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The disturbance flow field in a hypersonic boundary layer excited by particle impingement
was investigated with a focus on the first stage of the laminar-to-turbulent transition
process, namely the receptivity process. A previously validated direct numerical
simulation approach adopting disturbance flow tracking is used to simulate the
particle-induced transition process. Particle impingement generates a highly complex
disturbance flow field that can be characterised by a wide range of frequencies
and wavenumbers. After providing some insight about the spectral characteristics of
the disturbance flow field in the frequency and wavenumber domains, biorthogonal
decomposition is employed to reveal the composition of the disturbance flow field
consisting of different continuous and discrete eigenmodes that are triggered through
particle impingement. The disturbance flow characteristics for different frequency and
wavenumber pairs are discussed where large contributions in the disturbance flow
spectrum are observed in the vicinity of the impingement location. A significant amount
of the disturbance energy is diverted into the free stream leading to large coefficients of
projection for the slow and fast acoustic branches while contributions to the entropy and
vorticity branches are negligible. In addition to the continuous acoustic spectra, the first-,
second- and other higher-order Mack modes are activated and provide large contributions
to the disturbance flow field inside the boundary layer. Finally, it is demonstrated that the
disturbance flow field in the vicinity of the impingement location can be reconstructed with
a maximum relative error of 2.3 % by employing a theoretical biorthogonal eigenfunction
system expansion and by considering contributions from fast and slow acoustic waves and
at most four discrete modes only.
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Figure 1. Particle-induced laminar–turbulent transition process following path A. (Morkovin et al. 1994).

1. Introduction

The laminar–turbulent transition process for hypersonic boundary-layer flows is complex
as it can proceed along different paths and it is affected by various external environmental
factors. A turbulent flow is characterised by enhanced near-wall mixing leading to
increased skin friction as well as heat transfer rates. Hence, understanding this process
is critical for the development of hypersonic vehicles, in particular, for the prediction
of aerothermodynamic loads. Early theories on the natural transition of compressible
boundary-layer flows, i.e. in low disturbance environments, can be dated back to the 1930s
(see the historical overview by Mack 2000).

The transition process in a hypersonic boundary layer is characterised by several
consecutive stages that, for a low disturbance environment, is also known as the (low
disturbance) path A, cf. Morkovin, Reshotko & Herbert (1994). The natural transition
path A consists of the following stages: receptivity, linear eigenmode growth, followed
by parametric instability and nonlinear mode interactions as well as, finally, breakdown
to turbulence (see figure 1). One of the key challenges in the prediction of the transition
process for hypersonic vehicles is to understand the disturbance generation process in free
flight and the associated receptivity stage.

Different types of disturbance sources can seed disturbances inside the boundary
layer, namely free-stream turbulence (Chaudhry & Candler 2017; Duan et al. 2019;
Melander & Candler 2021), surface roughness (Tempelmann et al. 2012), vibrations
(Ruban, Bernots & Pryce 2013), kinetic fluctuations (Fedorov & Tumin 2017; Edwards
& Tumin 2019), temperature spots (Fedorov et al. 2013), etc. Bushnell (1990) was one
of the first researchers to seriously consider the role of environmental particles in the
transition process during hypersonic free flight. Particles of different sizes are present in
the atmosphere (Turco 1992; Habeck et al. 2022) and by interacting with the flow field they
may introduce sufficient disturbance energy to cause the flow to transition from laminar to
turbulent, as illustrated in figure 1. Particle-induced disturbances in high-speed boundary
layers have only recently been investigated by Fedorov & Kozlov (2011), Fedorov (2013),
Chuvakhov, Fedorov & Obraz (2019), Browne et al. (2020b); Browne, Hasnine & Brehm
(2021, 2019b) and Russo, Hasnine & Brehm (2021).

Fedorov & Kozlov (2011) and Fedorov (2013) conducted theoretical studies where they
formulated an initial value problem considering a particle-induced disturbance source
represented as a Gaussian function in the framework of biorthogonal decomposition
(BOD). For a Mach 10 flow past a wedge, they showed that particle impingement can
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provide sufficient disturbance energy to trigger transition to turbulence with an N factor
of 11. Following this initial purely theoretical work, Chuvakhov et al. (2019) performed
numerical simulations to confirm these findings. Thereafter, an efficient approach to
simulate particle-induced transition was devised by Browne et al. (2021) who solved the
compressible Navier–Stokes equations (CNSE) in nonlinear disturbance flow form and
employed adaptive mesh refinement (AMR) to track the disturbances in the flow field.
Browne et al. (2020b) also conducted fully resolved particle simulations to demonstrate
that the particle-source-in-cell (PSIC) approach is able to capture the dominant disturbance
flow features in the initial linear receptivity stage. The PSIC approach has also been
employed in the two prior direct numerical simulation (DNS) studies by Chuvakhov
et al. (2019) and Browne et al. (2021). Russo et al. (2021) conducted particle-induced
transition simulation on a blunt cone and showed some evidence that transient growth
can be triggered by particle impingement. Biorthogonal decomposition of the disturbance
flow field generated by particle impingement was performed and validated in Hasnine
et al. (2020, 2021), which will be employed in more detail here to gain insight about the
receptivity process involving particle impingement.

The focus of the current work is on the early linear stages of the particle-induced flow
transition process considering DNS and three-dimensional (3-D) linear stability theory
(LST). The disturbance flow field is studied near the particle impingement region as well
as shortly downstream to study the receptivity mechanisms, in particular, the transfer of
disturbance energy into the second mode, here mode S, which is the dominant unstable
mode for the chosen flow conditions. The disturbance flow field is decomposed into
normal modes via BOD to identify the contributions from different eigenmodes in the
complex wavenumber plane. Assuming a small disturbance amplitude allows the use of
the linearized form of the CNSE. The solution of this system of equations can be written in
the form of normal modes considering quasi-parallel flow following the spatial travelling
wave ansatz in the form

Φ(x, y, z, t) = Φ̂( y) exp(i(αx + βz − ωt)), (1.1)

where x, y and z are the coordinates representing the streamwise, wall-normal and
spanwise directions, α ∈ C is the x component and β ∈ R is the z component of the
wavenumber vector, and ω ∈ R is the frequency parameter. The eigenvalue spectrum
for a compressible boundary layer contains discrete and continuous modes. For the flow
conditions considered in this work, the so-called first and second modes are present (Mack
1969). The first mode is of viscous instability (Smith 1989) for β/α >

√
M2 − 1 and is

typically regarded as the equivalence to the Tollmien Schlichting mode in incompressible
boundary-layer flows. For smaller β/α values, it becomes an inviscid instability (Smith
& Brown 1990; Blackaby, Cowley & Hall 1993). Although, Mack’s analysis (Mack
1969) may suggest that it may become an inviscid instability mode for larger supersonic
Mach numbers; with the current flow conditions chosen right where this switch may
occur. The second mode, typically occurring at higher frequencies than the first mode,
is clearly related to an inviscid instability and is commonly described as a trapped acoustic
wave (Fedorov 2011). Higher-order Mack modes (Mack 1969) are also present at higher
frequencies but will be stable for the chosen mean flow. In addition to these discrete modes,
the continuous modes associated with the acoustic, entropy and vorticity branches can play
an important role in the receptivity process providing a mechanism, for example, to absorb
disturbance energy introduced during particle impingement.

The biorthogonal eigenfunction system (BES) will be employed to project the
disturbance flow field onto the eigenmodes. The BES has been used extensively to study
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the receptivity process for boundary-layer flows in the past. Early works on BES can be
traced back to the late 1970s (Aizin & Maksimov 1978; Aizin & Polyakov 1979). Since
then, the principle of BES has been employed to study the receptivity process in a series
of successive works. In several examples (Tumin, Amitay & Zhou 1996; Tumin, Wang
& Zhong 2007, 2011), the BES was used to gain further insight into results from DNS
as well as experiments. The BES is particularly useful when the disturbance flow field
is dominated by several modes and the orthogonality relation can be used to identify the
contributions from different modes.

For example, 3-D perturbation analysis in the spatial framework was performed for
a two-dimensional (2-D) incompressible boundary-layer flow by Tumin (2003). It was
noted that BOD can also be applied for cases when only partial data are available, i.e. in
experiments. In Forgoston & Tumin (2005) 3-D perturbations in a 2-D compressible
flow were studied for a Mach 5.6 sharp cone considering the temporal framework. The
differences between 2-D and 3-D disturbances have been assessed depending on the nature
of synchronism among the discrete and continuous modes. This study highlighted that the
synchronism between mode F, which is the fast mode, and mode S, which is the slow
mode, gives rise to an unstable mode and is greatly affected by the large wave angle
(Ψ = tan−1(β/α)) and absent at higher wave angles. Similar observations have also been
made using the spatial framework in Tumin (2006). In some later work, the inverse Fourier
transform was used for modes F and S in Forgoston & Tumin (2006) to compare with
the asymptotic approximation of the Fourier integral. It was shown that the initial value
problem in Forgoston & Tumin (2005) can be expanded in BES as a sum of discrete and
continuous spectra modes. While this property of the BES is commonly assumed it has
not been demonstrated for flow fields that are characterised by the presence of several
discrete modes in combination with an active continuous branch, such as the disturbance
flow field induced by particle impingement as will be demonstrated here. Furthermore,
DNS results from a flow over a 5.3 degree sharp wedge were decomposed by using
the BES in Tumin et al. (2007) considering 2-D perturbations. In Tumin (2007) it was
shown that the 3-D disturbance flow solution of the linearized Navier–Stokes equations
can be presented as an expansion into a BES in the spatial framework that can then be
employed for the decomposition of simulated flow fields. It was demonstrated that the
BOD was able to retrieve the amplitudes of the discrete modes in a Mach 5.95 flow.
It was also emphasised that near to the branching point/synchronization non-parallel
boundary-layer effects should be taken into consideration to avoid singularity in BOD.
Additionally, a number of simulations were performed to model the disturbance flow field
over a flat plate and a sharp wedge in Tumin et al. (2011) where BES was employed to
project the disturbance flow field onto the stable and unstable modes. The discrepancies
between the DNS and experimental results with the theoretical framework were attributed
to non-parallel boundary-layer effects. The method of multiple scales was proposed to
account for the non-parallel flow effects. Moreover, biglobal stability formulation can also
be adopted to account for strong non-parallel flow effects as suggested by Forgoston &
Tumin (2006) and Theofilis (2003). Recently, Saikia, Hasnine & Brehm (2022) employed
BOD to fully reconstruct the disturbance flow field of a Mach 6 flat plate dominated by the
supersonic mode. In this work, it was demonstrated that the stability behaviour of the flow
could not be predicted by LST due to the presence of the continuous modes in addition to
the two discrete supersonic modes.

Particle impingement introduces a complex disturbance flow field containing a broad
range of frequencies and wavenumbers. The objective of this work is to decompose
the 3-D disturbance flow field into normal modes by using the aforementioned BES
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framework and analyse the receptivity process involving the discrete and continuous
modes as well as the evolution of the modes in the downstream direction. The paper is
organised as follows. Section 2 presents the governing CNSE along with the nonlinear
disturbance flow formulation. A brief description of the numerical approach to simulate
the particle impingement utilising a semi-empirical drag model is outlined in § 2.2.
The AMR and dual-mesh approaches employed to simulate the disturbance flow field
are presented in § 2.3. Section 3 describes the local eigenvalue problem (EVP) and the
properties of the eigenspectrum and the associated eigenmodes of the baseflow are briefly
outlined in § 4. The disturbance flow field introduced by the particle impingement and its
spectral characteristics are analysed in § 5. The BOD methodology and projection of the
disturbance flow field onto the normal modes for the analysis of the receptivity process are
briefly discussed in § 6. The results from the projection of disturbance flow field onto the
discrete mode are presented in § 6.1. Section 6.2 presents results of the disturbance flow
field projected onto the continuous modes. Full reconstruction of the disturbance flow field
from the contributions of discrete and continuous modes is presented in § 6.3. Finally, a
brief summary and an outlook are provided in § 7.

