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Abstract

For an edge uv in a graph G, ng denotes the set of all vertices of G that are closer to u than to v. A graph
G is said to be quasi-distance-balanced if there exists a constant A > 1 such that [WZ,| = A*'|W,| for

Vi

every pair of adjacent vertices u and v. The existence of nonbipartite quasi-distance-balanced graphs is
an open problem. In this paper we investigate the possible structure of cycles in quasi-distance-balanced
graphs and generalise the previously known result that every quasi-distance-balanced graph is triangle-
free. We also prove that a connected quasi-distance-balanced graph admitting a bridge is isomorphic to a
star. Several open problems are posed.
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1. Introduction

Let G be a finite, undirected, connected graph with diameter d and let V(G) and E(G)
be the vertex set and the edge set of G, respectively. For u € V(G), let Ng(u) denote
the set of neighbours of u in G. For u,v € V(G), let dg(u, v) denote the minimal path-
length distance between u and v. When the graph G is clear from the context, we will
simply write d(u, v). For a pair of adjacent vertices u, v of G, define the set W<, by

WS, ={x e V(G) | d(x,u) < d(x,v)}.

If the graph G is clear from the context, we write simply W,,. Observe that for a
connected bipartite graph G, the sets W, and W, , form a partition of its vertex set.
The sets W,,, and W, , are important in metric graph theory.

A subgraph G of a hypercube H that preserves distances, that is, the distance
between any two vertices in G is the same as the distance between those vertices in H,
is called a partial cube. A set of vertices S C V(G) of a graph G is convex if, for any
two points a, b € S, all the points on any shortest path between a and b are contained
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in §. Djokovié [4] proved that a connected bipartite graph is a partial cube if and only
if the sets W,, and W, , are convex for every edge uv of G. These sets also occur in
chemical graph theory, where the Szeged index of a graph G, introduced by Gutman
in [5], is defined as Sz2(G) = X epG) | Wl - IWoul.

A graph G is called distance-balanced (in short, DB) if the sets W,, and W,,
are of the same size for arbitrary pairs of adjacent vertices u# and v. Graphs having
this property were first studied by Handa [6], who considered distance-balanced
partial cubes. The term itself was introduced by Jerebic e al. [8], who gave some
basic properties and characterised Cartesian and lexicographic products of distance-
balanced graphs. Kutnar et al. [9] investigated this property for graphs having a certain
type of symmetry and, among other results, proved that every vertex-transitive graph
is distance-balanced. The problem of characterising distance-balanced graphs in the
family of generalised Petersen graphs was studied in [10, 13]. For more results on this
and related concepts, see [2, 3, 7, 11, 12].

Quasi-distance-balanced graphs, introduced by Abedi et al. in [1], generalise the
concept of distance-balanced graphs. A graph G is quasi-distance-balanced (in short,
quasi-DB) if there exists a positive rational number A > 1 such that, for any edge uv
of G, either |W,,| = AW, ,| or |W, ,| = |W,,|. In this case, we set ODB(G) = A. From
[1], every quasi-distance-balanced graph is triangle-free and the only quasi-distance-
balanced graphs with diameter two are the complete bipartite graphs. Quasi-distance-
balanced lexicographic and Cartesian products are characterised in [1, Theorems 1.4
and 1.5]. All known examples of quasi-distance-balanced graphs are bipartite, so the
following question, which was posed in [1], is still open.

ProBrEm 1.1 [1, Problem 1.1]. Does there exist a nonbipartite quasi-distance-balanced
graph?

Since a graph is bipartite if and only if it contains no odd cycle, Problem 1.1
naturally leads to the investigation of the possible structure of cycles in quasi-distance-
balanced graphs. Edges of a quasi-distance-balanced graph G can be naturally oriented
in the following way: for two adjacent vertices u,v € V(G), we define u — v if and
only if |W,,| = AW, ,|. (See Figure 1 for an example.) Let O(G) be the directed graph
obtained in this way.

LetC =vy,...,v, be acycle of length n in a quasi-DB graph G. Let C* be the set of
indices i € {1, ..., n} for which v; — v, thatis, C* ={i € {1,...,n} | vi = vis1} (here
we identify v, with v; and vy with v,). Similarly, let C~ ={i € {1,...,n} | vis1 = v;}.
(See Figure 2 for an example.)

