slightly worse model performance under most
circumstances. Further, negative estimates were shown to be possible and were not always indicative of a failed model, but rather, they
sometimes pointed to low power or model misspecification. Researchers using kin pairs with ΔH less than .5 should carefully consider
performance implications and conduct comprehensive power analyses. Our findings provide valuable insights and practical guidelines for
those working with nontwin kin pairs or situations where zygosity is unavailable, as well as areas for future research.
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Statistical power, an integral part of the research process,
underpins the design and evaluation of empirical research.
Beyond just good science, it is a near universal expectation from
granting agencies (Chow et al., 2017; Descôteaux, 2007). These
agencies typically expect researchers to determine adequate sample
sizes through a priori power calculations (Cohen, 1988; Jackson
et al., 2009; Maxwell et al., 2008). Post hoc calculations are equally
important— they facilitate evaluating the conclusions drawn from
any given study (Levine & Ensom, 2001). Within the field of
behavior genetics, particularly in the context of ACE models,
power refers to the probability of correctly rejecting the null
hypothesis— that genetic or common environmental effects have
no impact on the outcome traits (Verhulst, 2017; Visscher, 2004).
The ACE model is a statistical model that posits that additive
genetic factors (A), common environmental factors (C), and
specific (or nonshared) environmental factors plus measurement
error (E) account for individual differences in a phenotype.
Previous studies have thoroughly discussed how sample size,
variance components, and the ratio of twin types impact the power
of parameter estimation via mathematical derivations (e.g.,
Visscher, 2004; Visscher et al., 2008), computer simulations

(e.g., Verhulst, 2017), or a combination of the two (Martin et al.,
1978; Sham et al., 2020). Notably, these studies all use monozygotic
(MZ) and dizygotic (DZ) twins. However, an ACE model is not
exclusively identifiable with MZ and DZ twins. In fact, any two
groups of kin pairs with different genetic-relatedness parameters
(H) are mathematically sufficient to fit an ACE model (Hunter
et al., 2021).

Most simulation research has focused on classical twin
designs, which set the genetic relatedness parameter (H) at 1.0
for MZ twins and 0.5 for DZ twins. However, alternate family
designs employing different H parameters do exist. One such
example is the same-sex (SS) and opposite-sex (OS) DZ twin
pair design, often called the SS-OS design. This design becomes
particularly useful when zygosity is unavailable as researchers
can distinguish OS DZ twins from SS twins based on birth date
and biological sex. The remaining SS twin pairs are a mixture of
MZ and SS DZ twins. Historically, this design was a staple in
earlier twin studies such as the Scottish Mental Surveys
conducted in 1932 and 1947 (Deary et al., 2004), before the
widespread use of genotyping. Despite technological advance-
ments, this design remains relevant, particularly when genotyp-
ing is not feasible. For example, a series of studies by Figlio and
colleagues (Figlio, Guryan et al., 2014; Figlio, Freese et al., 2017)
used the SS-OS twin design on administrative data to analyze all
twins born in Florida from 1994 to 2004. The authors relied on
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these records to increase the representation of twins from
disadvantaged backgrounds, thereby mitigating selection effects
commonly found in twin studies (Hagenbeek et al., 2023;
Holden et al., 2022). In doing so, they ensured a more
representative sample, but they had to forgo determining
zygosity — a design trade-off the authors argued was
worthwhile (Figlio et al., 2017).

These design considerations are not unique to Figlio and
colleagues (Figlio, Guryan et al., 2014; Figlio, Freese et al., 2017),
but reflect a widespread limitation, as most surveys lack zygosity
data. Yet, many large-scale social surveys1 collect family data
without being specifically tailored for twin studies. These surveys
usually focus on social, economic, educational, geographical, and
political topics (e.g., China Family Panel Study, by Xie & Hu, 2014;
The National Longitudinal Survey of Youth, by Rodgers et al.,
2016), and employ household sampling methods for efficiency
(Parsaeian et al., 2021; United Nations, 2008). By deploying the
SS-OS design on these public datasets, we enable these datasets to
yield not just individual-level information but also rich genetic
insights from twin studies, adding depth to our analyses.
Compared to twin registries and genomewide association studies
(GWASs), these public datasets often cover a wider range of
research topics and contain more diverse populations (Hagenbeek
et al., 2023; Holden et al., 2022), allowing us tomove beyond typical
WEIRD (Western, Educated, Industrialized, Rich, and
Democratic) samples (Henrich et al., 2010; Popejoy & Fullerton,
2016; see Holden et al., 2022; Milhollen et al., 2022 for additional
discussion of these samples for behavior geneticists). Compared to
individual-level analysis, another notable advantage of the SS-OS
design, such as the one used by Figlio and colleagues (Figlio,
Guryan et al., 2014; Figlio, Freese et al., 2017), is its capacity to
meet the equal environments assumption, without exclusively
relying on MZ versus DZ twins.2

The genetic relatedness patterns for twins (HMZ= 1.0 and
HDZ = .5) are a byproduct of their development (Beck et al., 2021).
DZ twins, on average, share 50% of their segregating genes, a
percentage that arises from the random segregation of each
chromosome pair within the gametes. MZ twins, conversely, share
100% of their genes as they originate from the same zygote.
Consequently, MZ twins always share the same biological sex,
whereas DZ twins can be either the same or different sex.
Therefore, the genetic similarity within a group of SS twin pairs
constitutes a weighted average of the 50% and 100% shared by DZ
and MZ twins respectively. This proportion (HSS) can be inferred
from population twinning rates, as long as the following two
assumptions are met: (1) the sample is representative of the
corresponding population; and (2) the specific population’s
twinning rate is known and well-established.