2. Governing equations and numerical simulation approach

To obtain the baseflow solution, the CNSE are solved in conservative form for an ideal,
Newtonian, non-reactive gas and written in vector form as a system of time evolving partial
differential equations

∂W
∂t

+ ∂E
∂x

+ ∂F
∂y

+ ∂G
∂z

= 0, (2.1)

where W = [ρ, ρu, ρv, ρw, ρEt]T is the conservative state vector, ρ, u, v,w and Et are
the density, x, y and z components of the velocity and total energy, respectively. Total
energy can be written in the form

Et = RgT
γ − 1

+ u2 + v2 + w2

2
. (2.2)

Here E, F and G are the combined convective and viscous flux vectors that can be written
as

E =

⎡
⎢⎢⎢⎣

ρu
ρu2 + p − τxx
ρuv − τxy
ρuw − τxz

(ρEt + p)u − uτxx − vτxy − wτxz + qx

⎤
⎥⎥⎥⎦ , (2.3)

F =

⎡
⎢⎢⎢⎣

ρv

ρuv − τxy
ρv2 + p − τyy
ρvw − τyz

(ρEt + p)v − uτxy − vτyy − wτyz + qy

⎤
⎥⎥⎥⎦ , (2.4)

G =

⎡
⎢⎢⎢⎣

ρw
ρuw − τxz
ρvw − τyz

ρw2 + p − τzz
(ρEt + p)w − uτxz − vτyz − wτzz + qz

⎤
⎥⎥⎥⎦ , (2.5)
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where τij are the stress tensor components and qi are the heat flux vector components in
the x, y and z directions. The viscosity μ is calculated utilizing Sutherland’s law with a
low temperature correction

μ =

⎧⎪⎪⎨
⎪⎪⎩

S1T1, for T < T1,

S1T, for T1 ≤ T ≤ T2, and
S2T3/2

T + T2
, for T > T2,

(2.6)

where S1 = 6.93873 × 10−8 Ns (m2 K)−1, S2 = 1.458 × 10−6 Ns (m2 K1/2)−1, T1 = 40 K,
T2 = 110.4 K and T is the dimensional temperature. The fluid is treated as a perfect
gas following the ideal gas law, p = ρRgT , used for closing the set of equations for the
thermodynamic variables, where p denotes pressure and Rg = 287.15 J (kg K)−1 is the
specific gas constant for air. The ratio of specific heat is considered as γ = 1.4 and the
Prandtl number is Pr = 0.71.

2.1. Nonlinear disturbance flow formulation
The nonlinear disturbance flow equations (NLDE) are based on the CNSE in (2.1) and
they are used to efficiently investigate the interaction of a particle with a high-speed
boundary layer, including the initial particle collision and the subsequent evolution of
a wavepacket. The NLDE are obtained by decomposing the total state vector W (x, t) into
a steady base state (or mean flow) W̄ (x) and an unsteady disturbance state vector W̃ (x, t)
in the following manner:

W (x, t) = W̄ (x)+ W̃ (x, t) =

⎡
⎢⎢⎢⎣
ρ̄

ρ̄ū
ρ̄v̄

ρ̄w̄
ρ̄Ēt

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
baseflow

+

⎡
⎢⎢⎢⎣

ρ̃

ρ̃ū + ρ̄ũ
ρ̃v̄ + ρ̄ṽ

ρ̃w̄ + ρ̄w̃
ρ̄Ẽt + ρ̃Ēt

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
linear disturbance

+

⎡
⎢⎢⎢⎣

0
ρ̃ũ
ρ̃ṽ

ρ̃w̃
ρ̃Ẽt

⎤
⎥⎥⎥⎦ .

︸ ︷︷ ︸
nonlinear disturbance

(2.7)

Here W̃ (x, t) = W̃ L(x, t)+ W̃ NL(x, t) is comprised of the linear (W̃ L(x, t)) and
nonlinear (W̃ NL(x, t)) disturbance flow components. The nonlinear disturbance terms can
be neglected when considering small disturbance amplitudes.

Similar to the state vector, the total fluxes in the CNSE are decomposed in the form

E = Ē + Ẽ, F = F̄ + F̃ and G = Ḡ + G̃. (2.8a–c)

After substituting the decompositions in (2.7) and (2.8a–c) into (2.1) and subtracting out
the mean flow contribution assuming a converged (to machine round-off) steady baseflow
residual (see Browne et al. (2021) for more details), the NLDE are obtained in the form

∂W̃
∂t

+ ∂Ẽ
∂x

+ ∂F̃
∂y

+ ∂G̃
∂z

= 0. (2.9)

The disturbance flow state vector and disturbance fluxes are functions of the baseflow
state and its gradients. For linear analysis, the nonlinear disturbance terms can be ‘switched
off’ and the linear disturbance equations can be obtained. In this work the full form of the
nonlinear disturbance equations (NLDE) is employed. It should be noted that the solutions
of the NLDE in its full form can be considered as a DNS, given that sufficient grid

969 A1-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.531


Receptivity analysis of particle-induced disturbance field

resolution is applied, since no assumption has been made with respect to the disturbance
type or its spatio-temporal evolution, i.e. all linear and nonlinear stages of the transition
process can be accurately simulated (see Browne et al. (2021) for detailed validation
efforts).

2.2. Particle-source-in-cell simulation approach
The effect of the particle on the surrounding flow field can be modelled by adding a
source term to the right-hand side of the NLDE. The particle, moving through the fluid,
is experiencing a drag force that decelerates the particle. To locate the particle position in
the flow field a system of equations describing the motion of the particle is solved. The
basic equations of motion of the particle can be written in the form

dxp

dt
= vp and mp

dvp

dt
= Dp, (2.10a,b)

where the subscript p denotes the particle properties and quantities without any subscript
are assumed to be related to the fluid. The position vector is denoted by xp = (x, y, z)T and
vp = (u, v,w)T is the velocity vector. The particle mass is given by mp = 4/3(πR3

pρp),
where Rp is the particle radius and ρp is the particle density. The flow past the particle was
treated as quasi-steady and the drag force, Dp, acting on the particle can be modelled as

Dp = −1
2 CDρ

∣∣vp − v
∣∣ (vp − v)πR2

p, (2.11)

where CD is the drag coefficient and ρ is the fluid density. It should be noted that,
for high-speed flows, Basset history, a pressure gradient and an added mass effect may
also govern the particle dynamics (Regele et al. 2014). These forces are found to be
less dominant for the current study (see Browne et al. (2021) for details). As stated in
Chuvakhov et al. (2019), the assumption of quasi-steady interaction is valid for ρp � cDρ,
which is the case for the current simulations except during the impingement phase. The
drag coefficient CD was calculated from the Crowe model (Crowe 1967) and the particle is
assumed to be in thermal equilibrium with the fluid. The effect of the particle on the flow
was considered by adding momentum and energy source terms to the right-hand side of
the governing equations. Combining the source term with (2.9) gives the final form of the
governing equations in the disturbance flow formulation as

∂W̃
∂t

+ ∂Ẽ(W̄ , W̃ )

∂x
+ ∂F̃ (W̄ , W̃ )

∂y
+ ∂G̃(W̄ , W̃ )

∂z
= −S(W̄ , W̃ ), (2.12)

where S(W̄ , W̃ ) contains the contributions from the momentum and energy source terms
in the form

Sm = 1
2 CDρ

∣∣vp − v
∣∣ (vp − v)πR2

pδ(x − xp) (2.13)

and

Se = 1
2 CDρ

∣∣vp − v
∣∣ ((vp − v) · vp)πR2

pδ(x − xp), or Se = Sm · vp. (2.14)

The delta function, δ(x − xp), is approximated with a Gaussian distribution function in
the form

δ(x − xp) =

⎧⎪⎨
⎪⎩

1

(σ
√

2π)3
exp

([
−
∣∣x − xp

∣∣2
2σ 2

])
,
∣∣x − xp

∣∣ < 4σ, and

0,
∣∣x − xp

∣∣ ≥ 4σ,

(2.15)
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where for the current simulations, the Gaussian half-width was set to σ = 5Rp. In prior
simulations, see, for example, Chuvakhov et al. (2019), the sensitivity of the results with
respect to the value of σ was investigated and it was determined that σ = 5Rp provides
accurate simulation results that agree with results for σ < 5Rp. For more details about this
approach and validation results, see Browne et al. (2021). The simulation approach has
also been validated by Hasnine et al. (2020) and Browne et al. (2019b, 2020b, 2021).

2.3. The AMR disturbance flow tracking simulation approach
The AMR disturbance flow tracking (AMR-DFT) method is employed to simulate particle
interactions with high-speed boundary layers. For more details about the AMR-DFT
approach, also previously referred to as AMR wavepacket tracking (AMR-WPT), the
reader is referred to Browne et al. (2017, 2019a, 2022, 2020a). Briefly, the AMR-DFT
approach employs an overset dual mesh approach, comprised of a baseflow mesh and a
disturbance flow mesh. The steady converged baseflow is pre-computed on a baseflow
mesh with sufficient near-wall resolution to resolve the laminar boundary-layer flow along
the flat plate. The particle dynamics, interactions with the surrounding fluid and unsteady
flow disturbances are simulated on the disturbance flow mesh. The disturbance flow mesh
consists of a block-structured Cartesian grid employing an octree data structure. The
AMR tracks the particle along its trajectory before impingement to capture important
flow features and then tracks the generated wavepacket inside the boundary layer after
the particle impingement. Several recent works (see Browne et al. 2017, 2019a, 2022,
2020a) demonstrated that AMR can be employed for tracking the first- and second-mode
dominated wavepackets in high-speed boundary layers with high computational efficiency.
A blended fifth-order accurate weighted essentially non-oscillatory scheme (Brehm et al.
2015; Brehm 2017) was employed for spatial discretization of the convective terms,
and a standard second-order centred finite difference scheme was used for the viscous
terms. A second-order Runge–Kutta scheme was utilised for time integration. Prior grid
convergence studies (Browne et al. 2020b) demonstrated adequate grid resolution of the
disturbance flow field for the chosen AMR parameters.

3. Local EVP

Particle impingement generates a complicated disturbance flow field that consists of a
combination of discrete and continuous modes. The decomposition of the flow field into
normal modes by projecting onto the discrete and continuous spectra (see figure 2a)
can provide detailed insight into the receptivity mechanisms. As shown below, BOD
can retrieve the amplitude of a normal mode from the velocity, temperature, pressure
disturbances and their derivatives. These quantities are available from the DNS and can be
used to carry out multimode decomposition and providing insight into the receptivity and
primary instability stages of the transition process. The BES can be expanded based on
the temporal or spatial stability theory. In temporal analysis the streamwise wavenumber,
α = αr, is considered real and the complex frequency, ω = ωr + iωi, is determined. In
spatial analysis the frequency is real, ω = ωr, and the complex wavenumber, α = αr + iαi,
is determined. For solving an EVP, in this study the latter approach has been adopted for
the decomposition of the disturbance flow field by identifying the eigenvalue, α ∈ C, and
corresponding eigenfunctions for a particular frequency, ω ∈ R, Reynolds number, Re, and
spanwise wavenumber, β, in the 3-D framework.
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Figure 2. (a) Eigenvalue spectrum with complex streamwise wavenumber, α = αr + iαi, and
(b) eigenfunctions (continuous spectra parameter, k = 1 for continuous modes) normalized by the
maximum value for a Mach 5.35 flat plate boundary layer with Re = 1500, F = 10−4 and β = 10−7.