The main focus of this paper is the investigation of the cycle structure in quasi-
distance-balanced graphs. The main results are as follows.

TueorREM 1.2. Let G be a quasi-DB graph and let C = vy, ...,v, be a cycle in G. Then

D Wl = D Wl

ieC* ieC~
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FiGure 1. Orientation of edges in P30P5.
V2 U3
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C = vivavsvgvsvg, CT = {1,2,3}, C~ = {4,5,6}

Ficure 2. Example of C* and C~ in a quasi-DB graph.

The following result generalises [1, Theorem 1.2], where it was proved that every
quasi-DB graph is triangle-free.

Tueorem 1.3. Let G be a quasi-DB graph and let C = vy, ...,v, be a cycle of length n
inG. Then2 <|C*|<n-2and2<|C7|<n-2.
For bipartite quasi-DB graphs, we have equality between the sizes of C* and C~.

TueoreM 1.4. Let G be a bipartite quasi-DB graph and let C = vy, ..., vy, be a cycle
of length 2n in G. Then |C*| = |C™| = n.

Recall that a bridge in a graph is an edge whose removal increases the number
of connected components of the graph. Quasi-DB graphs admitting a bridge are
characterised in the following theorem.

THEOREM 1.5. The only connected quasi-DB graphs having a bridge are stars.

This paper is organised as follows. In Section 2, we develop some important tools
and obtain results about partitions of the vertex set defined by distance from a given
closed walk in a graph (see Theorem 2.5). In Section 3, we prove Theorems 1.2, 1.3
and 1.4. In Section 4, we prove Theorem 1.5.
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2. Preliminaries

In this section, we develop some important tools that will be useful later on. We
first need to introduce some terminology.

DermviTion 2.1. Let G be a graph and let C = vy, vy, ..., v, vy be a walk of length n
in G. Define a mapping ¢¢ : V(G) — Z" by

wc(v) =(x1,...,x,), wherex; =dg(v,vii1) —dg(v,v;) forie{l,..., n}.
Forie{l,...,n},let A* = {(x1,...,x,) € (1,0, 1}" | x; = =1}.

For any walk C in a graph G and any vertex v € V(G), we have ¢c(v) € {-1,0, 1}"
and hence the following observation.

Ogservarion 2.2. Let G be a graph and let C = vy, vy, ..., v, v, be a walk of length n
in G. The set {ga&1 ((x1y e x)) | (X1, ., %) € {=1,0, 1}"} is a partition of V(G).

The next lemma gives a connection between the sets W, and the mapping ¢¢.

Lemma 2.3. Let G be a graph and let C = v, Vv, ..., V,, Vur1 be a walk of length n in
G. Then'W,,,, = goEI(A;r) and W, ,, = QDEI (A7) foreveryi€fl,...,n}

Proor. Let v € V(G). Suppose first that ve W, . ,. Then d(v,v;) <d(, vis1).
Moreover, since v;v;1 € E(G), it follows that d(v,viy1) = d(v,v;) + 1. Therefore,
d(v,viz1) —d(v,v;) = 1 and hence ¢c(v) € A]. Conversely, let v be a vertex such that
¢c(v) € Af. By the definition of the mapping ¢, it follows that d(v, viy1) —d(v,v;) = 1
and hence v € W, ... This proves that W, ,,., = ¢! (A]). Similarly, W,,,, ,, = ¢z (A}).

O

Lemmva 2.4. Let G be a graph and let C = v, vy, ..., Vy, Vuy be a walk of length n in
G. Letv € V(G) and let oc(v) = (x1,...,%,). Then 3\, x; = d(v, vyi1) — d(v,v1).

Proor. By the definition of the mapping ¢, it follows that x; = d(v, vi+1) — d(v, v;).

