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This study identifies clusters of certified organic operations in the United States and
determines the form of spatial autocorrelation present in the operations’
distribution. We identify large hot spots of organic operations along the West
Coast and in the Midwest and Northeast with some variation based on how we
define an organic operation. Further analyses suggest that organic operations do
not necessarily follow the same geographic patterns as nonorganic agricultural
and general business establishments. Spatial autoregressive models confirm the
presence of significant spatial dependence in the distribution of certified organic
operations for a number of different definitions of an organic operation.
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Due to a wide variety of natural and economic factors, agriculture is a highly
spatial industry. Existing analyses often reveal the presence of both spatial
autocorrelation, which reflects the concept that agricultural processes are
correlated over distance or across geographic boundaries, and hot spots,
which are clustered areas with positively correlated high-attribute values
(discussed further later). Roe, Irwin, and Sharp (2002) found that spatial lags
were present in data relating to the hog production industry. Schmit and Hall
(2013) addressed the presence and impact of food industry clusters while
Stewart et al. (2009) analyzed clusters specifically in Tennessee’s agriculture
industry. Grogan and Goodhue (2012) used spatial analysis and found
evidence that citrus producers chose pest control methods similar to those of
nearby producers. Identification of hot spots or industry clusters is important
because research often shows that they can be advantageous for economic
development (Morrison Paul and Seigel 1999, Feser 1998, Chevassus-Lozza
and Galliano 2003, Cainelli 2008, Glaeser et al. 1992, Greenstone, Hornbeck,
and Moretti 2010, Barkley and Henry 1997, Duranton and Puga 2004, Gibbs
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and Bernat 1997, Gabe 2004, 2008, Graham and Kim 2008, Rocha and
Sternberg 2005, Feser, Renski, and Goldstein 2008).
No theoretical reason has been found to suggest that hot spots and spatial

correlation in organic agriculture, which we define as including organic
production and handling, should be similar to agriculture in general. As a
special case of agriculture, organic operations display different characteristics
from those of conventional agricultural operations, including more restricted
production methods (National Organic Program 2015), higher input costs
(Economic Research Service 2012), need for more specialized labor (Klonsky
and Tourte 1998), and more-frequent use of their own resources (Argiles and
Brown 2010, Schmidtner et al. 2012). The demand side of the organic food
market is different as well. Consumers of organic tend to have stronger
concerns about healthiness, the environment, food safety, animal welfare, and
local economies (Hughner et al. 2007). These factors imply that the needs of
organic operations are different and that such operations will not necessarily
gravitate only to areas where agricultural establishments are prevalent.
The organic food industry is growing at a much faster rate than the

conventional food industry; retail sales of organic food increased from $11
billion in 2004 to $27 billion in 2012 (Osteen, Gottlieb, and Vasavada 2012,
Onken, Bernard, and Pesek 2011), and the amount of land devoted to organic
food crops doubled between 1997 and 2005 (Dimitri and Oberholtzer 2009).
These trends have led to concern that some sectors of the organic food
industry (particularly corn and soybeans, which are important inputs in
production of organic milk and dairy products) may not be growing at a
sufficiently fast pace to keep up with the increasing demand (Dimitri and
Oberholtzer 2009).
Because of the differences between organic and conventional agriculture and

the growth of specific sectors of the organic industry, it is important to analyze
and better understand where organic operations are thriving and where they
are not. More specifically, understanding spatial relationships in the
concentration of organic operations and how organic and nonorganic spatial
relationships potentially differ may prove important as policymakers and
industry participants plan for continued growth. This type of spatial analysis
and identification of organic hot spots or cold spots is also an important first
step in further research on the organic sector. Once the hot and cold spots
are identified, that information can be used to answer follow-up questions
relating to their formation and the economic impact of organic hot spots. This
type of spatial analysis can therefore be valuable to governmental and private
organizations that focus on development of the organic sector and on
regional economic development.
Documenting spatially defined hot spots and spatial correlation in organic

agriculture generally has not been done for U.S. organic agriculture, though
Schmidtner et al. (2012) did for German organic agriculture. A New York
Times article (Fairfield 2009) mentioned clustering in the U.S. organic sector
but did not use spatial methods to identify the clusters, while Eades and
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Brown (2006) used spatial methods to identify clusters but did not identify cold
spots. Neither of these sources analyzed the type of spatial autocorrelation.
Furthermore, to our knowledge, prior research on organic clustering has not
employed a bivariate analysis to compare types of organic operations or
organic clusters to other types of clusters and has not examined whether
(and if so, how) the size and location of organic clusters has changed over time.
This study systematically investigates clustering as it pertains to the U.S.