A 3-D spatio-temporal disturbance flow field following the disturbance flow ansatz
from § 1 was considered inside a compressible boundary layer. The BES is based on the
linearized Navier–Stokes equations that after applying a Fourier transformation in time,
can be written as

∂

∂y

(
L0
∂A
∂y

)
+ L1

∂A
∂y

= H1A + H2
∂A
∂x

+ H3
∂A
∂z
, (3.1)

where the vector A contains 16 spatially varying components defined by

A(x, y, z) = (ũ, ∂ ũ/∂y, ṽ, p̃, T̃, ∂T̃/∂y, w̃, ∂w̃/∂y, ∂ ũ/∂x, ∂ṽ/∂x,

∂T̃/∂x, ∂w̃/∂x, ∂ ũ/∂z, ∂ṽ/∂z, ∂T̃/∂z, ∂w̃/∂z)T, (3.2)

with the boundary conditions at the wall and free stream in the form

y = 0 : ũ = ṽ = w̃ = T̃ = 0, (3.3)

y → ∞ : |Am| → 0, m ∈ [1, 16], (3.4)

and L0, L1,H1,H2 and H3 are 16×16 matrices and the superscript T denotes the transpose
of the vector. More details about the exact form of these matrices can be found in Hasnine
et al. (2020) and Tumin (2007).

The following non-dimensional parameters are used throughout: the Reynolds number
as Re = U∞H/ν∞, dimensionless frequency parameter as F = Ων∞/U2∞, dimensional
angular frequency as Ω = 2πf ( f is frequency in Hz) and the dimensionless angular
frequency as ω = F Re or ω = Ωτ . Here H is the length scale, H = (μ∞x/(ρ∞U∞))0.5,
τ is the time scale defined as τ = (ν∞x)0.5/U1.5∞ and ν∞ = μ∞/ρ∞ is the free-stream
kinematic viscosity of the fluid. The decomposition of the disturbance flow field is
introduced in § 6.

4. Spectral properties of 3-D disturbance flow field

The disturbance flow field generated inside the boundary layer during particle
impingement consists of different spectral components that can be associated with the
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local eigenvalue spectrum of the mean flow. The eigenvalue spectrum in the complex
wavenumber plane consists of the continuous and discrete eigensolutions (see figure 2a)
whose eigenmodes are not orthogonal to each other as the eigenvalue system is not
self-adjoint.

In three dimensions the branch structure of the continuous branches is similar to two
dimensions. There exist four branches of the continuous spectra of downstream modes
in two dimensions (Tumin 2007). They are known as the slow acoustic (SA) and fast
acoustic (FA) branches, entropy and vorticity branches. The first two are associated to
acoustic modes and are denoted in figure 2(a) as SA and FA branches, respectively.
In three dimensions two vorticity branches exist, here denoted as branches A and B.
Even if the vorticity and entropy branches overlap each other and look similar, they are
in fact distinct (Tumin 2007). Figure 2(a,b) illustrates the eigenvalue spectrum and the
pressure mode shapes for the Mach 5.35 boundary-layer flow considered in this study
for β = 10−7, respectively. In two dimensions the SA modes have a phase speed of
c+

r = 1 − 1/M and the FA modes travel at c−
r = 1 + 1/M at zero angle of incidence

(Fedorov & Tumin 2011). However, in three dimensions the phase speed is calculated as
c±

r = 1 ± (
√

1 + β2/α2
r )/M.

For higher Mach numbers and large enough Re, pairs of discrete eigenvalues appear in
the spectrum that can be stable or unstable. In order to follow a physics-based naming
convention for the discrete modes it has been established that the unstable mode that
synchronizes with the SA branch at low frequency and low Re is commonly referred to
as the slow mode or mode S. Similarly, the stable mode synchronizes with the FA branch
at low frequency and low Re, that is why it is referred to as the fast mode or mode F.
Figure 2(b) illustrates the S and F discrete mode shapes for the Mach 5.35 boundary-layer
flow for 2-D perturbations. When the synchronization of S and F modes occurs at a
high enough Reynolds number or frequency, a branching of the spectrum occurs for 2-D
perturbations. A pair of stable and unstable modes emerges, which for the current flow
conditions, gives rise to an unstable mode S often referred to as the second mode or
Mack’s second mode. This scenario is typically true for high Mach number flows with
an adiabatic wall (Tumin 2007) while the emergence of an unstable S or F mode depends
on the nature of the baseflow, in particular, the type of boundary condition being applied.
In Tumin (2006) it was shown that for a Mach 5.6 flow, in the limit of ω → 0, there
is synchronism between the 3-D mode F and FA branch; which is absent between 3-D
mode S and SA branches. Similar observations were made for a flat plate in the vicinity
of the leading edge (Re → 0). It is particularly important to understand how modes F and
S couple (synchronize) with the other branches of the spectrum (SA, FA, entropy and
vorticity waves) because it can lead to the emergence of unstable modes that play a major
role in triggering the transition of the boundary-layer flow. Mode coupling can occur, for
example, due to non-parallel mean flow effects (Tumin 2020; Saikia et al. 2022).

5. Disturbance flow features generated by particle impingement

The current analysis of the particle-induced transition process is based on the DNS
previously presented in Browne et al. (2022) for an isothermal flat plate with a wall
temperature of 300 K. The free-stream conditions are provided in table 1. As discussed
in § 4, mode S dominates downstream of the particle impingement location for the flow
conditions considered.

A particle with radius Rp/Hpc = 0.1 (Hpc is based on the impingement location, xpc) and
σ/Rp = 5 is considered for the particle impingement simulation. The particle is introduced
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Figure 3. (a) Contours of pressure disturbance (p/ρ∞U2∞) flow field for a Mach 5.35 flat plate boundary
layer at five time instances: (I) before impingement, (II) near the impingement location and (III, IV, V) after
impingement. (b) Particle Reynolds number and Mach number. Vertical solid line and dashed lines mark the
position when the particle enters and leaves the boundary layer and (c) the pressure field in the cut plane.
(Particle size not to scale and τ is based on the particle position.)

in the computational domain at x/H ≈ (810.3, 180.6, 0)T with an initial velocity of
vp(t = 0) = U∞(cos θp, sin θp)

T and at an angle of θp = −7◦ relative to the free-stream
velocity vector. The particle impinges on the flat plate at xpc/H = (1374, 0, 0)T, upstream
of the neutral curve (for the frequencies with maximum N factors in the current domain).
The collision of the particle with the wall was assumed to be fully elastic. The simulation
is conducted for z > 0 assuming a symmetry boundary condition at z/H = 0. The
computational domain extends over [0, 2865H] in the x direction, [0, 477H] in the y
direction as well as [0, 2865H] in the z direction. The domain size is chosen large enough
such that the reflections at the domain boundaries can be avoided. The smallest grid
spacing with �y/H = 0.0234 (H is based on the domain end in the x direction) and
�x = �z = 10�y on the highest AMR grid with nine levels is used around the particle.
Point probes are placed in the domain to record the unsteady time signal of the relevant
flow quantities and their derivatives that are required to conduct analysis via BOD. Point
probes are sampling points to gather flow field information by recording the flow states at
these points. Fast Fourier transform (FFT) of the flow field data is performed in time as
well as in the spanwise direction to analyse the particle-induced disturbance flow field in
the frequency and spanwise wavenumber domain.

Isovolume pressure disturbance contours are shown in figure 3(a) to illustrate the
particle-induced flow field at five time instances I–V, which relate to before, near and after
particle impingement. It was previously demonstrated in Browne et al. (2020b) that the
PSIC approach in combination with an appropriate particle drag model used here is able to
capture the main features of the disturbance flow field. The particle travels with relatively
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Figure 4. (a) Drag coefficient, Cd , and drag force, Dp, of the particle, and (b–e) pressure disturbance flow
field at four time instances marked as vertical green dashed lines in figure (a). The vertical red solid line marks
the position of the particle entering and the red dashed line marks the particle leaving the boundary layer,
respectively. The red lines in figures (b–e) mark the boundary-layer edge.

constant velocity in the free stream. Once it enters the boundary layer, the flow regime
changes from subsonic to supersonic around the particle and the relative Mach number
reaches a peak value of Mmax ≈ 2.5 as shown in figure 3(b). A shock forms ahead of the
particle with high pressure in front as well as a low pressure region in the wake. Figure 4
shows the total drag force, Dp, and the drag coefficient, Cd, together with snapshots of the
disturbance pressure field at four time instances during the time the particle is entering and
leaving the boundary layer. The drag force was obtained from the local flow conditions and
drag coefficient correlations as described in § 2.2. As the particle enters the boundary layer
the drag coefficient, drag force and relative Mach number (see figure 3b) of the particle
increase substantially. Around the peak value in the drag coefficient the particle breaks
through the sound speed barrier and the sonic boom impinges on the wall as highlighted
in figure 5(a). The shock structure around the particle can be seen in figure 4(c,d). The
drag force reaches its peak value by the time the particle touches the wall. The particle
impingement generates disturbances in the boundary layer with a large spectral content.
A region of acoustic waves forms downstream of the particle impingement location,
which decays rapidly. Away from the impingement region, a wavepacket is formed that
propagates in the downstream direction, experiencing exponential growth. The aim of the
current work is to study the modal contributions of the discrete and continuous branches
to the overall development of the disturbance flow field.

To analyse the temporal and spatial evolution of the wall pressure signature, the unsteady
wall pressure signal is Fourier transformed in the spanwise direction. Figure 5(a,b) shows
space–time diagrams of the wall pressure amplitude for β = 0 and β = 0.28. The times
(on the vertical axis) when the particle enters the boundary layer, collides with the wall
and leaves the boundary layer are marked as black horizontal solid lines. Already before
the particle enters the boundary layer an acoustic wave travelling upstream of the particle
generates a pressure disturbance on the wall (marked as ⊗). The acoustic wave was
introduced when the particle was released in the flow. Similarly a wave field would be
generated as a particle travels through a shock front upstream of a hypersonic vehicle. As
the particle enters deeper into the boundary layer, the flow around it becomes supersonic
that leads to the formation of a shock front. The shock wave extends all the way to the wall
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Figure 5. Space–time diagram of wall pressure amplitude (|pw|/(ρ∞U2∞)) at different β (non-dimensionalized
by H(x = 0.138 m)) in time. Vertical dashed lines mark the particle impingement location; horizontal solid
lines, from bottom towards top, mark the time when the particle enters the boundary layer (BL), collides at
the wall and leaves the boundary layer (BL), respectively. The symbol © marks the shock wave reaching the
wall, ⊕ marks the flow feature generated through mean flow distortion and ⊗ marks the acoustic wave reaching
the wall. The solid lines in plot (a) correspond to the minimum phase speed with Crmin = 0.82 (blue line),
the maximum phase speed with Crmax = 0.95 (green line), the minimum group velocity with Cgmin = 0.5 (red
line) and the maximum group velocity with Cgmax = 0.63 (yellow line). Results are shown for (a) β = 0, (b)
βx/H=1374 = 0.28.

where it reflects and generates large wall pressure fluctuations even before the particle
impinges on the wall (marked as ©). It has also been noted in additional simulations not
shown here that even when smaller particles do not impinge on the wall and they barely
graze the boundary-layer edge, a pressure disturbance field can be generated inside the
boundary layer. This type of receptivity mechanisms is, however, beyond the scope of the
current work. The particle traversing through the boundary layer and impinging on the
surface causes a mean flow distortion of the boundary layer with a relaxation time that
is several times larger than it takes the particle to enter and exit the boundary layer. In
figure 5(a) the associated flow feature in the x − t diagram extends vertically from the
impingement location into the free stream (marked as ⊕). The wall pressure disturbance
plot for a spanwise wavenumber of β = 0.28 in figure 5(b) shows non-negligible amplitude
levels at spanwise wavelengths significantly larger than the size of the particle. This means
that the spanwise extent of the pressure field generated in the vicinity of the impingement
location is many times larger than the size of the particle itself. This low wavenumber
content decays, however, rapidly in the downstream direction. This behaviour is expected
as the following LST analysis results will show that disturbances at these wavelengths
are generally damped for the current flow conditions. The pressure field emanating away
from the impingement region travels with different propagation speeds following different
dispersion relationships based on the nature of the wave field. The envelope of the pressure
disturbance field can be bounded by the FA speed with C+

r = 1 + 1/M. The maximum
and minimum phase speeds are Crmax = 0.95 and Crmin = 0.82 and they are marked by
green and blue solid lines, respectively. The second-mode dominated wavepacket dictating
the flow field further downstream of the impingement location will propagate with the
group velocity. The line for Cr = 1 − 1/M = 0.81 is slightly offset to distinguish it from
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Figure 6. Wave-hump trajectory extracted from the DNS and LST prediction.