Numerous studies have established reliable population twin-
ning rates, which vary across countries (Monden et al., 2021; Pison
et al., 2015), ethnicities (Pollard, 1995), social classes (Gómez et al.,
2019; Walle et al., 1992), and eras (Esposito et al., 2022;

Gómez et al., 2019), among many other factors (Beck et al,
2021; Nylander, 1981). When both sample characteristics and the
population rates are available, a weighted HSS for a particular
sample can be calculated to fit the ACEmodel.Without population
rates, ‘local’ estimation methods, such as Weinberg’s (1901)
differential rule, the mixture distribution model (Neale, 2003), and
latent class analysis (Heath et al., 2003), can be used to derive HSS

strictly from the sample attributes. Regardless of the approach
taken to derive H for SS twins, the expected value of HSS for the
group will fall in the 0.5<HSS< 1.0 range. Consider, for example, a
univariate ACE model applied to SS and OS twins. In this case, the
expected variance structure, shown in equations 1 and 2, has off-
diagonal values (representing the covariance between twin pairs) in
SS twins’ covariance matrix for additive genetics (A) equal to HSS.

ΣSS θð Þ ¼ 1 HSS

HSS 1

� �
Aþ 1 1

1 1

� �
C þ 1 0

0 1

� �
E (1)

ΣOS θð Þ ¼ 1 :5
:5 1

� �
Aþ 1 1

1 1

� �
C þ 1 0

0 1

� �
E (2)

By fitting the two groups of kin pairs to the (co)variance structure
displayed in equations 1 and 2, we can decompose the total
variance into additive genetic variance (A), common environ-
mental variance (C), and unique environmental variance (E). The
resulting variance estimates will be identical to the ACE model
from the classical twin design (Rijsdijk & Sham, 2002). The
respective covariance matrix of any two groups of kin pairs with
different H (ΔH> 0) can be used to estimate all three variance
components. For example, Rodgers et al. (2019) used cousins
(H = .125) and half cousins (H = .0625) from the National
Longitudinal Survey of Youth to fit a series of ACE models to
estimate the heritability of height. Similarly, kinship links
identified in the China Family Panel Study, including twins, full
siblings and cousins, also present opportunities for the application
of nonclassical ACE models (Lyu & Garrison, 2022b).

Power in Designs of ΔH < .5

A power analysis on SS-OS design can enhance our understanding
of their statistical properties and evaluate their feasibility. In
classical twin designs, the relatedness difference (ΔH) between
MZ and DZ twins is .5. However, in nonclassical models, like
the SS-OS design, this difference is generally less than .5.
Consequently, the implied covariance matrices for these non-
classical kin groups (as represented by the 2 × 2 matrices in
equations 1 and 2) tend to be more similar than in classical twin
designs. The implication is that we need a narrower estimated
standard error to ensure that the two covariance matrices
generated from empirical data can fit the implied structure of
the univariate ACEmodel. Put simply, researchers may need larger
sample sizes to achieve the same level of statistical power as a
classical twin design.

In their commentary on Scarr-Salapatek (1971), Eaves and
Jinks (1972) investigated the power of standard proportion of
additive genetic variance (a2; Computed by A/(A þ C þ E))
estimation under a weighted least-squares approach when using SS
and OS twins. Specifically, they considered the case where a2 = .6
and ΔH = .2, and they found that the SS-OS design needed a
sample size that was approximately three times larger to achieve
comparable power as the classical twin design. However, the

1To illustrate, we did a brief search on ICPSR for household surveys. Out of the 18,916
studies in ICSPR’s repository, 719 fall under the ‘household’ subject term. Of these, a mere
111 studies incorporate keywords like ‘twin’ and ‘zygosity’, indicating that only a small
fraction of household surveys include data on twins.

2Much has been written about violations of the equal environments assumption and its
potential implications for twin studies (see Felson 2014 for a comprehensive overview and
reanalysis). Such criticisms often hinge on the argument that MZ twins, due to their
identical appearances and obvious ‘twinness’, are subject to more similar treatment,
thereby inducing potential confounds in violation of the equal environments assumption.
To mitigate such concerns, one could apply the SS-OS model, which effectively spreads the
MZ twins across both groups.
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statistical power of a2 estimation is heavily associated with the
variance combination and the relative proportion of MZ and DZ
twins (Verhulst, 2017). As a result, the ‘three times sample size’ rule
of thumb may not be universally applicable, and arguably should
not be treated as a rule without a more systematic exploration of
power in such designs.

Mathematically, we adapted Visscher’s (2004) paradigm by
using least-squares (LS) estimation to evaluate the power of the
univariate ACE model as a function of the genetic relatedness of
the SS twins (HSS). Equation 3 illustrates the relation between
power and sample size and R. A detailed mathematical derivation
of equation 3 is provided in Appendix A.

