
Bull. Aust. Math. Soc. 97 (2018), 177–184
doi:10.1017/S000497271700096X

ON SOME PROPERTIES OF QUASI-DISTANCE-BALANCED
GRAPHS

ADEMIR HUJDUROVIĆ
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Abstract

For an edge uv in a graph G, WG
u,v denotes the set of all vertices of G that are closer to u than to v. A graph

G is said to be quasi-distance-balanced if there exists a constant λ > 1 such that |WG
u,v| = λ±1|WG

v,u| for
every pair of adjacent vertices u and v. The existence of nonbipartite quasi-distance-balanced graphs is
an open problem. In this paper we investigate the possible structure of cycles in quasi-distance-balanced
graphs and generalise the previously known result that every quasi-distance-balanced graph is triangle-
free. We also prove that a connected quasi-distance-balanced graph admitting a bridge is isomorphic to a
star. Several open problems are posed.

2010 Mathematics subject classification: primary 05C12.

Keywords and phrases: distance-balanced graphs, quasi-distance-balanced graphs, bipartite graphs,
bridge.

1. Introduction

Let G be a finite, undirected, connected graph with diameter d and let V(G) and E(G)
be the vertex set and the edge set of G, respectively. For u ∈ V(G), let NG(u) denote
the set of neighbours of u in G. For u, v ∈ V(G), let dG(u, v) denote the minimal path-
length distance between u and v. When the graph G is clear from the context, we will
simply write d(u, v). For a pair of adjacent vertices u, v of G, define the set WG

u,v by

WG
u,v = {x ∈ V(G) | d(x, u) < d(x, v)}.

If the graph G is clear from the context, we write simply Wu,v. Observe that for a
connected bipartite graph G, the sets Wu,v and Wv,u form a partition of its vertex set.
The sets Wu,v and Wv,u are important in metric graph theory.

A subgraph G of a hypercube H that preserves distances, that is, the distance
between any two vertices in G is the same as the distance between those vertices in H,
is called a partial cube. A set of vertices S ⊆ V(G) of a graph G is convex if, for any
two points a, b ∈ S , all the points on any shortest path between a and b are contained
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in S . Djoković [4] proved that a connected bipartite graph is a partial cube if and only
if the sets Wu,v and Wv,u are convex for every edge uv of G. These sets also occur in
chemical graph theory, where the Szeged index of a graph G, introduced by Gutman
in [5], is defined as Sz(G) =

∑
uv∈E(G) |Wu,v| · |Wv,u|.

A graph G is called distance-balanced (in short, DB) if the sets Wu,v and Wv,u

are of the same size for arbitrary pairs of adjacent vertices u and v. Graphs having
this property were first studied by Handa [6], who considered distance-balanced
partial cubes. The term itself was introduced by Jerebic et al. [8], who gave some
basic properties and characterised Cartesian and lexicographic products of distance-
balanced graphs. Kutnar et al. [9] investigated this property for graphs having a certain
type of symmetry and, among other results, proved that every vertex-transitive graph
is distance-balanced. The problem of characterising distance-balanced graphs in the
family of generalised Petersen graphs was studied in [10, 13]. For more results on this
and related concepts, see [2, 3, 7, 11, 12].

Quasi-distance-balanced graphs, introduced by Abedi et al. in [1], generalise the
concept of distance-balanced graphs. A graph G is quasi-distance-balanced (in short,
quasi-DB) if there exists a positive rational number λ > 1 such that, for any edge uv
of G, either |Wu,v| = λ|Wv,u| or |Wv,u| = λ|Wu,v|. In this case, we set QDB(G) = λ. From
[1], every quasi-distance-balanced graph is triangle-free and the only quasi-distance-
balanced graphs with diameter two are the complete bipartite graphs. Quasi-distance-
balanced lexicographic and Cartesian products are characterised in [1, Theorems 1.4
and 1.5]. All known examples of quasi-distance-balanced graphs are bipartite, so the
following question, which was posed in [1], is still open.