Hence, Z:‘l:l Xi = Z?:](d(v9 Vi+l) - d(V, V,’)) = d(V, Vn+1) - d(V, V]). O
THEOREM 2.5. Let vy, ..., V,, v be a closed walk in a graph G. Then
n n
Z |WV,',VI'+]| = Z |WV,'+|,V,'|'
i=1 i=1
Proor. Let C =vy,...,v,, v; be a closed walk in G and let v be an arbitrary vertex
of G. Let ¢c(v) = (x1, ..., x,). Suppose that v contributes k to the sum Y7, |W,, .., |,

that is, there exist k indices i € {1, ...,n} such thatv € W,,,..,. Lemma 2.3 implies that
there are exactly k coordinates of ¢c(v) equal to 1. By Lemma 2.4, it follows that
2y x; = 0. Since x; € {~1,0, 1}, there are also exactly k coordinates of ¢c(v) equal
to —1. Therefore, v contributes & to the sum )., [W,,., ,,|. Since this is true for every
v € V(G), the result follows. O
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3. Cycles in quasi-distance-balanced graphs

Let G be a quasi-DB graph with QDB(G) = A > 1. As explained in the introduction,
there is a natural orientation of the edges of G defined by u — v if and only if
Wyl = AW, ,|. Again, from the introduction, for a cycle C = vy, ...,v,, we defined
C* = {l € {1,...,]1} | Vi — VH]} and C~ = {l € {1,...,”} | Vigl — Vl'}, where Vp+l = V1
and vy = v,.

Proor oF THeorEM 1.2. It is clear that C* N C™ =0 and C*UC™ ={l,...,n}. By

Theorem 2.5,
Z |in,vi+1| + Z |Wv;,vi+1| = Z IWVi+laVi| + Z |WVi+1aVi|

ieC* ieC~ ieC* ieC~
and consequently

D W = D Wal = D Wl = > Wi (3.1)

ieC* ieC- ieC ieC-

By the definition of the sets C* and C~,
Wo, vl = AW, 0l (forallie CY), (3.2)
Wy, vl = AW,  (forallieC7). (3.3)

By combining (3.2) and (3.3), it is easy to see that

D Wl = 2 Wod = A D Woil = 3 Wopnal ) (3.4)

ieCt ieC~ ieC* ieC~
The result now follows from (3.1), (3.4) and the fact that 1 > 1. ]

Proor oF Taeorem 1.3. Suppose first that |C~| = 0. Then it is clear that C* = {1,...,n}
and that ;- [W,,, ] =0. By Theorem 1.2, } ¢+ [W,,,. | =0. However, since
vi € W,,..,, it follows that [W,,,. | > 1 for every i € {1,...,n}, which contradicts the
fact that };cc+ Wy, ,,| = 0. Thus, |C7| > 1.
Suppose now that |C~| = 1. Without loss of generality, we may assume that C~ = {n}
and C* ={1,...,n— 1}. We claim that
n—1
D Wl = Wy, > 0. (3.5)
i=1

We are first going to prove that

n—1
WVlsVn - U in»Vm .
i=1

Letve W, ,, and oc(v) = (x1,...,x,). By Lemma 2.3, x,, = —1 and, by Lemma 2.4,
>, x;=0. Since x; € {-1,0,1} and x, = —1, there exists je {l,...,n— 1} such
that x; = 1. By Lemma 2.3, v; € W,, Therefore, W,,,, € U Wi,..,,. Now
observe thatv,_; € W, ., andv,_; ¢ W,,,, . This proves that W, , is a proper subset
of U;’;ll Wi, v..,» Which gives (3.5). However, (3.5) contradicts Theorem 1.2. Thus,
|C~| = 2 and similarly [C*| > 2. O

Vil ®
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CoroLLARY 3.1. Let G be a quasi-DB graph and let C = vy, vy, V3, v4 be a 4-cycle in G.
Then |C*|=|C7|=2.

We now show that in a bipartite quasi-DB graph, |C*| = |C~| for every cycle C.

Proor or THEOREM 1.4. Let G be a bipartite quasi-DB graph. Recall that for any edge
uv in G, the sets W,,, and W, form a partition of V(G). Hence, there exists some
constant M with |V(G)|/2 < M < |V(G)| such that

Wopiil = M, (W, =IVG) =M (forallieC")
and

Wywin =IVGI =M, W, w|=M (forallieC).
By Theorem 2.5,

IC*|- M +|C7|-(IV(G)| - M) =|C*|- (VG| - M) +|C"| - M,
which implies that
2(CTI=ICTD-M =(C*| = |C7] - [V(G)I.

If |C*| - |C~| # 0, then M = |V(G)|/2, which is a contradiction. Thus, |C*| = |C~|. O

Remark 3.2. Since all known examples of quasi-DB graphs are bipartite, it follows
that in all known quasi-DB graphs, |C*| = |C~| for every cycle C.