organic agricultural sector. We first identify clusters of certified organic
operations, analyze how they vary across primary scope (crops, handling, or
livestock), and compare the locations to those of clusters of agricultural
establishments and clusters of all establishments, including those not in
agriculture. To assess if and how the clusters evolved over time, we compare
organic clusters in 2009 and 2013. We then determine the form of spatial
autocorrelation present in the distribution of organic operations by estimating
spatial econometric models. In essence, we address the following questions:
Where are county-level organic hot spots and cold spots? How might the hot
spot and cold spot patterns differ if organic operations are defined more
narrowly by primary scope or operation type? How have organic hot spots and
cold spots evolved in recent years? How do the locations of organic hot spots
and cold spots differ from those of conventional agriculture or establishments
in general? What form does spatial autocorrelation take in the county-level
distribution of certified organic operations?
Participants and observers may have speculated about hot spots, cold spots,

or spatial autocorrelation, but our results provide one of the first efforts to
document them using well-defined spatial statistical methods applied to the
directory of certified organic operations collected by the U.S. Department of
Agriculture’s (USDA’s) National Organic Program. Our cluster analysis of hot
spots and cold spots is set apart from prior studies by its (i) use of a
National Organic Program data set, (ii) analysis of different types of organic
operations, including organic handlers, (iii) side-by-side comparisons and
bivariate analyses of how different types of organic, agricultural, and general
establishment clusters are related, and (iv) analysis of the evolution of
organic clusters over time.
Our research identifies statistically significant hot spots for certified organic

operations in parts of the West Coast, the Midwest, and the Northeast. The
locations of these organic hot spots often do not coincide with hot spots of
conventional agricultural establishments or general establishments. For
example, some areas that contain a relatively small number of general and
agricultural establishments are surrounded by areas with relatively high
numbers of organic operations, and vice versa. We find that the overall
clustering of organic operations remained stable between 20091 and 2013.

1 To our knowledge, National Organic Program lists of organic operations that were certified
and exempt prior to 2009 are not publicly available.
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Our results further suggest the presence of spatial autocorrelation and cross-
county spillovers and that the type and level of spatial correlation and the
geographic distribution of hot spots vary with the definition of organic
operation used. The results generally are robust across different spatial
econometric models.

Background on Cluster Identification and the Organic Food Sector

Much of the research on clusters (e.g., Porter 2003, Goetz, Shields, and Wang
2008) has focused on their identification and the definition of the term
“cluster.” Some studies defined clusters based solely on geographic proximity
of the industries or firms of interest (e.g., Lian et al. 2009, Banasick, Lin, and
Hanham 2009, Barkley and Henry 1997, Eades and Brown 2006), some
solely on economic interaction (e.g., Feser and Bergman 2000), and others on
both geographic proximity and economic interaction (e.g., Greenstone,
Hornbeck, and Moretti 2010, Rocha and Sternberg 2005).
The studies that used geographic proximity employed various mathematical

methods to test for and identify spatial autocorrelation, which measures the
degree to which observations depend on the characteristics of neighbors
(LeSage 1998, Anselin 1999). The Moran’s I and local Moran’s I (LMI) test
statistics, which can both be used to test the null hypothesis of no spatial
autocorrelation, are commonly used (e.g., Lian et al. 2009, Banasick, Lin, and
Hanham 2009, Moons, Brijs, and Wets 2008, Zhang and Lin 2008, Eades and
Brown 2006, Richards, Hamilton, and Patterson 2010, Hatzenbuehler,
Gillespie, and O’Neil 2012, Schmidtner et al. 2012). In a study of organic
agriculture, Schmidtner et al. (2012), for example, used the LMI to identify
hot spots of organic farming in integrated counties in Germany.
In econometric models, spatial autocorrelation can be present in the

dependent variables, the independent variables, and the residuals. Spatial
autocorrelation in the dependent variable (spatial lag) implies that an
observation at one location depends on observations at other locations and,
thus, that variation in the dependent variable is due in part to differences at
neighboring locations. In that case, the covariance of random variables at two
locations is not zero. Spatial autocorrelation in the residuals of a regression
(spatial error or heterogeneity) implies that the relationships vary over space,
which further suggests nonconstant error variances and heteroskedasticity.
Spatial autoregressive models are frequently used (e.g., Schmidtner et al. 2012)
to account for the possibility of spatial lag and spatial error in regressions
(LeSage 1998, Anselin 1999).
Other methods sometimes used to define geographic clusters include the

location quotient, which is a measure of industry concentration (e.g.,
Greenstone, Hornbeck, and Moretti 2010, Feser et al. 2008, Eades and Brown
2006, Rocha and Sternberg 2005); locational Gini coefficients, which are used
to analyze the geographic distribution of employment for a specific industry
in a region (e.g., Barkley and Henry 1997); and the Hirschman-Herfindahl
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Index (HHI), which is a general measure of concentration (Eades and Brown
2006, Lopez et al. 2002). Studies that defined clusters using economic
interaction have typically used data on input-output flows (e.g., Rocha and
Sternberg 2005, Stewart et al. 2009).
The definition chosen for a cluster is important. Jaenicke et al. (2009), for