Z1�α þ Z1�β

� �
2 ¼ n � a2ð Þ2 HSS � 0:5ð Þ2

1� HSSa2 þ c2ð Þ2ð Þ2 þ 1� 0:5a2 þ c2ð Þ2ð Þ2
(3)

In equation 3, a2 is the standardized proportion of the additive
genetic variance of the measured trait, c2 is standardized
proportion of the common environment variance of the trait,
and n is the number of kin pairs in each kin group. Z1-α and Z1-β
denote corresponding Z values in an N(0,1) for the assigned type-I
error rate (α), and is power (1-β), respectively. Power is positively
associated with sample size and genetic relatedness of the SS twins
(.5 < HSS< 1), provided that the SS and OS twins have the same
sample size n and a specified type-I error rate.

The power for detecting additive genetic variance varies as a
function of the relatedness of SS twins. Illustrated in Figure 1, when
a2 = .3/ .5/ .7, c2 = .2, e2 = .5/ .3/ .1, n= 500, α = .05, power

increased as the HSS twin relatedness deviated from .5. As the A
component increases its share in total variance, the same level of
power could be maintained when using kin pairs with smaller ΔH.
Although most recent research estimates variance components
with the maximum likelihood (ML) approach, the results of the
univariate ACE model fit with LS and ML are very similar
(Visscher, 2004). This striking similarity allows for extrapolating
the association found with LS to the general pattern of univariate
ACE model fitting. However, ML estimation generally has greater
power than LS estimation (Visscher, 2004), leading to differences
in sample size requirements for satisfactory power. Relying solely
on LS analytic results does not offer researchers sufficient accuracy
to establish a priori power estimation for empirical analysis.
Moreover, simulations facilitate establishing different levels of c2 to
investigate their effects on the power of the a2 estimate. Thus, we
will also examine the power of the a2 estimate in a more
comprehensive set of simulations in addition to deriving power
using least squares estimation.

The Challenge of Non-Positive Parameter Estimates

Besides the issue of power, using the nonclassical kin models may
result in estimated variance components that are zero (Cholesky
decomposition) or negative (correlated factors models; Carey,
2005). Although it is possible that these nonpositive estimates
reflect biological mechanisms that arise from genetics or the
environment (Steinsaltz et al., 2020), such biologically justified
estimates are rare (Verhulst et al., 2019). More often, these
parameters reflect something statistical — related to modeling or
measurement. Negative estimates can occur due to model

Figure 1. This figure illustrates the power for detecting a significant a2 parameter as a function of genetic relatedness of SS twins and variance combinations based on equation 3.
We have fixed the sample size to 500 and set α to .05.
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misspecification. For example, misspecification between ACE and
ADE models that can appear as C and D cannot be estimated
simultaneously or appear when using a too simplified model (e.g.,
ACE) to reveal a more complex structure (Ozaki et al., 2011;
Verhulst et al., 2019; see Hunter et al., 2021 for a mathematical
approach discussing models with more complex structures.).

Furthermore, negative estimates can simply arise from
sampling error (Tabachnick et al., 2019). This can occur when a
biased observed variance or covariance in either the MZ or DZ
sample reduces one of three components to zero or a negative
value. Although larger samples in modern twin studies can
mitigate these sampling errors, concerns persist in designs using SS
and OS twins or other nonclassical designs. For example, a study
examining the heritability of height used 116 SS twins and 61 OS
twins from the China Family Panel Study to fit an ACE model
(Lyu & Garrison, 2022b). This resulted in a slight negative E
estimate. Similarly, a study using cousins (Rodgers et al., 2019)
encountered several instances of zero-value estimates. In such
designs, using kin pairs with genetic relatedness differences of less
than .5 (ΔH < .5) requires larger sample sizes to ensure that the
observed covariance pattern adequately represents the population
parameters. However, obtaining larger sample sizes may not
always be feasible for researchers working with public datasets. At
present, there is no established guidance for suitable sample sizes in
an SS-OS design, leaving researchers without the ability to
determine whether their specific combinations of kin groups and
sample size is sufficient for their desired level of power.

Sex-Limitation Models

Another potential issue when using SS and OS twins instead of MZ
and DZ twins is the effect of sex limitation (Neale & Cardon, 2013).
In this context, ‘sex limitation’ refers to models that account for
differences in genetic and environmental influences on a trait by
biological sex. The differencemay be scalar, indicating that all sexes
are influenced by the same factor but to varying degrees, or
nonscalar, indicating that specific factors influence only one of the
sexes (Neale et al., 2006). Traditional twin designs often exclude OS
DZ twins to avoid potential confounds introduced by sex
differences (Polderman et al., 2015). However, the challenges
associated with sex limitation effects become unavoidable when
fitting ACE models with SS twins and OS twins. Beyond just the
obvious methodological necessity, there are substantive implica-
tions. For example, past research has found that within an OS
sibling pair, the male sibling often receives more parental resources
than his female sibling, especially in nations with limited social
resources (Blau et al., 2020; Das Gupta et al., 2003; Hesketh & Xing,
2006). In the case of OS twins, one study found that family
background effects were stronger for the male twin compared to
the female twin, though the genetic effects were comparable for
both sexes (Miller et al., 1997). The assumption in classical twin
design that the common environment (C) component is identical
between twin pairs is not substantiated under these circumstances
(Felson, 2014; Kendler et al., 1993; Loehlin & Nichols, 1976;
Richardson & Norgate, 2005). One commonly suggested modeling
solution is to set the common environment correlation at a value
less than 1 (Neale et al., 2006). This adjustment aims to partially
account for the impact of sex differences by implementing a sex-
limited scalar in a univariate ACE model (Neale et al. 2006).
Equation 4 illustrated the assumed variance structure for OS twins
with sex limitations,

ΣOS θð Þ ¼ 1 :5
:5 1

� �
Aþ 1 rc

rc 1

� �
C þ 1 0

0 1

� �
E (4)

where values of off-diagonals in the common environment (C)
covariance matrix are the presumed common environment
correlation (rc). However, it is unknown how this approach will
affect the power and performance of the ACEmodel fitting with SS
twins and OS twins, or any other two groups of kin pairs where the
H difference is less than .5.