M∞ Re∞ (m−1) p∞ (N m−2) T∞(K) Tw (K) U∞ (m s−1) Rp (μm) σ

5.35 13.678 × 106 1.298 × 103 63.923 300 857.633 10 5Rp

Table 1. Parameters used in particle impingement simulation considering a Mach 5.35 flat plate
boundary-layer flow.

the Crmin = 0.82 line. The maximum and minimum group velocities at the maximum
amplification rate (throughout the domain) are Cgmax = 0.63 and Cgmin = 0.5, respectively.
The yellow and red solid lines in figure 5(a) mark the maximum and minimum group
velocities, respectively. The region with high fluctuation amplitudes seem to closely follow
the group velocity that was predicted with LST. Moreover, the hump of the wavepacket
from the simulation is compared with the LST calculations in figure 6. In LST the
trajectory of the wavepacket hump is obtained by calculating the group velocity, Cg,
following the Cg = dx/dt relation. The hump trajectory extracted from the DNS and the
trajectory calculated with the group velocity obtained from the LST analysis are in close
agreement.

Next, we analyse the characteristics of the disturbance field introduced through particle
impingement and what fractions of the disturbance energy will arrive in the second-mode
dominated wavepacket. Figure 7(a) shows the development of the β = 0 disturbance
amplitude in the downstream direction. As the wavepacket propagates further downstream,
the high pressure amplitude region shifts from higher to lower frequencies following
an inverse proportional relationship to the boundary-layer height. Far from the particle
impingement location, the pressure amplitude plot is in agreement with the LST results
(figure 7b). The neutral curves are included as blue solid lines for the unstable mode
S (here, the second Mack mode). It should be noted here that the LST predictions are
based on the parallel flow assumption; thus, may not perfectly match the DNS results. The
peak values of the wall pressure amplitude is within the second-mode frequency range
as predicted by LST with the maximum pressure amplitude occurring near the second
branch of the neutral curve at the downstream locations. The LST analysis shows that both
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Figure 7. (a) Wall pressure FFT amplitude plot at β = 0. The horizontal dashed lines mark the frequencies at
which amplitude curves are extracted for comparison, blue lines mark the neutral curves for the second mode.
The vertical red dashed line marks the particle impingement location, (b) amplitude plot obtained from LST,
(c) growth rate at β = 0 and (d) amplitude development for different frequencies for numerical simulation and
LST. Symbols and lines, which respectively represent FFT and LST data, denote the following: (�, solid line)
F = 7.543 × 10−5, (©, dashed line) 7.023 × 10−5 and (�, dashed-dotted line) 6.502 × 10−5.

first and second instability modes are expected in the flow field, as shown in figure 7(c).
To compare the pressure amplitude development in the downstream direction, pressure
amplitude curves are plotted at three distinct frequencies F = 7.543 × 10−5, 7.023 × 10−5

and 6.502 × 10−5 and compared with the LST computations in figure 7(d). In the unstable
flow region there is good agreement between the DNS and LST results. The first-mode
contribution is not noticeable in the amplitude plots in figure 7(a). This also suggests
that far from the particle impingement location the flow field is dominated by the
discrete unstable second mode S. The discrepancies near the particle impingement location
indicate that the contributions from other discrete modes and continuous branches are not
negligible at upstream locations and these contributions can influence the downstream
development of the flow field.

A more detailed overview of the pressure field in the vicinity of the particle impingement
location can be obtained from the wall pressure amplitudes in the F-β spectra as shown in
figure 8(a–d) for four streamwise locations, x/H. The F-β spectrum right at the particle
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Figure 8. Wall pressure amplitude (|pw|/(ρ∞U2∞)) in F − β diagram. Here ‘+, red’ marks the cases
considered for reconstruction in § 6.3. Blue lines mark the neutral curves for the second mode. Results are
shown for (a) xpc/H = 1374, (b) x/H = 1432, (c) x/H = 1525, (d) x/H = 2517.

impingement location is shown in figure 8(a). The neutral curves for the second mode
are again included as blue solid lines. A wide range of frequencies and wavenumbers
are introduced by the particle impingement with a large pressure amplitude within the
range 0 ≤ β < 0.5 and up to F ≈ 2 × 10−4. The largest amplitudes are introduced for
β = 0 at very low frequencies around F ≈ 2 × 10−5 and higher frequencies around F ≈
16 × 10−5 as well as a strong oblique contribution at around F ≈ 15 × 10−5 and β = 0.32.
The higher frequency content persists near the impingement location at x/H = 1432 with
main contributions from around four regions marked (with 1, 2, 3/4 and 5) in figure 8(b)
that will be analysed in more detail employing BOD. Further downstream the 2-D mode
with β = 0 dominates and amplitude peaks can be found at frequencies that would be
expected from LST predictions in figure 8(c,d). Furthermore, the peak shifts from the
lower branch of the neutral curve towards the upper branch (as is expected from LST) in
the downstream direction as disturbances are exponentially amplified.

The wall-normal amplitude distributions of pressure, streamwise velocity, wall-normal
velocity and temperature of the 3-D disturbance flow field are shown at three downstream
locations, x/H = 1374, 1432 and 2517 in figure 9(a–l) for β = 0. The first two locations
(x/H = 1374 and 1432) are selected to provide an overview of the disturbance flow features

969 A1-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.531


Receptivity analysis of particle-induced disturbance field

36

27

18

9

0

36

27

18

9

0

36

27

18

9

0

36

27

18

9

0

36

27

18

9

0

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

36

27

18

9

0

36

27

18

9

0

36

27

18

9

0

7 14 21 28 35 7 14 21 28 35 7 14 21 28 35 7 14 21 28 35

7 14 21
y/H

F

F

F

y/H y/H y/H
28 35

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

7 14 21 28 35 7 14 21 28 35 7 14 21 28 35

1.5 52.2
42.7
33.2
23.7
14.2
4.7

8.4
6.9
5.4
3.8
2.3
0.8

4.5
3.7
2.9
2.1
1.2
0.4

1.2
0.9
0.7
0.4
0.1

1.4
1.1
0.9
0.6
0.4
0.1

24.3
19.9
15.5
11.1
6.6
2.2

22.5
18.4
14.3
10.2
6.1
2.0

17.9
14.6
11.4
8.1
4.9
1.6

16.2
13.3
10.3
7.4
4.4
1.5

34.3
28.1
21.8
15.6
9.4
3.1

7.2
5.9
4.6
3.3
2.0
0.7

2.0
1.7
1.3
0.9
0.6
0.2

(×10–5)
(×10–8) (×10–8) (×10–8) (×10–6)

(×10–8) (×10–8) (×10–8) (×10–6)

(×10–8) (×10–7) (×10–7) (×10–6)

(×10–5) (×10–5) (×10–5)

(×10–5) (×10–5) (×10–5) (×10–5)

(×10–5) (×10–5) (×10–5) (×10–5)

(a) (b) (c) (d )

(i) ( j) (k) (l)

(e) ( f ) (g) (h)

Figure 9. Disturbance flow frequency spectra in the wall-normal direction at β = 0 for (a,e,i) pressure, (b, f,j)
streamwise velocity, (c,g,k) wall-normal velocity and (d,h,l) temperature at three streamwise positions. The
vertical dashed red line marks the boundary-layer height, the vertical dashed-dotted red line marks the position
of the sonic line and horizontal blue dashed lines mark the second-mode frequency range. Results are shown
for (a) |p|, xpc/H = 1374; (b) |u|, xpc/H = 1374; (c) |v|, xpc/H = 1374; (d) |T|, xpc/H = 1374; (e) |p|, x/H =
1432; ( f ) |u|, x/H = 1432. (g) |v|, x/H = 1432; (h) |T|, x/H = 1432; (i) |p|, x/H = 2517; (j) |u|, x/H = 2517;
(k) |v|, x/H = 2517; (l) |T|, x/H = 2517.

in the vicinity of the impingement location and the location further downstream (x/H =
2517) shows the flow field in a region dominated by mode S. At the impingement location
(xpc/H = 1374), the largest pressure amplitudes are introduced at low frequencies (F <
9 × 10−5) extending throughout the boundary layer. Interestingly, the largest pressure peak
is not obtained at the wall right at the impingement location. At the impingement location,
no consistent trends among the different flow quantities with respect to the dominant
frequency ranges can be observed. The four chosen flow quantities can be divided into two
groups based on their spectral content where pressure and wall-normal velocity display
similar frequency characteristics and streamwise velocity and temperature form the other
group. Roughly only a three boundary-layer thickness away from the particle impingement
location at x/H = 1432 (figure 9e–h), a second region with large amplitudes in pressure
appears around F ≈ 1 × 10−4 below the sonic line (x/H = 5.3) (marked as a dashed
dotted line in the plots). For the streamwise velocity component and the temperature field,
the peak values are contained within the boundary layer while the wall-normal velocity
and pressure distribution show a low frequency peak outside of the boundary layer at
x/H = 1374 and 1432. This peak is associated with acoustic waves travelling outside
the boundary layer as will be demonstrated when reconstructing the flow field. In the
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vicinity of the impingement location at x/H =1374 and 1432, the streamwise velocity
and temperature disturbances are dominated by low frequency content mainly inside the
boundary layer. A possible explanation for this could be a transient growth-like mechanism
that is active and manifests itself in the streamwise velocity and temperature disturbances.
Similar observations with a more prominent non-modal growth mechanism was observed
for particle impingement on a blunt cone in Russo et al. (2021) consistent with optimal
growth results obtained in Paredes et al. (2019). The disturbance flow field spectra at
x/H = 2517, further downstream of the particle impingement location, are very different
from those closer to the impingement location. The spectra for all flow quantities are
dominated by a narrow frequency band that appears to be associated with the exponentially
amplified mode S in this region marked with blue dashed lines. Furthermore, as expected
from the LST theory, the pressure distribution peaks right at the wall and the temperature
distribution peaks right below the boundary-layer edge. Interestingly, the largest pressure
peak is not obtained at the wall right at the impingement location.

Next, instead of considering different components of the state vector where these
components provide widely different distributions, a scalar quantity weighing the
individual contributions based on a consistent energy norm will be used. In order to
measure the energy contained within the disturbance flow field several energy norms are
available. Here, the energy norm by Chu (1965) for perturbations within temporal stability
analysis has been adopted in the form

Edist = 1
2
ρ̄(〈 ŭ, ŭ〉 + 〈 v̆, v̆〉 + 〈 w̆, w̆〉)+ 1

2
ā2〈 ρ̆, ρ̆〉
γ ρ̄

+ 1
2
ρ̄cv〈 T̆, T̆〉

T̄
, (5.1)

where ā2 = T̄/M2 and cv = [γ (γ − 1)M2]−1, ρ̄ and T̄ are the mean flow density
and temperature, (ŭ, v̆, ρ̆, T̆) ∈ C are the Fourier transformed spectra for disturbance
streamwise velocity, wall-normal velocity, density and temperature, the inner product is
given by 〈 ŭ, ŭ〉 ≡ (ŭ∗ŭ + ŭŭ∗)/2, (·)∗ stands for the complex conjugate and γ = 1.4
is the specific heat ratio. All flow parameters are non-dimensionalized by free-stream
quantities (U∞, ρ∞, T∞). It is also known as ‘Mack norm’ because it was used in Mack’s
comprehensive report (Mack 1969) on the stability of boundary layers. (The energy norm
(5.1) was independently derived also in Hanifi, Schmid & Henningson (1996).) This norm
is also used for spatially growing perturbations in spite of an absence of reasoning for its
use.