Problem 1.1 [1, Problem 1.1]. Does there exist a nonbipartite quasi-distance-balanced
graph?

Since a graph is bipartite if and only if it contains no odd cycle, Problem 1.1
naturally leads to the investigation of the possible structure of cycles in quasi-distance-
balanced graphs. Edges of a quasi-distance-balanced graph G can be naturally oriented
in the following way: for two adjacent vertices u, v ∈ V(G), we define u→ v if and
only if |Wu,v| = λ|Wv,u|. (See Figure 1 for an example.) Let Q(G) be the directed graph
obtained in this way.

Let C = v1, . . . , vn be a cycle of length n in a quasi-DB graph G. Let C+ be the set of
indices i ∈ {1, . . . , n} for which vi → vi+1, that is, C+ = {i ∈ {1, . . . , n} | vi → vi+1} (here
we identify vn+1 with v1 and v0 with vn). Similarly, let C− = {i ∈ {1, . . . , n} | vi+1 → vi}.
(See Figure 2 for an example.)

The main focus of this paper is the investigation of the cycle structure in quasi-
distance-balanced graphs. The main results are as follows.

Theorem 1.2. Let G be a quasi-DB graph and let C = v1, . . . , vn be a cycle in G. Then∑
i∈C+

|Wvi,vi+1 | =
∑
i∈C−
|Wvi+1,vi |.
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Figure 1. Orientation of edges in P3�P3.

Figure 2. Example of C+ and C− in a quasi-DB graph.

The following result generalises [1, Theorem 1.2], where it was proved that every
quasi-DB graph is triangle-free.

Theorem 1.3. Let G be a quasi-DB graph and let C = v1, . . . , vn be a cycle of length n
in G. Then 2 ≤ |C+| ≤ n − 2 and 2 ≤ |C−| ≤ n − 2.

For bipartite quasi-DB graphs, we have equality between the sizes of C+ and C−.

Theorem 1.4. Let G be a bipartite quasi-DB graph and let C = v1, . . . , v2n be a cycle
of length 2n in G. Then |C+| = |C−| = n.

Recall that a bridge in a graph is an edge whose removal increases the number
of connected components of the graph. Quasi-DB graphs admitting a bridge are
characterised in the following theorem.

Theorem 1.5. The only connected quasi-DB graphs having a bridge are stars.

This paper is organised as follows. In Section 2, we develop some important tools
and obtain results about partitions of the vertex set defined by distance from a given
closed walk in a graph (see Theorem 2.5). In Section 3, we prove Theorems 1.2, 1.3
and 1.4. In Section 4, we prove Theorem 1.5.
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2. Preliminaries

In this section, we develop some important tools that will be useful later on. We
first need to introduce some terminology.

Definition 2.1. Let G be a graph and let C = v1, v2, . . . , vn, vn+1 be a walk of length n
in G. Define a mapping ϕC : V(G)→ Zn by

ϕC(v) = (x1, . . . , xn), where xi = dG(v, vi+1) − dG(v, vi) for i ∈ {1, . . . , n}.

For i ∈ {1, . . . , n}, let A±i = {(x1, . . . , xn) ∈ {−1, 0, 1}n | xi = ±1}.

For any walk C in a graph G and any vertex v ∈ V(G), we have ϕC(v) ∈ {−1, 0, 1}n

and hence the following observation.

Observation 2.2. Let G be a graph and let C = v1, v2, . . . , vn, vn+1 be a walk of length n
in G. The set {ϕ−1

C ((x1, . . . , xn)) | (x1, . . . , xn) ∈ {−1, 0, 1}n} is a partition of V(G).

The next lemma gives a connection between the sets Wuv and the mapping ϕC .

Lemma 2.3. Let G be a graph and let C = v1, v2, . . . , vn, vn+1 be a walk of length n in
G. Then Wvi,vi+1 = ϕ−1

C (A+
i ) and Wvi+1,vi = ϕ−1

C (A−i ) for every i ∈ {1, . . . , n}.