Hence, the current study aims to better understand the
complexities of utilizing SS twins and OS twins in genetically
informed designs. Specifically, we developed a series of simulations
to investigate (1) the power of heritability estimation, (2) ACE
model performance in AIC-based model selection, and (3) the
frequency of the negative estimates as a function of H and sample
sizes under the maximum likelihood theory. In addition, we
analyzed the impact of sex-limitation models within this
framework.

Methods

We conducted a simulation with a 10 × 10 × 4 design (see Table 1)
with 1000 replications per condition. Given that our primary
objective is to illustrate the impact of HSS and sample size on the
fitting of univariate ACE models, we have established 10
conditions for HSS ranging from .55 to 1.00 in increments of
.05. These 10 progressive conditions encompass the potential range
of the SS-OS design. Furthermore, we have set 10 conditions for
sample sizes, ranging from 30 to 1950, to cover most scenarios in
empirical studies using the SS-OS design (Polderman et al. 2015).
As a result, we will simulate 100 conditions varying in HSS and
sample sizes, providing a robust guideline for practical applications
of the SS-OS design.

Previous research indicated that the power of the A estimation
in a univariate ACE model highly depends on the relative scale
between A and C (Verhulst, 2017). In reality, different traits have a
broad range of patterns for A and C (Polderman et al., 2015).
Hence, four conditions of A, C, and E variance patterns were set to
cover different traits with different variance component structures.
All four variance patterns have a total variance of 3. The proportion
of A variance ranges from 16.7% to 80%, emulating traits subject to
low, medium, and high additive genetic variance. Standardized
proportions of each component in four conditions are also
displayed in Table 1.

Table 1. Simulation of design conditions

HSS* .55, .60, .65, .70, .75, .80, .85, .90, .95, 1.00

Sample sizes** 30, 60, 90, 150, 210, 300, 450, 750, 1200, 1950
Variance structure Unstandardized (A, C, E) Standardized (a2, c2, e2)

1.5, 0.6, 0.9 50%, 20%, 30%

2.4, 0.3, 0.3 80%, 10%, 10%

1, 1, 1 33.3%, 33.3%, 33.3%

0.5, 2, 0.5 16.7%, 66.6%, 16.7%

Note: *HSS is the expected genetic relatedness of same-sex twins.
**Sample sizes are the number of twin pairs in each group. If the sample size is 30, there will
be 30 pairs of SS twins and 30 pairs of OS twins, totaling 120 individuals.
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Data Generation

MZ and DZ data were simulated by generating random numbers
under multivariate normal distribution by functions in ACEsimFit
package 0.0.0.9 (Lyu & Garrison, 2022a). Based on the HSS, a
certain proportion of MZ and DZ twins were generated separately
to form a group of SS twins, and then another group of DZ twins
was generated as the group of OS twins. The simulated data were
fitted with a univariate ACE model using the correlated factor
approach and, for each condition, the simulation was repeated
1000 times. All simulations were performed in R version 4.1.3 (R
Core Team, 2022). The univariate ACE models were fit using
OpenMx 2.20.6 (Neale et al., 2016) with the NPSOL 5.0
optimization algorithm.

As for the investigation of modeling sex limitations, data were
simulated under the same conditions, using a variance pattern of
A= 1.5, C = .6, and E = .9. Notably, to emulate the sex-limited
effect in the common environment, the correlation of C (rc)
between OS twins was set at .95 instead of 1.00. However, for
simplicity, we did not misspecify the common environment
correlation.

The framework suggested by Satorra and Saris (1985) formed
the basis for deriving the power of heritability estimation. We
calculated themean noncentrality parameter (NCP), by comparing
the values of log-likelihood ratio tests (-2 log likelihood) for the
ACE and CE models, for the 1000 models in each condition. Next,
we derived the power for each condition from a comparison
between the null chi-square distribution and the alternative chi-
square distribution with a given NCP. For a more detailed
description of this approach, refer to Satorra and Saris (1985),
Verhulst (2017), and Visscher (2004).

To evaluate how effectively the model correctly identified the
assumed ACE variance structure, we employed the Akaike
Information Criterion (AIC; Akaike 1998) to compare the relative
performances of the ACE, AE, and CE models. We used the
proportion of 1000 models where the ACE model has the lowest
AIC among three models under each condition as an indicator of
correct model selection.3 Lower AIC values suggest one model’s
superiority in explaining the data relative to other models. AIC has
been a long-used approach to evaluating the relative performance
among ACE, CE, and AE models in univariate twin designs and
yields adequately accurate decisions for continuous traits (Sullivan
& Eaves, 2002). Furthermore, we also calculated the proportion of
the 1000 models where at least one of A, C, and E estimates has a
negative value to evaluate the influence of sample sizes and H on
model fitting.