The disturbance energy spectra are shown in figure 10(a–f ) for three downstream
locations x/H = 1374, 1432 and 2517 as well as two spanwise wavenumbers β. At the
impingement location xpc/H = 1374, the two main peaks of the disturbance energy are
found just above the wall and below the boundary-layer edge, similar to the peaks in the
temperature and wall-normal velocity of the disturbance flow field for β = 0 and β =
0.055. The low frequency peak extends throughout the boundary layer which suggests its
association with mean flow distortion. Shortly downstream of the impingement location at
x/H = 1432 the spectra look already distinctly different from the spectra at xpc/H = 1374.
The local maxima in the disturbance energy spectra are spatially localised such that they
will dominate only parts of the boundary layer. Moreover, the disturbance energy peaks
outside the boundary layer at y/H = 33, suggesting that a considerable amount of the
disturbance energy introduced by the particle impingement is carried away by acoustic
waves. For the downstream location at x/H = 2517, the energy peak is found to occur
at a higher frequency (between 5 × 10−5 < F < 1 × 10−4) for β = 0 falling within the
second-mode dominated frequency range. An additional low frequency peak appears at
a higher spanwise wavenumber β = 0.058 in figure 10( f ), suggesting a considerable low
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Figure 10. Frequency spectra of disturbance energy at three different streamwise locations and two spanwise
wavenumbers. The vertical dashed red line marks the boundary-layer height, the vertical dashed-dotted red
line marks the position of the sonic line, horizontal blue dashed lines mark the second-mode frequency
range and horizontal green dashed lines mark the first-mode frequency range. Results are shown for
(a) xpc/H = 1374, β = 0; (b) x/H = 1432, β = 0; (c) x/H = 2517, β = 0; (d) xpc/H = 1374, β = 0.055;
(e) x/H = 1432, β = 0.05; ( f ) x/H = 2517, β = 0.058.

frequency contribution from oblique waves. These low frequency peaks are associated
with the presence of the first mode as indicated by frequency ranges marked in figure 10( f ).

Figure 11(a–c) shows the peak values of disturbance energy in the wall-normal direction
at three streamwise locations x/H = 1374, 1432 and 2517, which is defined as

Emax(x,F) = max
0≤y≤Ly

(E(x, y,F)) . (5.2)

It was observed that an L2 integral based norm provides a nearly identical distribution
as the maximum energy norm used here. At the impingement location, the disturbance
energy peak is contained in the lower frequency range 0 < F < 2 × 10−5 and within 0 ≤
β ≤ 0.6. A lower amplitude region can be detected within the (F,β) range associated with
the second mode. Similarly, just a few boundary-layer thicknesses downstream, at x/H =
1432, the low frequency range is still dominant and no significant peaks can be detected in
the second-mode (F, β) range. Far from the particle impingement region, the disturbance
energy peak is found close to the second-mode neutral curves (6.45 × 10−5 < F < 7.57 ×
10−5) as well as for spanwise wavenumber and frequency ranges associated with the first
mode. Hence, the disturbance energy at this location is contributed by the first and second
modes. It is important to note that the presence of the first mode could not be detected in
the wall pressure spectra in figure 8(b) because the wall pressure signature highlights the
second mode more than the first mode due to its inherent eigenmode structure.
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Figure 11. Maximum disturbance energy, Emax(x,F) as in (5.2), in the wall-normal direction. The blue lines
mark the neutral curves for the second mode. Results are shown for (a) xpc/H = 1374, (b) x/H = 1432,
(c) x/H = 2517.

Although the introduced disturbance flow field is highly three dimensional in nature
near the impingement location, the 2-D mode (β = 0) dominates in the region further
downstream. Near the impingement location, the frequency–wavenumber spectra indicate
the presence of a wide range of modes from both the discrete and continuous spectra;
most of which, however, decay rapidly in the downstream directions or affect the flow
field outside the boundary layer. The disturbance energy spectra follow the trend as seen
in the frequency–wavenumber spectra, i.e. the disturbance energy is concentrated at a
lower frequency region near the impingement location and the peak disturbance energy
region shifts to higher frequencies in the downstream direction. Lower magnitudes of
disturbance energy are observed at larger β due to the presence of weak oblique waves
that are amplified due to first-mode growth as verified in figure 7(c).

6. Projection of the 3-D disturbance flow field onto LST eigenmodes

In order to project the disturbance flow field onto the eigenmodes, the BES requires the
solution of the direct and adjoint EVPs. The BES can be written as

∂

∂y

(
L0
∂Aαβ
∂y

)
+ L1

∂Aαβ
∂y

− H1Aαβ − iαH2Aαβ − iβH3Aαβ = 0,

y = 0 : Aαβ1 = Aαβ3 = Aαβ5 = Aαβ7 = 0,

y → ∞ : |Aαβi| < ∞, and

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.1)

∂

∂y

(
LT

0
∂Bαβ
∂y

)
− LT

1
∂Bαβ
∂y

− HT
1 Bαβ − iαHT

2 Bαβ − iβHT
3 Bαβ = 0,

y = 0 : Bαβ2 = Bαβ4 = Bαβ6 = Bαβ8 = 0,

y → ∞ : |Bαβi| < ∞,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.2)

where Aαβ and Bαβ are the solutions to the direct and adjoint EVPs. The orthogonality
relation between the eigenfunctions Aαβ and Bαβ is given by

〈H2Aαβ,Bα∗β〉 ≡
∫ ∞

0
(H2Aαβ,Bα∗β) dy = Γ�αα∗, (6.3)

where Γ is a normalization constant and �αα∗ is the Kronecker delta if any of α or
α∗ is a discrete mode. However, �αα∗ is the Dirac delta if α and α∗ are from the
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continuous spectra. When Aαβ and Bαβ are determined, the projection of the disturbance
flow field on discrete α can be determined, given that A(x, y, z) is known, from the
following relation:

Â = 〈H2A,Bαβ〉
〈H2Aαβ,Bαβ〉Aαβ. (6.4)

Here 〈H2A,Bαβ〉/〈H2Aαβ,Bαβ〉 is referred to as the amplitude of mode α or coefficient
of projection (COP) (Gaydos & Tumin 2004). The projections on continuous modes are
carried out by first projecting the FFT of the disturbance flow on different modes within
a range of continuous spectra parameter, k. Then the projected profile is constructed
by performing an integration over the k range. Finally, the solution of the linearized
Navier–Stokes equations in the frequency domain can be expressed as a superposition
of normal modes from the discrete and continuous branches

Aβ(x, y) =
∑

d

χdAαd( y)eiαdx

︸ ︷︷ ︸
Contribution from discrete spectrum

+
∑

c

∫ ∞

0
χc(k)Aαc( y)eiαc(k)x dk

︸ ︷︷ ︸
Contribution from the continuous branches

, (6.5)

where d and c refer to the ranges of discrete modes and continuous branches, respectively.
The values of χd and χc can be obtained from the BES. The modes associated with
continuous spectra have eigenfunctions oscillating outside of the boundary layer as
exp(±iky), where k is a real parameter (see figure 2b). This is in contrast to the discrete
modes that decay exponentially outside the boundary layer (see figure 2b).

In this section the projection of the 3-D unsteady disturbance flow field onto the LST
eigenmodes is discussed. The eigenmodes from the discrete and continuous branches
affect the evolution of the disturbance flow field in different ways. To understand the
initiation of eigenmodes within the receptivity process and the subsequent development
of mode S inside the boundary layer, the disturbance flow field is first projected onto the
most dominant discrete eigenmode S. Then the projection on the continuous spectra is
presented to discuss the disturbance flow development outside the boundary layer in the
free stream. Lastly, the projection on the full discrete and continuous spectra is considered
to understand the spectral characteristics to the disturbance flow field. It will also be
demonstrated that the disturbance flow field can be fully reconstructed with a combination
of continuous and discrete modes.

6.1. Projection of disturbance flow field on discrete mode S
The 3-D disturbance flow field obtained from the simulations is projected on the
unstable discrete mode S using BES. The second mode, here associated with mode S,
typically contains moderate frequencies unlike the first mode that appears at relatively low
frequency. The current study focuses on mode S because it reaches larger N factors than
the first mode. The quasi-parallel flow assumption has been adopted within the current
analysis as introduced in § 3.

Figures 7(a) and 12(a) display the Fourier wall pressure amplitude distribution and its
projection of wall pressure on mode S at β = 0, respectively. The spectra in figures 7(a)
and 12(a) can be directly compared with each other to obtain an idea about the relative
contribution of mode S to the disturbance flow field. In the region downstream of the
impingement location the pressure contours are nearly identical, which means that mode
S is dominating the disturbance flow field in this region. The projected wall pressure
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Figure 12. (a) Wall pressure disturbance flow field projected onto mode S at β = 0. Blue lines mark the neutral
curves for the second mode, (b) amplitude curves for different frequencies and (c) projection ratio, ψ , where
the vertical dashed lines represent the first (I) branch and the vertical dashed-dotted line represents the second
(II) branch. Symbols used denote the following: (�; �; solid line) F1 = 7.543 × 10−5, (�; ©; dashed line)
F2 = 7.023 × 10−5 and (�; ♦; dashed-dotted line) F3 = 6.502 × 10−5. Filled symbols represent projection on
mode S, hollow symbols represents FFT and lines represent LST.

spectrum is close to the expected frequency range following pure second-mode growth.
Some differences between the projected and original pressure amplitude spectra are
observed near to the impingement location where mode S has a lower amplitude.
Next, amplitude curves and projection ratios (ψ = Pproj./Pfft) are compared for three
frequencies, F = 7.543 × 10−5, 7.023 × 10−5 and 6.502 × 10−5, in figures 12(b) and
12(c), respectively. A general trend towards the projection ratios approaching ψ = 1 in
the exponential growth regime is apparent, i.e. when the disturbances cross branch I of the
neutral curve predicted by LST. Branch I/II locations are marked as vertical dashed lines
in figure 12(c). The results suggest that once the disturbance flow reaches branch I the
unstable mode S becomes dominant. Here, the amplitude curves follow the LST prediction
and the projection ratio is close to one. For the highest frequency F = 7.543 × 10−5 shown
here, the projection coefficient starts to move away from ψ = 1 when approaching the
second branch. The differences near the particle impingement location can be attributed
to considerable contributions from the continuous branch as well as other stable discrete
modes near the impingement location. Far from the particle impingement location and
inside the unstable flow region, the amplitude curves from FFT, LST and projection on
mode S are in close agreement and the projection ratio is close to unity. Balakumar
& Malik (1992) also made similar observations when considering a point disturbance
source in a M = 2 and M = 4.5 flat plate boundary-layer flow. While they did not attempt
to reconstruct the flow field in the vicinity of the source region they showed that the
disturbance flow field can be described very accurately far from the disturbance source
by considering only the unstable modes.

The FFT of the disturbance pressure field and its projection on mode S are also shown in
the F-β plane in figure 13(a,c). The original frequency–wavenumber spectra are available
for comparison in figure 8(a,b). As the wavepacket travels in the downstream direction,
the peak of the wall pressure projection on mode S shifts from the lower branch towards
the upper branch of the neutral curve as LST would predict. The large differences in the
spectra near the impingement location at xpc/H = 1374 (figure 13a) and 1432 (figure 13c)
are expected as the contributions from other modes are still significant at these locations.
The projection ratios shown in figure 13(b,d) highlight the region in the spectrum where
the second mode is activated. The dashed contour lines of the original wall pressure spectra
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Figure 13. Fourier transformed disturbance wall pressure projected onto mode S: (a,c) contour plots. Dashed
contour lines represent the disturbance flow FFT and (b,d) projection ratio. Results are shown for (a) xpc/H =
1374, (b) xpc/H = 1374, (c) x/H = 1432, (d) x/H = 1432.

were included in figure 13(a,c) to provide an overview of the significant contributions from
other discrete and continuous modes that are present in the initial disturbance flow field.
The projection ratio in figure 13(d) indicates that the first mode is also triggered through
particle impingement with higher amplification rates at oblique angles.

The receptivity coefficient is calculated along the lower neutral branch I for different
wave angles, θ = tan−1(β/αr), in the form

Crecep = |PwS |
ρU2

rel
, (6.6)

where |Pws | is the wall pressure amplitude projected on mode S, ρ is the fluid density and
Urel is the relative velocity of the particle. The receptivity coefficient, Crecep, along the
lower neutral branch is provided in figure 14 for two different downstream locations with
xpc/H = 1374 and x/H = 1432. The receptivity coefficient is fairly constant until a wave
angle of θ ≈ 30◦.