Proof. Let v ∈ V(G). Suppose first that v ∈ Wvi,vi+1 . Then d(v, vi) < d(v, vi+1).
Moreover, since vivi+1 ∈ E(G), it follows that d(v, vi+1) = d(v, vi) + 1. Therefore,
d(v, vi+1) − d(v, vi) = 1 and hence ϕC(v) ∈ A+

i . Conversely, let v be a vertex such that
ϕC(v) ∈ A+

i . By the definition of the mapping ϕC , it follows that d(v, vi+1) − d(v, vi) = 1
and hence v ∈Wvi,vi+1 . This proves that Wvi,vi+1 = ϕ−1

C (A+
i ). Similarly, Wvi+1,vi = ϕ−1

C (A−i ).
�

Lemma 2.4. Let G be a graph and let C = v1, v2, . . . , vn, vn+1 be a walk of length n in
G. Let v ∈ V(G) and let ϕC(v) = (x1, . . . , xn). Then

∑n
i=1 xi = d(v, vn+1) − d(v, v1).

Proof. By the definition of the mapping ϕ, it follows that xi = d(v, vi+1) − d(v, vi).
Hence,

∑n
i=1 xi =

∑n
i=1(d(v, vi+1) − d(v, vi)) = d(v, vn+1) − d(v, v1). �

Theorem 2.5. Let v1, . . . , vn, v1 be a closed walk in a graph G. Then

n∑
i=1

|Wvi,vi+1 | =

n∑
i=1

|Wvi+1,vi |.

Proof. Let C = v1, . . . , vn, v1 be a closed walk in G and let v be an arbitrary vertex
of G. Let ϕC(v) = (x1, . . . , xn). Suppose that v contributes k to the sum

∑n
i=1 |Wvi,vi+1 |,

that is, there exist k indices i ∈ {1, . . . , n} such that v ∈Wvi,vi+1 . Lemma 2.3 implies that
there are exactly k coordinates of ϕC(v) equal to 1. By Lemma 2.4, it follows that∑n

i=1 xi = 0. Since xi ∈ {−1, 0, 1}, there are also exactly k coordinates of ϕC(v) equal
to −1. Therefore, v contributes k to the sum

∑n
i=1 |Wvi+1,vi |. Since this is true for every

v ∈ V(G), the result follows. �
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3. Cycles in quasi-distance-balanced graphs
Let G be a quasi-DB graph with QDB(G) = λ > 1. As explained in the introduction,

there is a natural orientation of the edges of G defined by u→ v if and only if
|Wu,v| = λ|Wv,u|. Again, from the introduction, for a cycle C = v1, . . . , vn, we defined
C+ = {i ∈ {1, . . . , n} | vi → vi+1} and C− = {i ∈ {1, . . . , n} | vi+1 → vi}, where vn+1 = v1
and v0 = vn.

Proof of Theorem 1.2. It is clear that C+ ∩ C− = ∅ and C+ ∪ C− = {1, . . . , n}. By
Theorem 2.5, ∑

i∈C+

|Wvi,vi+1 | +
∑
i∈C−
|Wvi,vi+1 | =

∑
i∈C+

|Wvi+1,vi | +
∑
i∈C−
|Wvi+1,vi |

and consequently∑
i∈C+

|Wvi,vi+1 | −
∑
i∈C−
|Wvi+1,vi | =

∑
i∈C+

|Wvi+1,vi | −
∑
i∈C−
|Wvi,vi+1 |. (3.1)

By the definition of the sets C+ and C−,

|Wvi,vi+1 |= λ|Wvi+1,vi | (for all i ∈ C+), (3.2)
|Wvi+1,vi |= λ|Wvi,vi+1 | (for all i ∈ C−). (3.3)

By combining (3.2) and (3.3), it is easy to see that∑
i∈C+

|Wvi,vi+1 | −
∑
i∈C−
|Wvi+1,vi | = λ

( ∑
i∈C+

|Wvi+1,vi | −
∑
i∈C−
|Wvi,vi+1 |

)
. (3.4)

The result now follows from (3.1), (3.4) and the fact that λ > 1. �

Proof of Theorem 1.3. Suppose first that |C−| = 0. Then it is clear that C+ = {1, . . . , n}
and that

∑
i∈C− |Wvi+1,vi | = 0. By Theorem 1.2,

∑
i∈C+ |Wvi,vi+1 | = 0. However, since

vi ∈ Wvi,vi+1 , it follows that |Wvi,vi+1 | ≥ 1 for every i ∈ {1, . . . , n}, which contradicts the
fact that

∑
i∈C+ |Wvi,vi+1 | = 0. Thus, |C−| ≥ 1.