At the recommendation of a reviewer, we also investigated A
parameter bias in the absence of HSS misspecification. We
computed average parameter A estimates across 1000 fitted
models in every single condition under the variance combinations
A= 2.4, C = .3, E = .3; A= 1.5, C = .6, E = .9 and A= 1.0,
C= 1.0, E= 1.0.

Results

We ran a series of simulations to investigate the impact of HSS on
model performance. We summarized the simulation results of the
power of heritability estimation, ACE model performance in AIC
Based Model Selection and the frequency of negative estimates of
the 1000 fitted models in each condition. We presented the results

in a series of matrices where the x-axis displays the 10 conditions of
sample sizes and the y-axis is 10 conditions of HSS. Interpretation
and insights from the results were discussed for the three criteria
separately. Because many of the result patterns were similar, we
primarily presented the results of A= 2.4, C= .3, E= .3 (80%, 10%,
10%) and A= 1.5, C = .6, E = .9 (50%, 20%, 30%). The results and
corresponding figures for the other two combinations are available
in Appendix B.

Power of Heritability Estimation

Generally, we found that the power of a univariate ACE model to
detect A is positively associated with sample size and HSS. This
finding was consistent with our mathematical derivation from the
LS approach. As shown in both Figure 2-1 and Figure 2-2, the
positive association between power and HSS suggests that a higher
proportion of MZ twins in the SS twins will require a smaller
sample size to reach a power of .8. For example, when the variance
combination is A= 1.5, C = .6, E = .9 (Figure 2-1), a sample with
HSS = .75 needs about 450 pairs of SS and OS twins to reach a
power of .8, whereas a sample with HSS = .90 only needs 150 pairs
to reach .8. As the covariance structures of SS andOS twins become
more dissimilar, smaller samples will be sufficient to distinguish
the covariance structures. Conversely, as they grow more similar, a
larger sample is needed to have the same effect. Although the
positive association is similar for two combinations of variance
components, each condition for the combination of A= 2.4, C= .3,
E = .3 (Figure 2-2) demonstrated higher power compared to the
corresponding condition for the combination of A= 1.5, C = .6,
E = .9 (Figure 2-1). For example, in a condition HSS = .75 and
N= 300, the power for the variance combination of A= 2.4, C= .3,
E = .3 is .734, which is lower than a power of .997 for the variance
structure of A= 2.4, C = .3, E = .3 in the same condition. The
proportions can be interpreted as we have power of .734 to detect a
significant difference between the estimated value of A and 0 for
the variance combination of A= 2.4, C= .3, E= .3. In other words,
out of the 1000 models, 734 of them found the expected significant
effect. Comparing all four variance combinations, we find that a
greater share of A in total variance is associated with higher power
in each condition. This finding is consistent with our mathematical
derivation and Verhulst’s (2017) results that the power of the ACE
model is higher when both the proportion of A and C in the total
variance increase.

Model Performance: AIC-Based Model Selection

Regarding model performance in AIC-based model selection, we
found that HSS and sample sizes generally but not exclusively have
a positive association with the overall model performance. Model
performance was operationalized by counting the percentage of the
1000 models where the ACE models have lower AIC values
compared to AE and CE models. For example, with the variance
combination of A= 1.5, C = .6, E = .9 (Figure 3), a sample with
HSS = .75 needs about 1200 pairs of SS and OS twins to reach a
power of .8, whereas an HSS = .90 sample only needs 450 pairs to
reach .8. More specifically, in both variance combinations of
A= 1.5, C = .6, E=.9 (Figure 3) and A= 2.4, C = .3, E = .3
(Supplementary Figure S2-1 in Appendix B), the worst conditions
occur in the middle of the grid, where neither the sample size nor
HSS are extremely small. Although the conditions on the upper left
of the grid are better than the middle ones, the overall power at that
range is far from acceptable. For all the variance combinations,

3Ideally, since the simulated data are generated based on the assumption that A, C, and
E all contribute to the outcome score, the variance structure should be best explained by the
ACE model.
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acceptable overall power only exists when sample sizes and HSS

were relatively large, which is consistent with our prediction.
We noticed that the association pattern between HSS and

sample sizes andmodel performance fluctuated across the different
variance component combinations. A relatively vague trend shows
that as the C variance component dwindles, the model
performance in each condition deteriorates. One intuitive
explanation is that when the share of C decreases, more
information (larger sample size) is needed to distinguish the
covariance structure of the ACE model from the AE model.
Consequently, the variance combination of A = .5, C = 2.0, E = .5
(Supplementary Figure S2-3 in Appendix B) had the best model
performance results among the four combinations. An alternative

possible explanation might be that an increase in E leads to a
decline in model performance. Another interesting pattern
emerges when the share of the C component increases: the ‘gorge’
in the fittings results moves towards the upper left, along with
improved model performance.

Frequency of Negative Estimates

Our results indicate that negative estimates for A, C or E are less
frequent with increasing HSS and sample sizes. For example,
given a variance combination of A = 1.5, C = .6, E = .9
(Figure 4), a sample with HSS = .75 needs about 300 pairs of SS
and another 300 pairs of OS twins to reduce the frequency

Figure 2-1. Illustrated here is the power of the
ACE model to detect A under the simulated
variance of A= 1.5, C = .6, E = .9 (50%, 20%, 30%
respectively), as a function of sample size per
twin group and H of SS twins. Power in each cell
was calculated based on the average non-
centrality parameter of 1000 simulations under
the corresponding condition. Darker cell colors
denote lower power.