It is common practice in DNS studies of boundary-layer transition scenarios to simply
use the wall pressure signature to analyse the transition process. Hereby, it is assumed
that the disturbance pressure peaks occur at the wall, which is the case for first- and
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Figure 14. Receptivity coefficient for different wave angles, θ = tan−1(β/αr), at the lower neutral branch.

second-mode disturbance waves; thus, tracking wall pressure is equivalent with applying
the maximum or L∞ norm. The wall-normal distributions of the different disturbance
flow quantities were shown in figure 9. The projections on mode S are displayed in
figure 15. Comparing the original disturbance flow signals with their projections on
mode S demonstrates that the low frequency contributions, not associated with the first
or second mode, are the main contributors to the disturbance flow field in the vicinity
of the impingement location. As mode S experiences exponential growth and begins to
dominate the downstream development of the disturbance flow field, good agreement
with the original data in figure 9 is obtained. The amplitude peaks for the different flow
quantities are observed around the frequency range of mode S. The projections on mode
S at x/H = 2517 closely represent the spectral content of the disturbance flow field in
figure 9(i–l), suggesting significant contributions from mode S at this location.

The contribution of mode S throughout the boundary layer at different downstream
locations can be assessed by comparing the original amplitude distributions and their
projections on mode S in figure 16(a–i). Streamwise velocity, pressure and temperature
profiles are provided in figure 16(a–i) for β = 0 at F = 7.543 × 10−5 for three different
streamwise locations. The discrepancies between the disturbance flow FFT and projection
on mode S observed in the F-β plane for wall pressure are also present in their profiles near
the particle impingement location. At the impingment location, the FFT distributions for
the different disturbance flow quantities are distinctly different from the projected results.
The peak values are about an order of magnitude smaller with (Pfft,max)/(Pproj.,max) ≈
10.02, (Tfft,max)/(Tproj.,max) ≈ 5.62 and (ufft,max)/(uproj.,max) ≈ 11. These ratios give an
idea about the small fraction of the disturbance energy that is introduced in mode S
during particle impingement. Indeed, the ratio of total maximum disturbance energies
(Emax( fft)/Emax( proj.)) is 23.24. The contributions from different discrete and continuous
branches of the associated eigenvalue spectrum are identified in § 6.3 for reconstructing the
original profiles of the disturbance flow field. Further downstream at x/H = 1670, while
differences in the phase are still present, the disturbance flow profiles tend to follow the
general behaviour of mode S. At x/H = 2517, the disturbance flow profiles are in close
agreement with the projection data as one would expect for a flow field that is dominated
by mode S.
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Figure 15. Disturbance flow frequency spectra projected on mode S at β = 0 versus wall-normal direction
for (a,e,i) pressure, (b, f,j) streamwise velocity, (c,g,k) wall-normal velocity and (d,h,l) temperature at three
streamwise positions. The vertical dashed line marks the boundary-layer height, the vertical dashed-dotted
line marks the position of the sonic line and horizontal blue dashed lines mark the neutral curves for the
second mode. Results are shown for (a) |p|, xpc/H = 1374; (b) |u|, xpc/H = 1374; (c) |v|, xpc/H = 1374; (d)
|T|, x/H = 1374; (e) |p|, x/H = 1432; ( f ) |u|, x/H = 1432; (g) |v|, x/H = 1432; (h) |T|, x/H = 1432; (i) |p|,
x/H = 2517; (j) |u|, x/H = 2517; (k) |v|, x/H = 2517; (l) |T|, x/H = 2517.

The disturbance energy of the projected disturbance flow field is provided in
figure 17(a–f ) for the same parameters as in figure 10(a–f ). The energy spectra
are dominated by the temperature field showing large amplitudes just below the
boundary-layer edge. The (stable) low frequency mode S does not contribute significantly
to the disturbance flow field at β = 0. The projected energy spectra in figure 10(a–f )
contain low frequency peaks at higher spanwise wavenumbers, β, outside of the range
where the second mode is unstable, which explains some peaks in the original energy
spectra in figure 10. In summary, the results for the projection on mode S showed that a
very small amount of disturbance energy introduced by particle impingement ends up in
mode S. The numerical results suggest that most of the disturbance energy is absorbed by
the stable discrete modes and modes from the continuous branches, which is analysed in
more detail in §§ 6.2 and 6.3. Next, the disturbance flow field is projected on the continuous
branch.
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Figure 16. Profiles of disturbance flow FFT and its projection on mode S: (a–c) pressure, (d–f ) streamwise
velocity and (g–i) temperature, for F = 7.543 × 10−5 and β = 0. Lines and symbols represent FFT and
projection on mode S, respectively: solid line and � for |·|; dashed line and © for Re(·); dashed-dotted line
and � for Im(·). Results are shown for (a) xpc/H = 1374, (b) x/H = 1670, (c) x/H = 2517, (d) xpc/H = 1374,
(e) x/H = 1670, ( f ) x/H = 2517, (g) xpc/H = 1374, (h) x/H = 1670, (i) x/H = 2517.

6.2. Projection of disturbance flow field on the continuous spectra
The continuous spectra are expected to contribute mostly to the development of the
disturbance flow field outside the boundary layer as they provide a mechanism to
radiate energy away from the boundary layer. Especially near the impingement location
continuous branches also provide major contributions to the disturbance flow field
throughout the boundary layer, in particular, for low frequencies. The contributions from
continuous spectra are analysed for the acoustic branches with β = 0. As the acoustic
branch is continuous, superposition of the modal contributions from the acoustic branches
needs to be considered for the disturbance flow decomposition. The projection onto
the continuous spectra is evaluated for different continuous spectra parameter ’k’, also
sometimes referred to as the y component of the wavenumber vector. It defines the
variations of the acoustic eigenfunctions as exp(±iky) in the free stream.
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Figure 17. Frequency spectra of disturbance energy projected on mode S at three different streamwise
locations and two spanwise wavenumbers (β). The vertical dashed line marks the boundary-layer height,
the dashed-dotted line marks the position of the sonic line and horizontal blue dashed lines mark the
unstable frequency range for mode S. Results are shown for (a) xpc/H = 1374, β = 0; (b) x/H = 1432, β = 0;
(c) x/H = 2517, β = 0; (d) xpc/H = 1374, β = 0.055; (e) x/H = 1432, β = 0.05; ( f ) x/H = 2517, β =
0.058.

The eigenfunctions from the continuous acoustic branch, unlike the discrete modes that
decay outside the boundary layer, contribute to the disturbance flow field in the free stream
(see figure 2b). The purpose of the analysis in this section is to demonstrate that the
disturbance flow field projected on the acoustic branch captures a large portion of the
disturbance energy introduced during the particle collision. The disturbance flow field is
projected onto the SA and FA modes at low frequency (F = 1.764 × 10−5) considering
k = 0.001 − 4.0 with a step size of �k = 0.001. The amplitude curves of the COP for
the SA and FA branches are illustrated in figures 18(a) and 18(b), respectively. Each
curve represents a different streamwise location. The maximum amplitude of the COP for
the SA and FA branches occur at x/H = 1396 and 1374, respectively. The contributions
from the FA branch stem from higher k in comparison to the SA branch. Figure 19(a–d)
shows the FFT of disturbance flow field and its projection on the SA and FA branches
as well as their superposition at F = 1.764 × 10−5. The acoustic field generated during
the particle impingement can be fully reconstructed by considering the acoustic branches.
The different contributions from the SA and FA branches can be seen in figures 19(b) and
19(c), respectively. The superposition of the contributions from the SA and FA modes
(figure 19d) is able to capture the behaviour of the disturbance flow field outside the
boundary layer. Outside the boundary layer, a perfect match is achieved between the
original FFT data and the reconstructed pressure field solely considering the contributions
from the acoustic branches SA and FA, but inside the boundary layer the other discrete
modes need to be included to obtain a closer match.
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Figure 18. Amplitude of the COP for the SA and FA branches at β = 0 and F = 1.764 × 10−5; (a) SA,
(b) FA.
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Figure 19. Pressure amplitude at β = 0 and F = 1.764 × 10−5 for (a) FFT of disturbance flow field,
(b) FFT projected on SA modes (k = 0.001 − 4.0), (c) FFT projected on FA modes (k = 0.001 − 4.0) and
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normalized by peak value at x/H = 1374. The Mach angle is 10.7◦ for the current flow conditions.
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lines mark the frequencies for cases 1, 2, 3, 4 and 5. Here SP denotes synchronization point. Results are shown
for (ab) β = 0, (c,d) β = 0.206.

6.3. Full reconstruction of the disturbance flow field
In order to identify the contributions from the discrete modes and continuous branches
during the receptivity phase, five frequencies, F, and spanwise wavenumbers, β, pairs are
considered near to the particle impingement location at x/H = 1432. Two high frequency
cases are taken near to the peaks marked with red crosses in figure 8(b), i.e. case 1
with F = 2.822 × 10−4 and β = 0 and case 2 with F = 2.315 × 10−4 and β = 0.206.
In addition, cases 3 and 4 consider intermediate frequencies near to the second-mode
region at F = 1.014 × 10−4 and F = 7.938 × 10−5, respectively, at β = 0 as well as one
low frequency case 5 at F = 1.764 × 10−5 and β = 0 near to the region where the peak
occurs outside the boundary layer as, for example, depicted in figure 9(e).

The development of the discrete modes S and F as well as the phase velocities,
Cr = ω/αr, as a function of F at Re = 1432 and β = 0 are shown in figures 20(a) and
20(b), respectively. The vertical lines in figure 20(a–d) mark the different frequencies
considered in this analysis for the reconstruction of the flow field. Multiple F modes
exist at higher frequencies. They are denoted as F1, F2 and F3 modes according
to their emergence in the eigenvalue spectrum. Mode S synchronizes with the SA
branch and mode F synchronizes with the FA branch in the limit of the frequency
parameter approaching zero, F → 0. The phase speeds of the FA and SA branches
are marked as horizontal lines at 1 + 1/M and 1 − 1/M in figure 20(b), respectively.
Mode S synchronizes with mode F1 at F ≈ 1.07 × 10−4 and mode F2 at F ≈ 2.88 ×
10−4. The synchronization of mode S with mode F1 gives rise to the unstable second
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Mack mode. However, no destabilization of the flow is observed for the second
synchronization of mode S with mode F2. The synchronization points, however, also
provide a mechanism for intermodal energy exchange. For example, at the synchronization
point, disturbance energy initially introduced in mode F1 can be passed onto mode S
through phase speed matching. This mechanism has been observed in prior receptivity
studies when introducing FA disturbances in the presence of an unstable mode S.
Similarly, the development of modes S and F and their corresponding phase speeds are
shown in figure 20(c,d) as a function of frequency F for oblique waves with β = 0.206
and at Re = 1432. Mode S synchronizes with mode F1 at F ≈ 1.32 × 10−4 and mode F2
at F = 3.04 × 10−4. As seen for β = 0, the modes remain stable after the synchronization
occurs. The characteristics of the different modes are in agreement with the simulation
results shown in figure 8, where it is observed that the high frequency peaks, both at
β = 0 and β /= 0, rapidly decay in the downstream direction.

For a more quantitative analysis, the contributions from the discrete modes and
continuous branches are determined by computing the projection coefficients and
reconstructing the FFT signal for the five cases considered above. The SA and FA branches
are discretized within a range of k = 0.001 − 6.0 with a step size of �k = 0.001. The
numerical integration of the integral over the continuous acoustic branches considering
amplitude distributions, Â, of the SA and FA modes in (6.5) is performed using the
trapezoidal method. Figure 21(a–f ) shows the COP of the SA and FA branches. The
contributions for k > 4 for cases 1, 2, 4 and 5 are negligible and are therefore not shown
here. The FA branch contributes mostly for the higher frequency cases 1, 2, 3 and 4.
However, the SA branch, as can be observed in figure 19, dominates the disturbance flow
field for the low frequency case 5. Moreover, at low frequency (case 5), the contributions
from the FA branch stem from higher k in comparison to the SA branch. It should be noted
here that a higher value of k indicates a shorter wavelength.