Suppose now that |C−| = 1. Without loss of generality, we may assume that C− = {n}
and C+ = {1, . . . , n − 1}. We claim that

n−1∑
i=1

|Wvi,vi+1 | − |Wv1,vn | > 0. (3.5)

We are first going to prove that

Wv1,vn ⊆

n−1⋃
i=1

Wvi,vi+1 .

Let v ∈ Wv1,vn and ϕC(v) = (x1, . . . , xn). By Lemma 2.3, xn = −1 and, by Lemma 2.4,∑n
i=1 xi = 0. Since xi ∈ {−1, 0, 1} and xn = −1, there exists j ∈ {1, . . . , n − 1} such

that x j = 1. By Lemma 2.3, v j ∈ Wv j,v j+1 . Therefore, Wv1,vn ⊆
⋃n−1

i=1 Wvi,vi+1 . Now
observe that vn−1 ∈ Wvn−1,vn and vn−1 < Wv1,vn . This proves that Wv1,vn is a proper subset
of

⋃n−1
i=1 Wvi,vi+1 , which gives (3.5). However, (3.5) contradicts Theorem 1.2. Thus,

|C−| ≥ 2 and similarly |C+| ≥ 2. �
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Corollary 3.1. Let G be a quasi-DB graph and let C = v1, v2, v3, v4 be a 4-cycle in G.
Then |C+| = |C−| = 2.

We now show that in a bipartite quasi-DB graph, |C+| = |C−| for every cycle C.

Proof of Theorem 1.4. Let G be a bipartite quasi-DB graph. Recall that for any edge
uv in G, the sets Wu,v and Wv,u form a partition of V(G). Hence, there exists some
constant M with |V(G)|/2 < M < |V(G)| such that

|Wvi,vi+1 | = M, |Wvi+1,vi | = |V(G)| − M (for all i ∈ C+)

and
|Wvi,vi+1 | = |V(G)| − M, |Wvi+1,vi | = M (for all i ∈ C−).

By Theorem 2.5,

|C+| · M + |C−| · (|V(G)| − M) = |C+| · (|V(G)| − M) + |C−| · M,

which implies that

2(|C+| − |C−|) · M = (|C+| − |C−|) · |V(G)|.

If |C+| − |C−| , 0, then M = |V(G)|/2, which is a contradiction. Thus, |C+| = |C−|. �

Remark 3.2. Since all known examples of quasi-DB graphs are bipartite, it follows
that in all known quasi-DB graphs, |C+| = |C−| for every cycle C.

We now consider the existence of cycles of length 5 in quasi-DB graphs. A 5-cycle
v1, v2, v3, v4, v5 in a graph G is said to be central if every vertex in G is at distance
at most 2 from every vertex on the 5-cycle, that is, d(v, vi) ≤ 2 for all i ∈ {1, 2, 3, 4, 5}
and for all v ∈ V(G). The following result shows that there is no central 5-cycle in a
quasi-DB graph.

Proposition 3.3. Let G be a graph having a central 5-cycle. Then G is not quasi-DB.