Figure 2-2. Illustrated here is the power of the
ACE model to detect A under the simulated
variance of A= 2.4, C = .3, E = .3 as a function of
sample size per twin group and H of SS twins.
Power in each cell was calculated based on the
average noncentrality parameter of 1000 simu-
lations under the corresponding condition.
Darker cell colors denote lower power.
‘Sample size’ indicates the number of kin pairs
in each kin group.
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of negative estimates to a 10% level. In contrast, a sample with
HSS= .90 only needs 150 pairs. The 10% frequency indicates that
out of the 1000 simulated models at least one negative parameter
estimate occurs in 10% of the models. It appears that larger
sample sizes and higher HSS values reduce the likelihood of
negative estimates due to sampling error. Additionally, the
negative estimates seem to be rather sensitive to different
combinations of variance components. For example, there are
distinctly fewer negative estimates for a variance combination of
A = 1.5, C = .6, E = .9 (Figure 4) than for A = 2.4, C = .3, E = .3
(Figure S3-1). For example, under the conditions HSS = .75 and
N = 300, the frequency of negative estimates is 10.1% for the

variance combination of A = 1.5, C = .6, E = .9, as compared to
23.6% for the variance structure of A = 2.4, C = .3, E = .3. Given
the smaller proportion of C and E components in the total
variance for the latter combination, the chance of obtaining a
negative variance estimate due to sampling error increases
compared to A = 1.5, C = .6, E = .9.

Sex-Limited Effects (rc = .95; A = 1.5; C = .6; E = .9)

Addressing the potential for sex-limited effects, our results
suggested that the general positive association between HSS and
sample sizes and three criteria of model performance was

Figure 3. Illustrated here is the proportion of
the fitting results from 1000 simulated datasets
where the ACE model has the lowest AIC
compared to the AE and CE models. Simulated
variance was set at A= 1.5, C = .6, E = .9 (50%,
20%, 30% respectively), as a function of sample
size per twin group and H of SS twins. Darker cell
colors denote lower power. ‘Sample size’
indicates the number of kin pairs in each kin
group.

Figure 4. Illustrated here is the proportion of
fitting results from 1000 simulated datasets with
at least one negative estimate for A, C or E
variance components, when variance is set to
A= 1.5, C = .6, E = .9 (50%, 20%, 30%
respectively), as a function of sample size per
twin group and H of SS twins. Darker cell colors
indicate higher prevalence of negative esti-
mates. ‘Sample size’ indicates the number of
kin pairs in each kin group.
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broadly consistent with the standard model without sex-limited
effects. The power to detect A diminished slightly when we set
the correlation between OS twins to .95 (Figure 5), compared to
the results with the same variance components (A = 1.5, C = .6,
E = .9) without considering sex-limitation (Figure 2-1). A
decrease in rc corresponded with a reduction in the proportion
of C in the total variance. In turn, to achieve the same power
level, larger sample sizes are required, which is consistent with
Verhulst’s (2017) findings. Additionally, the models that
factored in sex-limited effects (Figure 5) yielded more negative
estimates than in the standard models (Supplementary
Figure S4-3). A comparison of Figure 5 and Supplementary
Figure S4-2 revealed an interesting pattern in the overall model
fitting. When the sample sizes are relatively small, models
incorporating sex-limited effects suggested a worse overall fit
compared to models that did not. However, when sample sizes
exceeded 450 pairs per group, the models with sex-limitation
outperformed the standard models.

Parameter Bias

Following a reviewer’s suggestion, we investigated the bias of the
‘A’ parameter, computing average ‘A’ estimates across 1000
simulated models for each condition. Because the pattern of
results was similar across conditions, we present one condition
in Figure 6, with others in the Supplementary Appendix B. This
figure depicts the ‘A’ parameter bias under the variance
distribution A = 1.5, C = .6, E = .9 (50%, 20%, 30% respectively),
showing that A estimates are not biased from 1.5 drastically in
all conditions. A estimates are slightly biased (i.e., A estimates
deviate from 1.5 upwards or downwards by 1% of the total
variance, which equates to .03 in our study) when HSS is small or
when sample sizes are restricted. More specifically, A is inclined
to be underestimated when HSS is below .65 and the sample size
falls short of 300, as illustrated in the upper-left part of Figure 6.
In contrast, A tends to be overestimated when HSS exceeds .65
but the sample size is less than 210 (lower-left part of Figure 6),

or when HSS is below .65, but the sample size exceeds 300
(upper-right part of Figure 6). As expected, the estimation bias
for the A parameter gradually diminishes with higher HSS values
and larger sample sizes. In general, a sample size above 300 and
an HSS value greater than .65 can help to avoid the presence of
unbiased estimates in the lower-right triangle of Figure 6.

Discussion

In the current study, we investigated how well univariate ACE
models perform to correctly estimate the variance structure of A, C
and E as a function of the expected relatedness of the SS twins (HSS)
and sample size. We adopted Visscher’s (2004) LS paradigm to
mathematically derive the positive relationship among power, HSS,
and sample sizes. We conducted simulations to further explore
how heritability power, AIC-based model performance, and
reduction of negative estimates are positively associated with
larger HSS and larger sample sizes. In addition, we examined
whether the simple solution of changing the common environment
correlation to .95 for addressing sex-limited effects impacted
model performance. We found that the solution causes slightly
worse model performance under most circumstances.