Figures 22–26(a) show the FFT amplitudes of the pressure disturbance flow field and
its projection on the discrete modes S and F as well as on the continuous branches
SA and FA for the cases 1–5. The corresponding eigenvalue spectra are also shown in
figures 22–26(b). The different modes that mostly contribute to the reconstruction of
the disturbance flow field are marked with red squares. The eigenvalues of the discrete
modes S and F are provided in table 2 for different cases. The eigenvalues are determined
by employing the global solver for the cases 1–4. For case 5, the discrete modes are
determined by tracking the modes from a higher frequency towards the lower frequency
(figure 20a) as the modes are very close to zero and difficult to identify from the eigenvalue
spectrum produced by the global solver. For all cases, the vorticity and entropy branches
provide negligible contributions to the overall disturbance flow field.

For case 1 shown in figure 22(a), the large fluctuations outside the boundary layer can
be attributed to the acoustic branch FA, which is also accompanied by the stable mode
F3 decaying slowly outside the boundary layer (as it is still in close vicinity to the FA
branch). Contributions from the SA branch are small for this frequency and wavenumber
pair. Similar to the oscillations observed outside the boundary layer (y/H ≈ 15 − 40),
Tumin et al. (2007) also reported oscillations in a convectively unstable M = 8 flow over
a 5.3◦ sharp wedge with wall-blowing suction as a disturbance source. This region of the
disturbance flow field is a consequence of the acoustic wave emanating from the boundary
layer into the free stream as Mach waves with a Mach angle of 10.7◦ marked in figure 19.
However, inside the boundary layer, the disturbance flow field is dominated by various
discrete modes. Modes F2 and F3 provide larger contributions than mode S and a very
low contribution from mode F1 is detected close to the wall. Similar observations can
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Figure 21. Amplitude of the COP for SA, solid line and FA, dashed line branches for the cases 1–5 in (a–e),
respectively. Results are shown for (a) F = 2.82 × 10−4, β = 0; (b) F = 2.315 × 10−4, β = 0.206; (c) F =
1.014 × 10−4, β = 0; (d) F = 7.94 × 10−5, β = 0; (e) F = 1.76 × 10−5, β = 0.

be made for case 2 in figure 23(a) considering oblique modes with β = 0.206. For this
case, the FA branch dictates the pressure amplitude distribution outside the boundary layer
where it almost perfectly matches the disturbance flow field. Inside the boundary layer, the
discrete mode F2 dominates that almost perfectly follows the FFT pressure amplitude.
The disturbance flow field for this frequency–wavenumber pair can be closely described
by only considering the discrete mode F2 and continuous branch FA. The LST analysis
results show, however, that these modes are stable and decay in the downstream direction.
Although the intermediate frequency cases 3 and 4 in figures 24(a) and 25(a) are very
close to each other in the frequency–wavenumber spectrum in figure 8(b), with case 3
contained inside the unstable second-mode region and case 4 just outside, the spectral
contributions especially inside the boundary layer are very different. Outside the boundary
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Figure 22. (a) Case 1 FFT amplitude of disturbance pressure and its projection on discrete modes S and F
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Figure 23. (a) Case 2 FFT amplitude of disturbance pressure and its projection on discrete modes S and F
and continuous branches SA and FA, and (b) eigenvalue spectra at x/H = 1432 for F = 2.315 × 10−4 and
β = 0.206. The vertical dashed line marks the boundary-layer edge.

layer, both acoustic branches contribute to the disturbance flow field and only the FA
branch contributes inside the boundary layer. Close to the wall, mode S dominates for
case 3 while mode F1 dominates for case 4 and dictates the wall pressure peak observed
in the disturbance flow field. The higher receptivity of mode F1 versus mode S may be
somewhat surprising as mode F1 is more stable than mode S but the receptivity seems to
not be dictated by the growth rate of the modes.

With decreasing frequency, the dominant contributions outside the boundary layer shift
from the FA branch to the SA branch. While for all other cases 1-4, the dominant FFT
pressure peak was observed at the wall, the pressure peak for case 5 is located outside
the boundary layer. The disturbance flow field for case 5 is dominated by the SA branch
where the integral contribution from the SA modes almost perfectly matches the peak at
y/H ≈ 33. Some smaller contribution of the SA branch and the discrete mode S can be
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Figure 24. (a) Case 3 FFT amplitude of disturbance pressure and its projection on discrete modes S and F and
continuous branches SA and FA, and (b) eigenvalue spectra at x/H = 1432 for F = 1.014 × 10−4 and β = 0.
The vertical dashed line marks the boundary-layer edge.
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Figure 25. (a) Case 4 FFT amplitude of disturbance pressure and its projection on discrete modes S and F and
continuous branches SA and FA, and (b) eigenvalue spectra at x/H = 1432 for F = 7.938 × 10−5 and β = 0.
The vertical dashed line marks the boundary-layer edge.

noted inside the boundary layer. Overall, the contributions from the discrete modes are
smaller at this frequency and the disturbance flow field is dominated by the SA branch.
This observation is in agreement to the reconstructed pressure field from the acoustic
branches displayed in figure 19. It should be noted that, while non-modal growth of
disturbances has not been observed in this study it appears to be a possible scenario that
can be triggered by particle impingement (see Russo et al. 2021).

Table 3 lists the projection ratios of wall pressure for the different discrete and
continuous modes which can be used to summarise the reconstruction results. For cases 1
and 2, the largest magnitude in the projection ratio is observed for the discrete higher-order
Mack mode F2. For case 2, it was even noted that mode F2 alone almost perfectly captures
the FFT amplitude distribution. For the intermediate frequency cases 3 and 4, modes S and
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Figure 26. (a) Case 5 FFT amplitude of disturbance pressure and its projection on discrete modes S and F and
continuous branches SA and FA, (b) eigenvalue spectra at x/H = 1432 for F = 1.764 × 10−5 and β = 0. The
vertical dashed line marks the boundary-layer edge.

Case F β S F1 F2 F3

1 2.822 × 10−4 0.0 (0.425, 0.0076) (0.722, 0.063) (0.422, 0.014) (0.34, 0.00107)
2 2.315 × 10−4 0.206 (0.35, 0.0072) (0.529, 0.042) (0.293, 0.0066) —
3 1.014 × 10−4 0.0 (0.156,−0.0034) (0.155, 0.0095) — —
4 7.938 × 10−5 0.0 (0.125, 0.00027) (0.107, 0.0014) — —
5 1.764 × 10−5 0.0 (0.0301,−5.22 × 10−5) (0.0213, 4.96 × 10−6) — —

Table 2. Eigenvalues of discrete modes for different cases.

Case F β S F1 F2 F3 FA SA Rel. error Max error

1 2.822 × 10−4 0.0 0.183 0.025 0.588 0.276 0.262 1.125 × 10−4 0.023 0.088
2 2.315 × 10−4 0.206 0.009 0.026 1.03 — 0.159 6.255 × 10−4 0.011 0.043
3 1.014 × 10−4 0.0 0.75 0.36 — — 0.078 0.0042 0.0071 0.032
4 7.938 × 10−5 0.0 0.292 0.925 — — 0.132 0.011 0.011 0.051
5 1.764 × 10−5 0.0 0.352 0.047 — — 0.401 0.568 0.016 0.026

Table 3. Projection ratios of wall pressure for discrete and continuous modes for cases 1–5. Bold numbers
indicate the maximum of the projection ratios of the discrete and continuous modes.

F1 dominate the disturbance flow field, respectively. For lower frequencies, the acoustic
modes seem to dictate the disturbance flow field. Thus, the SA branch provides the largest
contribution in terms of the projection ratio for case 5. The relative and maximum errors
are computed as following:

Rel. error =
√∑

(PFFT − Pproj)2

N × max(PFFT)
, and (6.7)

Max error = |max(PFFT − Pproj)|
max(PFFT)

, (6.8)
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where PFFT is the disturbance pressure FFT, Pproj is the reconstructed pressure profile
from the discrete and continuous modes and N is the number of wall normal points in
the amplitude function. The maximum relative error is approximately 2.3 % for the above
cases. The maximum error ranges from 2.6 % to 8.8 % for the cases 1–5.

7. Summary and conclusions

Particles are inevitably present in the atmosphere, and they are assumed to be large enough,
as measurement data (Turco 1992) suggest, to carry sufficient inertia to impinge on the
surface of hypersonic vehicles. Although they can then clearly play an important role in
the transition process for free flight conditions, this topic has remained largely unexplored
in the past. In this paper a detailed analysis of the disturbance field generated by particle
impingement on a flat plate boundary-layer flow has been performed with a focus on the
receptivity stage. The flow conditions were chosen to be relevant for hypersonic flight
where a prototypical second-mode dominated transition scenario can be expected.

Particle impingement generates a complex disturbance flow field with a wide range
of frequencies and wavenumbers. The disturbance flow field consists of an assembly of
discrete modes (both stable and unstable) mainly active inside the boundary layer and
acoustic modes from the continuous FA and SA branches displaying large oscillations
outside the boundary layer. Contributions from the two vorticity branches and the entropy
branch were found to be negligible. Due to the complex nature of the disturbance flow field,
the characterisation of the disturbance flow is highly dependent on what flow quantities are
analysed and at what position throughout the boundary layer they are taken. The (integral)
energy norm by Chu (1965) was chosen as a representative scalar quantity that can capture
the overall dominant dynamics in the disturbance flow field. A large amount of energy is
introduced at very low frequency and only a small fraction of the total disturbance energy
is projected on to the second mode (here, mode S) at the impingement location. In the
vicinity of the impingement location, the peak value of disturbance pressure is at least
an order of magnitude higher than the pressure amplitude of mode S. A large portion of
the disturbance energy (of low frequency content) is diverted into the free stream, which
in the BES is projected on to the continuous SA and FA branches. Some fraction of the
disturbance energy (of high frequency content) is absorbed inside the boundary layer into
stable discrete modes such as the higher Mack modes, here F2 and F3. These discrete
modes then rapidly decay in the downstream direction and are assumed to not play an
important role in the transition process. A substantial amount of disturbance energy at high
frequency also arrives in the continuous FA modes with large amplitudes not only outside
the boundary layer as is typical for the acoustic modes but also with large activation inside
the boundary layer.

Although, Forgoston & Tumin (2005) and others previously showed that an initial
value problem can be expanded in BES as a sum of discrete and continuous spectra
modes, this property has not been demonstrated for flow fields that are as complex as
the particle-induced disturbance flow field analysed here that is characterised by the
presence of several discrete modes in combination with active continuous branches. Thus,
an important contribution of this work was to demonstrate the full reconstruction of
this disturbance flow field by using the BES expansion. Indeed, the acoustic wavefield
propagating into the free stream and the wall-normal disturbance profile at different
frequency and wavenumber pairs could be fully reconstructed in the vicinity of the
impingement location. The BOD was shown to be a powerful tool to gain detailed insight
about the complex receptivity mechanisms intrinsic to particle-induced transition.
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author 1 upon reasonable request.

Acknowledgments. The authors want to thank A. Haas at the University of Arizona for sharing
data for validation purposes. The work presented in this manuscript is the original work of the authors.
The authors followed the Journal of Fluid Mechanics ethical guidelines during the preparation of
the manuscript. During the preparation of this manuscript our co-author Dr A. Tumin passed away.
His contributions to this work are invaluable. He was one of the purest researchers we have gotten to know
and his attitude towards meaningful contributions to scientific discovery was one of a kind. Although, the work
presented in this manuscript is shy of many of his great contributions, we want to dedicate it to Anatoli. You
are deeply missed by your colleagues.

Funding. Some funding support was provided by the Office of Naval Research under contract
N00014-19-1-2223 and N00014-22-1-2443 with Dr E. Marineau as Program Manager. A.T. was supported
by ONR Grant N00014-17-1-2343 monitored by Dr E. Marineau.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
S.M. A. Al Hasnine https://orcid.org/0000-0003-1257-7168;
C. Brehm https://orcid.org/0000-0002-9006-3587.