Proof. Suppose on the contrary that G is quasi-DB and that C = v1, v2, v3, v4, v5
induces a central 5-cycle in G. We claim that Wvi+1,vi\{vi+2} = Wvi+1,vi+2\{vi} for every
i ∈ {1, 2, 3, 4, 5}. Let v ∈ Wvi+1,vi\{vi+2}. If v = vi+1, then clearly v ∈ Wvi+1,vi+2\{vi}. If
v , vi+1, then since C is a central 5-cycle in G, it follows that d(v, vi+1) = 1. Since G
is triangle-free by [1, Theorem 1.2], it follows that d(v, vi) = d(v, vi+2) = 2. It is now
clear that v ∈ Wvi+1,vi+2\{vi}, which proves that Wvi+1,vi\{vi+2} ⊆ Wvi+1,vi+2\{vi}. It is easy
to see that the reverse inclusion also holds. It is now clear that

|Wvi+1,vi | = |Wvi+1,vi+2 | (for all i ∈ {1, 2, 3, 4, 5}). (3.6)

Since G is quasi-DB, |Wvi,vi+1 | = λei |Wvi+1,vi |, where ei = ±1. By multiplying these
equalities and using (3.6),

5∏
i=1

|Wvi,vi+1 | = λe1+e2+e3+e4+e5 ·

5∏
i=1

|Wvi,vi+1 |.

Since |Wvi,vi+1 | ≥ 1 for each i ∈ {1, 2, 3, 4, 5}, it follows that λe1+e2+e3+e4+e5 = 1. But this
is impossible, since λ > 1 and e1 + e2 + e3 + e4 + e5 , 0. �

Problem 3.4. Does there exist a quasi-DB graph admitting a 5-cycle?
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4. Bridges in quasi-DB graphs

For a graph G, the minimum degree of G, denoted by δ(G), is the minimum degree
of vertices in G. The following lemma characterises quasi-DB graphs with δ = 1.

Lemma 4.1. Let G be a connected quasi-DB graph. If δ(G) = 1, then G is isomorphic
to a star.

Proof. Let G be a connected quasi-DB graph and let u be a vertex of degree 1 in G. Let
v be the unique neighbour of u. It is easy to see that |Wu,v| = 1 and |Wv,u| = |V(G)| − 1,
which implies that QDB(G) = |V(G)| − 1. Let w be a neighbour of v different from
u. Since |Wv,w| ≥ 2, it follows that |Wv,w| = |V(G)| − 1 and |Ww,v| = 1. This shows that
every neighbour of v is a leaf in G and hence G is isomorphic to a star. �

We are now going to characterise quasi-DB graphs admitting a bridge. Recall that
a bridge (or cut edge) in a graph G is an edge whose removal increases the number of
connected components of G.

Proof of Theorem 1.5. Let G be a connected quasi-DB graph and let v1v2 be a
bridge in G. Let λ = QDB(G). For i ∈ {1, 2}, let Gi be the component containing
vi after removing the bridge v1v2. We assume, without loss of generality, that
|V(G1)| ≥ |V(G2)|. It is clear that WG

v1,v2
= V(G1) and WG

v2,v1
= V(G2). It follows that

λ = |V(G1)|/|V(G2)|. If V(G2) = {v2}, then δ(G) = 1 and hence by Lemma 4.1 it
follows that G is isomorphic to a star. Let x ∈ V(G2)\{v2}. It is now easy to see that
|WG

v2,x| ≥ |V(G1)| + 1 and that |WG
x,v2
| ≤ |V(G2)| − 1. It is also clear that |WG

v2,x| ≥ |W
G
x,v2
|,

implying that |WG
v2,x| = λ|WG

x,v2
|, that is,

λ =
|WG

v2,x|

|WG
x,v2 |
≥
|V(G1)| + 1
|V(G2)| − 1

>
|V(G1)|
|V(G2)|

= λ,

which is a contradiction, showing that a quasi-DB graph with a bridge is isomorphic
to a star. �

The next natural question is the characterisation of quasi-DB graphs with a cut
vertex. As shown in [1, Proposition 3.4], there are infinitely many examples of such
graphs. The examples constructed in [1, Proposition 3.4] are formed from bipartite
DB graphs with the same number of vertices, glued along a vertex. All the graphs
constructed in this way are bipartite. We conclude with the following problem.

Problem 4.2. Characterise quasi-DB graphs having a cut vertex.
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