Both the algebraic derivations and simulations illustrated a
positive relationship between HSS and the power of correctly
detecting the additive genetic effects (A) in an ACEmodel. A larger
difference between the genetic correlations (ΔH) will require less
information to distinguish the covariance structure of the SS twins
from the covariance structure of the OS twins, as the only
difference in the implied covariance structure between SS twins
and OS twins is the correlation for additive genetics. The difference
can also be understood as the significant difference between a
model where additive genetics plays a role in affecting the
phenotype from a model where additive genetics does not. We also
found that traits subject to more additive genetic influence would
have higher power under all conditions of HSS and sample sizes.
Our results are consistent with previous findings (Verhulst, 2017).
Mathematically, an increase of standardized additive genetic

Figure 5. Displayed here is the power of the ACE
model to detect A under the simulated variance
of A= 1.5, C = .6, E = .9 (50%, 20%, 30%
respectively) and the sex-limitation scalar of rc =
.95 included as a function of sample size per twin
group and H of SS twins. Power in each cell was
calculated based on the average noncentrality
parameter of 1000 simulations under the
corresponding condition. Darker cell colors
denote lower power. ‘Sample size’ indicates
the number of kin pairs in each kin group.
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component (approximately a decrease in the proportion of error
variance) would lead to a greater difference between the intraclass
correlations for OS and SS twins, which would eventually
contribute to a higher power (see a more detailed math derivation
in Visscher 2004).

We found a similar positive association between HSS and AIC-
based model selection. Model performance, distinct from the
power to detect the A parameter, evaluates whether the ACEmodel
has the lowest AIC value. Typically, a high AIC-based model
performance requires a proper fit of A, C and E components
concurrently. This model performance offers a more conservative
model selection criteria than a single estimate’s power. The
variance components’ structure also influences the model
performance. We observed that a higher proportion of C in the
total variance suggested higher power across all conditions. Our
results suggested that an adequate amount of C is vital for the
model to correctly distinguish between ACE and AE models,
because in our results the correct models (ACE) were more often
misspecified as AE models than AC models. Nevertheless, further
algebraic and simulation research is needed to identify factors
impacting AIC comparison approaches.

For negative estimates, our study demonstrated that in general
when the relatedness difference between twomodeled groups (ΔH) is
less than .5, negative estimated parameters are not unusual, evenwhen
samples were relatively large. Although the conventional wisdom is
that the estimated error variance should always be non-negative, that
reasoning is based on the idea that within-pair variance can never be
eliminated. Our study highlighted that negative E estimates can occur
simply due to sampling errors in some special circumstances. For
example, suppose we fit an ACE model with a small number of kin
pairs to the target trait predominantly affected by genes and shared
environment. In that case, the E parameter will have a wide
confidence interval. Therefore, it is not unusual that the model will
estimate a negative E. Althoughwe could force the estimate to be non-
zero, that results inmore problems. Indeed, ACEmodels with explicit
or implicit constraints on estimates can cause deviations from the

assumed type-I error rates and lead to biased estimates (Verhulst et al.,
2019). Therefore, we do not recommend forcing the negative
estimates to be greater than zero, especially in circumstances where
they are not unusual. In our study, the negative estimateswere entirely
the result of sampling error, and occurred when variance components
were relatively close to zero. Under those circumstances, estimates are
more likely to be negative. As a corollary, in empirical studies,
encountering negative estimates is not synonymous with a failed
model. Rather, negative estimates can be an indicator of low power,
small effect sizes, or general model misspecification. Therefore, we
recommend checking other criteria given the specific conditions
before continuing to analyze the results, adjusting model specifica-
tions, or discarding the data entirely.

We found that A estimates were slightly biased when the sample
sizes were small or ΔH was low. Much like other analyses, greater
ΔH and larger sample sizes contribute to reduced bias of A
estimates, reaffirming the ideal situation for the SS-OS design:
a sample size exceeding 300 pairs per group. Further, we found no
systematic bias in this design, meaning that any biased conditions
are likely the result of randomness in the simulation and model-
fitting processes. An interesting future direction to explore is the
sensitivity of this design to HSS misspecification. Given that HSS is
usually an estimated value derived from population twinning rates
or local estimating algorithms rather than a population parameter,
we suspect that various degrees of HSS misspecification could
substantially affect parameter bias.

Although our study focused primarily on the SS-OS design, these
results are applicable to other research designs where the difference in
relatedness (ΔH) is less than .5. Another scenariowhereH can diverge
from .5 arises when researchers intend to fit covariance structure
models, like the ACE model, with nontwin kin pairs. Such datasets
can also support fitting an ACE model with MZ twins, siblings, or
distant cousins. These configurations also result in anHdifference not
equal to .5. For example, past studies have employed full siblings and
cousins to estimate heritability for specific phenotypic outcomes
(Chakraborty et al., 1977; Rodgers et al., 2019; Souto et al., 2000). The

Figure 6. Average estimates of ‘A’ obtained
from 1000 models, each fit to simulate data with
variance combination A = 1.5, C= .6, E= .9 (50%,
20%, 30%). Darker cell colors denote larger
deviations from the population parameter
A= 1.5. ‘Sample size’ indicates the number of
kin pairs in each kin group.
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difference in H between cousins, siblings or twins is invariably less
than .5, given that the relatedness coefficient for cousins does not
exceed .125. These nontwin designs can serve as a valuable resource
for researchers investigating the environmental and genetic influence
on various traits.