We now consider the existence of cycles of length 5 in quasi-DB graphs. A 5-cycle
Vi, V2, V3, V4, Vs In a graph G is said to be central if every vertex in G is at distance
at most 2 from every vertex on the 5-cycle, that is, d(v,v;) <2 for all i € {1,2,3,4,5}
and for all v € V(G). The following result shows that there is no central 5-cycle in a
quasi-DB graph.

Prorosition 3.3. Let G be a graph having a central 5-cycle. Then G is not quasi-DB.

Proor. Suppose on the contrary that G is quasi-DB and that C = vy, vy, v3, v4, V5
induces a central 5-cycle in G. We claim that W, , \{viz2} = W, ..., \{vi} for every
i€f{l,2,3,4,5}). LetveW,, ,\via). If v=rv, then clearly ve W, ,.,\{vi}. If
v # vi41, then since C is a central 5-cycle in G, it follows that d(v,v;.1) = 1. Since G
is triangle-free by [1, Theorem 1.2], it follows that d(v, v;) = d(v, viz2) = 2. It is now
clear that ve W, .., \{vi}, which proves that W, , \{vi2} € W, v, \{vi}. It is easy
to see that the reverse inclusion also holds. It is now clear that

(Woiwid = 1Wo vl (forallie{1,2,3,4,5)). (3.6)

Since G is quasi-DB, |W, .. | = A%|W,,, .|, where e; = £1. By multiplying these
equalities and using (3.6),

i+15Vi

5 5
l_[ |Wv,-,v,-+]| — /le]+ez+eg+e4+65 . l_[ |sz_’v’_+l |
i=1 i=1
Since |W,,,,,,| = 1 for each i € {1,2,3,4,5}, it follows that A¢1+e2*¢3*¢*¢s = 1 But this
is impossible, since A > 1 and e; + e, + e3 + ¢4 + €5 # 0. |

ProBLEM 3.4. Does there exist a quasi-DB graph admitting a 5-cycle?
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4. Bridges in quasi-DB graphs

For a graph G, the minimum degree of G, denoted by §(G), is the minimum degree
of vertices in G. The following lemma characterises quasi-DB graphs with ¢ = 1.

Lemma 4.1. Let G be a connected quasi-DB graph. If 6(G) = 1, then G is isomorphic
to a star.

Proor. Let G be a connected quasi-DB graph and let u be a vertex of degree 1 in G. Let
v be the unique neighbour of u. It is easy to see that |W,,| =1 and |W, | = |V(G)| - 1,
which implies that QDB(G) = |[V(G)| — 1. Let w be a neighbour of v different from
u. Since |W,,,| = 2, it follows that |W,,,| = |V(G)| — 1 and |W,,,| = 1. This shows that
every neighbour of v is a leaf in G and hence G is isomorphic to a star. O

We are now going to characterise quasi-DB graphs admitting a bridge. Recall that
a bridge (or cut edge) in a graph G is an edge whose removal increases the number of
connected components of G.

Proor or THEOREM 1.5. Let G be a connected quasi-DB graph and let viv, be a
bridge in G. Let A = OQDB(G). For i € {1,2}, let G; be the component containing
v; after removing the bridge viv,. We assume, without loss of generality, that
V(G| = [V(Gy)l. Itis clear that WS = V(Gy) and WS | = V(G»). It follows that
A =|V(G)|/IV(Gy)|. If V(Gy) = {v,}, then 6(G) =1 and hence by Lemma 4.1 it
follows that G is isomorphic to a star. Let x € V(G,)\{v,}. It is now easy to see that
IWg’XI > |V(Gy)| + 1 and that IWEVZI < |V(G,)| — 1. It is also clear that |WVC§,X| > IWXG,V2 ,
implying that [WS | = WY |, that is,

_ WS VGDI+T VG _
WS~ VGI=1 7 VGl ~ ™

which is a contradiction, showing that a quasi-DB graph with a bridge is isomorphic
to a star. ]

The next natural question is the characterisation of quasi-DB graphs with a cut
vertex. As shown in [1, Proposition 3.4], there are infinitely many examples of such
graphs. The examples constructed in [1, Proposition 3.4] are formed from bipartite
DB graphs with the same number of vertices, glued along a vertex. All the graphs
constructed in this way are bipartite. We conclude with the following problem.

ProBLEM 4.2. Characterise quasi-DB graphs having a cut vertex.
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