Author contributions. S.M.A.A.H. contributed in software, formal analysis, investigation and
writing-original draft, V.R. contributed in investigation and writing-original draft, A.T. contributed in software,
formal analysis, investigation, writing-original draft and funding acquisition and C.B. contributed in software,
formal analysis, investigation, writing-original draft, supervision and funding acquisition.

REFERENCES

AIZIN, L.B. & MAKSIMOV, V.P. 1978 On the stability of flow of weakly compressible gas in a pipe of model
roughness. J. Appl. Mech. Tech. Phys. 42, 691–697.

AIZIN, L.B. & POLYAKOV, M.F. 1979 Acoustic generation of Tollmien–Schlichting waves over uneveness
of surface immersed in stream. Preprint 17, Akad, Nauk USSR, SIberian Div., Inst. Theor. Appl. Mech. (in
Russian).

BALAKUMAR, P. & MALIK, M.R. 1992 Discrete modes and continuous spectra in supersonic boundary layers.
J. Fluid Mech. 239, 631–656.

BLACKABY, N.D., COWLEY, S.J. & HALL, P. 1993 On the instability of hypersonic flow past a flat plate.
J. Fluid Mech. 247, 369–416.

BREHM, C. 2017 On consistent boundary closures for compact finite-difference WENO schemes. J. Comput.
Phys. 334, 573–581.

BREHM, C., BARAD, M.F., HOUSMAN, J.A. & KIRIS, C.C. 2015 A comparison of higher-order
finite-difference shock capturing schemes. Comput. Fluids 122, 184–208.

BROWNE, O.M.F., HAAS, A.P., FASEL, H.F. & BREHM, C. 2017 An efficient strategy for computing
wave-packets in high-speed boundary layers. In 47th AIAA Fluid Dynamics Conference, Denver, CO,
p. 3636. AIAA.

BROWNE, O.M.F., HAAS, A.P., FASEL, H.F. & BREHM, C. 2019a An efficient linear wavepacket tracking
method for hypersonic boundary-layer stability prediction. J. Comput. Phys. 380, 243–268.

BROWNE, O.M.F., HAAS, A.P., FASEL, H.F. & BREHM, C. 2020a A nonlinear wavepacket tracking method
for hypersonic boundary-layer flows on irregular domains. In AIAA Aviation 2020 Forum, p. 2985. AIAA.

BROWNE, O.M.F., HAAS, A.P., FASEL, H.F. & BREHM, C. 2022 A nonlinear compressible flow disturbance
formulation for adaptive mesh refinement wavepacket tracking in hypersonic boundary-layer flows. Comput.
Fluids 240, 105395.

BROWNE, O.M.F., HASNINE, S.M. & BREHM, C. 2019b Towards modeling and simulation of particulate
interactions with high-speed transitional boundary-layer flows. In AIAA Aviation 2019 Forum, p. 2971.
AIAA.

BROWNE, O.M.F., HASNINE, S.M.A.A. & BREHM, C. 2021 Numerical method for particulate-induced
high-speed boundary-layer transition simulations. AIAA J. 59 (4), 1196–1213.

BROWNE, O.M.F., HASNINE, S.M.A.A., RUSSO, V. & BREHM, C. 2020b Fully-resolved particulate-induced
transition simulations for high-speed boundary-layers with an immersed boundary method. In AIAA Scitech
2020 Forum, p. 1795. AIAA.

969 A1-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-1257-7168
https://orcid.org/0000-0003-1257-7168
https://orcid.org/0000-0002-9006-3587
https://orcid.org/0000-0002-9006-3587
https://doi.org/10.1017/jfm.2023.531


Receptivity analysis of particle-induced disturbance field

BUSHNELL, D. 1990 Notes on initial disturbance fields for the transition problem. Instability and Transition
(ed. M.Y. Hussaini & R.G. Voigt). ICASE/NASA LaRC Series, pp. 217–232. Springer.

CHAUDHRY, R.S. & CANDLER, G.V. 2017 Computing measured spectra from hypersonic pitot probes with
flow-parallel freestream disturbances. AIAA J. 55 (12), 4155–4166.

CHU, B.T. 1965 On the energy transfer to small disturbances in fluid flow (Part I). Acta Mech. 1 (3), 215–234.
CHUVAKHOV, P.V., FEDOROV, A.V. & OBRAZ, A.O. 2019 Numerical modelling of supersonic

boundary-layer receptivity to solid particulates. J. Fluid Mech. 859, 949–971.
CROWE, C.T. 1967 Drag coefficient of particles in rocket nozzles. AIAA J. 5, 1021–1022.
DUAN, L., et al. 2019 Characterization of freestream disturbances in conventional hypersonic wind tunnels.

J. Spacecr. Rockets 56 (2), 357–368.
EDWARDS, L.D. & TUMIN, A. 2019 Model of distributed receptivity to kinetic fluctuations in high-speed

boundary layers. AIAA J. 57 (11), 4750–4763.
FEDOROV, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43 (1),

79–95.
FEDOROV, A.V. 2013 Receptivity of a supersonic boundary layer to solid particulates. J. Fluid Mech.

737, 105–131.
FEDOROV, A. & KOZLOV, M. 2011 Receptivity of high-speed boundary layer to solid particulates. In 6th AIAA

Theoretical Fluid Mechanics Conference, p. 3925. AIAA.
FEDOROV, A.V., RYZHOV, A.A., SOUDAKOV, V.G. & UTYUZHNIKOV, S.V. 2013 Receptivity of a

high-speed boundary layer to temperature spottiness. J. Fluid Mech. 722, 533–553.
FEDOROV, A. & TUMIN, A. 2011 High-speed boundary-layer instability: old terminology and a new

framework. AIAA J. 49 (8), 1647–1657.
FEDOROV, A. & TUMIN, A. 2017 Receptivity of high-speed boundary layers to kinetic fluctuations. AIAA J.

55 (7), 2335–2348.
FORGOSTON, E. & TUMIN, A. 2005 Initial-value problem for three-dimensional disturbances in a

compressible boundary layer. Phys. Fluids 17 (8), 084106.
FORGOSTON, E. & TUMIN, A. 2006 Three-dimensional wave packets in a compressible boundary layer. Phys.

Fluids 18 (10), 104103.
GAYDOS, P. & TUMIN, A. 2004 Multimode decomposition in compressible boundary layers. AIAA J. 42 (6),

1115–1121.
HABECK, J.B., HOGAN, C.J., FLATEN, J.A. & CANDLER, G.V. 2022 Development of a calibration system

for measuring aerosol particles in the stratosphere. In AIAA SCITECH 2022 Forum, p. 1582. AIAA.
HANIFI, A., SCHMID, P.J. & HENNINGSON, D.S. 1996 Transient growth in compressible boundary layer

flow. Phys. Fluids 8, 826–837.
HASNINE, S.M.A.A., RUSSO, V., BROWNE, O.M., TUMIN, A. & BREHM, C. 2020 Disturbance flow field

analysis of particulate interaction with high speed boundary layers. In AIAA Aviation 2020 Forum, p. 3046.
AIAA.

HASNINE, S.M.A.A., RUSSO, V., TUMIN, A. & BREHM, C. 2021 Three-dimensional spatio-temporal
disturbance flow field analysis of particulate-induced high-speed boundary-layer transition. In AIAA Scitech
2021 Forum, p. 1657. AIAA.

MACK, L.M. 1969 Boundary-layer stability theory. Tech. Rep. 900-277, Rev. A. Jet Propulsion Laboratory,
Pasadena, CA.

MACK, L.M. 2000 Early history of compressible linear stability theory. In IUTAM symposia (international
union of theoretical and applied mechanics) on laminar-turbulent transition (ed. H.F. Fasel & W.S. Saric),
pp. 9–34. Springer.

MELANDER, L.J. & CANDLER, G.V. 2021 Investigation of atmospheric turbulence and shock interaction for
a hypersonic sphere-cone. In AIAA Scitech 2021 Forum, p. 1325. AIAA.

MORKOVIN, M.V., RESHOTKO, E. & HERBERT, T. 1994 Transition in open flow systems – a reassessment.
Bull. Am. Phys. Soc. 39, 1882.

PAREDES, P., CHOUDHARI, M.M., LI, F., JEWELL, J.S. & KIMMEL, R.L. 2019 Nonmodal growth of
traveling waves on blunt cones at hypersonic speeds. AIAA J. 57 (11), 4738–4749.

REGELE, J.D., RABINOVITCH, J., COLONIUS, T. & BLANQUART, G. 2014 Unsteady effects in dense, high
speed, particle laden flows. Intl J. Multiphase Flow 61, 1–13.

RUBAN, A.I., BERNOTS, T. & PRYCE, D. 2013 Receptivity of the boundary layer to vibrations of the wing
surface. J. Fluid Mech. 723, 480–528.

RUSSO, V., HASNINE, S.M.A.A. & BREHM, C. 2021 Particle-impingement simulations for a hypersonic flow
over a blunt cone. In AIAA SciTech Forum and Exposition, AIAA Paper 2021-0967. AIAA.

SAIKIA, B., AL HASNINE, S.M.A. & BREHM, C. 2022 On the role of discrete and continuous modes in a
cooled high-speed boundary layer flow. J. Fluid Mech. 942, R7.

969 A1-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.531


S.M.A. Al Hasnine, V. Russo, A. Tumin and C. Brehm

SMITH, F.T. 1989 On the first-mode instability in subsonic, supersonic or hypersonic boundary layers. J. Fluid
Mech. 198, 127–153.

SMITH, F.T. & BROWN, S.N. 1990 The inviscid instability of a Blasius boundary layer at large values of the
Mach number. J. Fluid Mech. 219, 499–518.

TEMPELMANN, D., SCHRADER, L., HANIFI, A., BRANDT, L. & HENNINGSON, D.S. 2012 Swept wing
boundary-layer receptivity to localized surface roughness. J. Fluid Mech. 711, 516–544.

THEOFILIS, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows.
Prog. Aerosp. Sci. 39 (4), 249–315.

TUMIN, A. 2003 Multimode decomposition of spatially growing perturbations in a two-dimensional boundary
layer. Phys. Fluids 15 (69), 2525–2540.

TUMIN, A. 2006 Three-dimensional spatial normal modes in compressible boundary layers. In 44th AIAA
Aerospace Sciences Meeting and Exhibit, AIAA Paper 2006-1109. AIAA.

TUMIN, A. 2007 Three-dimensional spatial normal modes in compressible boundary layer. J. Fluid Mech.
586, 295–322.

TUMIN, A. 2020 LST and the eigenfunction expansion method for linearized Navier–Stokes equations (A
summary). AIAA Paper 2020–0105.

TUMIN, A., AMITAY, M. & ZHOU, M. 1996 A normal multimode decomposition method for stability
experiments. Phys. Fluids 8, 2777–2779.

TUMIN, A., WANG, X. & ZHONG, X. 2007 Direct numerical simulation and the theory of receptivity in a
hypersonic boundary layer. Phys. Fluids 19, 014101.

TUMIN, A., WANG, X. & ZHONG, X. 2011 Numerical simulation and theoretical analysis of perturbations in
hypersonic boundary layers. AIAA J. 49, 463–471.

TURCO, R.P. 1992 Upper-atmosphere aerosols: properties and natural cycles. In The Atmospheric Effects of
Stratospheric Aircraft: A First Program Report, chap. 3b, pp. 63–91. NASA.

969 A1-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.531

	1 Introduction
	2 Governing equations and numerical simulation approach
	2.1 Nonlinear disturbance flow formulation
	2.2 Particle-source-in-cell simulation approach
	2.3 The AMR disturbance flow tracking simulation approach

	3 Local EVP
	4 Spectral properties of 3-D disturbance flow field
	5 Disturbance flow features generated by particle impingement
	6 Projection of the 3-D disturbance flow field onto LST eigenmodes
	6.1 Projection of disturbance flow field on discrete mode S
	6.2 Projection of disturbance flow field on the continuous spectra
	6.3 Full reconstruction of the disturbance flow field

	7 Summary and conclusions
	References