Future researchers planning to use two groups of kin pairs with
a ΔH less than .5 should at a minimum avoid scenarios with a ΔH
less than .1 and sample sizes smaller than 60 pairs per group. Since
we found the association between model performance and H and
sample sizes varied a lot along with the variance component
structure of the targeted trait, proposing a single guideline for all
circumstances will be inappropriate. Indeed, numerous studies
have warned against overreliance on rules of thumb in structural
equation models (Chen et al., 2008; Heene et al., 2011; Kyriazos,
2018; Montoya & Edwards, 2021), including within behavior
genetics (Garrison & Rodgers, 2021). Instead, using available
parameters to calculate the power of the heritability estimation
before using empirical data to fit the ACEmodel will be preferable.
If one study does not have a specific focus on A or C but is designed
to illustrate the multiple sources of effects, an overall model-fit
indicator like AIC in our study would be a more appropriate
reference. Nevertheless, as the criteria like AIC could only be
evaluated using simulations, researchers could look up the
supplementary tables mentioned in the Supplementary
Appendix B to find an approximate power rate corresponding
to the parameter setting in their own study. Alternatively, we
encourage researchers to run their own simulations using the
expected parameters and covariance structure. That simulation
will lead to a tailored recommendation indicating what proportion
of the nested comparisons suggest the ACE structure is the best-fit
model. We developed the ACEsimFit package to assist such
encouraged researchers. It contains several R functions and
vignettes demonstrating how to simulate and fit the models (Lyu &
Garrison, 2022a).

Our results indicated less robust models when addressing sex-
limited effects by slightly decreasing the assumed common
environmental correlation between OS twins. However, sex-limited
effects are far more complicated than a reduction of common
environmental correlations. For example, in a study using SS and OS
twins, OS twinsmay not have exactly the same family environment as
the classical twin study assumed due to gender inequality (Blau et al.,
2020;DasGupta et al., 2003;Hesketh&Xing, 2006). From amodeling
perspective, both genetic and environmental differences between
sexes can take different forms, such as scalar and nonscalar sex
limitations (Neale et al., 2006). From an empirical perspective,
different traits may be susceptible to sex-limited effects. For example,
height and BMI are traits that have substantial sex differences in their
heritability (Hesketh & Xing, 2006; Schousboe et al., 2003;
Silventoinen et al., 2001) but personality traits such as the Big 5 do
not (South et al., 2018). Hence, before using the SS andOS twins to fit
univariate ACE models, we recommend carefully considering the
specific potential impacts of sex-limited effects. We also recommend
addressing them by either modifying the assumed component
structure or considering alternative models (e.g., a G × E model or a
model assigning different covariance structures by biological sex;
Neale et al., 2006).

Our study assessed the feasibility and risks of using twin pairs
with smaller genetic relatedness differences in univariate ACE
models. However, like all simulations, we had to keep the
simulation scope narrow. First, we only evaluated univariate ACE
models. Some research questions can only be addressed with the
multivariate models, such as examining covariance between

multiple traits and estimating A, C, D and E simultaneously
(Maes et al., 2021). The increased complexity of multivariate
models likely demands larger sample sizes or ΔH for comparable
power, but further investigation is needed. Second, our derivations
and simulations assume that HSS is not misspecified and that the
observed phenotype is normally distributed, conditions that may
not always be met in empirical settings. Approaches such as
population twinning rates, Weinberg’s differential rule (Weinberg,
1901), mixture distribution models (Neale, 2003), and latent class
analysis (Heath et al., 2003) give an approximation, not a direct
observation, of MZ twins’ proportion in SS twins, potentially
biasing the HSS. Previous research has suggested that the
misspecification of HSS and non-normal distributions could bias
estimated parameters (Benyamin et al., 2006), indicating a
potential avenue for future research. Therefore, future efforts
should be made to investigate the impact of parameter
misspecification and non-normal distributions on the associations
between HSS and model performance. Third, although AIC has
been widely used in behavior genetics to determine the ‘best model’
(Sullivan & Eaves, 2002), its accuracy as a selection approach
remains under-examined. A lengthy appendix in Garrison and
Rodgers (2021) hints at potential issues with AIC as a selection
criterion, and the worst-fitting ‘gorge’ seen across all AIC result
matrices further point to potential shortcomings of this approach.
Therefore, more comprehensive research should be done to
investigate this model selection approach.

Conclusion

In the current study, we have identified several factors that impact
the performance of the ACE model. To begin with, we found that
the power to detect a significant additive genetic (A) component
was positively associated with the difference in genetic relatedness
of two kin groups (ΔH) and sample size. Similarly, we noted a
positive association between the ACE model’s performance —

evaluated using the Akaike Information Criterion (AIC) and the
lower frequency of negative estimates of ACE variance compo-
nents — and both the difference in genetic relatedness (ΔH)
between two kin groups and the sample size.

We observed that while different combinations of A, C and E
variance followed a similar overall pattern— in that, for instance, a
higher A parameter would consistently exhibit higher power at
larger sample sizes — the absolute performance varied consid-
erably. We also found that factoring in sex differences by reducing
the assumed correlation of the common environment to .95
resulted in a model performance slightly inferior to the raw ACE
model. Researchers using kin groups withΔHof less than .5 should
carefully consider the performance implications for their specific
ACE model. It is crucial to conduct a comprehensive power
analysis before delving into the interpretation of model outcomes.
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