example, found that the impact of clustering on the output of organic handling
firms varied as the number of firms necessary to constitute a cluster changed.
Rocha and Sternberg (2005) found that the effects of clusters defined by
geographic proximity were different from the effects of clusters defined by
economic interaction.
Some recent research on clustering in the food and agriculture industry has

specifically looked at the organic food sector. Eades and Brown (2006), for
example, found evidence of clustering in organic agriculture, and Schmidtner
et al. (2012) found that agglomeration influenced the spatial distribution of
organic farms in Germany. Naik and Nagadevara (2010), in a study of organic
farming in Karnatka, India, identified economic benefits from clustering, and
Jaenicke et al. (2009), in a study of the United States, found that clustering
positively affected the output (in sales per employee) of organic handling
firms. Using the location quotient to measure concentration, Taus, Ogneva-
Himmelberger, and Rogan (2013) found that spatial dependence was a factor
in the spatial distribution of farms in the United States being converted to
organic agriculture. Hooker and Shanahan (2012) used the Gini coefficient to
measure concentration in the U.S. organic sector and a multiplicative model
to analyze the impact that market access and input variables had on
dispersion of organic producers.

Methodology: Identification of Hot Spots

To identify statistically significant hot spots (defined as counties with positively
correlated, high values for attributes), cold spots (defined as counties with
positively correlated, low values for attributes), and outliers (counties with
negatively correlated attributes), we use the LMI test statistic. Anselin (1995)
provides a clear explanation of the LMI and how it is calculated, and the
ArcGIS website (www.arcgis.com) explains the statistic in the context of the
software. As previously noted, the LMI is used to test the null hypothesis of
no spatial autocorrelation, and it allows one to divide the area of interest into
smaller sections to test for the presence of local spatial autocorrelation. The
LMI is calculated as

Ii ¼ (xi � Xavg)Σ(j≠i)wij(xj � Xavg)

where xi represents the attribute level for section i, Xavg is the mean attribute
level for the entire area, and wij is the weighting value between sections i and
j. In our case, the sections are counties, the entire area is the United States,

Marasteanu and Jaenicke Organic Hot Spots in the United States 489

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
6.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://www.arcgis.com
https://doi.org/10.1017/age.2016.5


and the attribute level for county i is the number of organic operations (and, for
comparison, the number of total agricultural farm establishments and total
general establishments).
Spatial weighting matrices generally are based on contiguity or true distance.

Two commonly used distance-based matrices are row-standardized distance
bands and row-standardized inverse distances. A distance-band matrix
assigns a weight of 1 for two counties that are within a specified threshold
distance of each other and 0 otherwise (LeSage 1998, Anselin 1999). In a
row-standardized matrix, the elements in each row are standardized to sum
to 1. The distance threshold typically is defined as the minimum distance
required for every section (county, in our case) to have at least one neighbor
(GeoDa Center 2013). An inverse-distance matrix uses the inverse of the
distance between two counties as their weight and can be constrained by a
distance band (LeSage 1998, Anselin, 1999). To provide additional insight
and check the robustness of the results, we compare the sets of clusters
generated by using a contiguity weighting matrix and a distance-band
weighting matrix.2

To determine the significance of the LMI, we use a permutation method
implemented in GeoDa software. The observation, or attribute level, in the
county analyzed is held constant and all of the other observations are
assigned a value from a vector of random numbers to relocate them in space,
producing a random spatial distribution. The LMI for the county of interest
is then calculated using the random spatial distribution, and the process is
repeated multiple times using different random number seeds. The p-value is
based on the probability that the actual LMI for the county is equal to the
values calculated during the permutations (GeoDa Center 2013). Unlike z-
score tests for significance (e.g., LeSage 1998, Anselin 1999), this method
does not compute the significance of the LMI analytically, but it has the
advantage of being able to test for the robustness of our results by
comparing the results generated by different seeds and varying the number
of permutations.3

To better compare the distribution of organic operations to the distributions
of agricultural farm establishments and general establishments, we also use the
bivariate LMI test statistic (Anselin, Syabri, and Kho 2006). It is similar to the
univariate LMI but compares the level of an attribute in an area to the level
of a different attribute in neighboring areas (e.g., comparing the number of
organic operations in one area to the number of agricultural farm
establishments in neighboring areas):

2 Cluster maps generated by another program using an inverse-distance weighting matrix
yielded similar results; the hot spots were present in the same general areas and there were
fewer cold spots and outliers.
3 Results when we varied the seeds and number of permutations were similar.
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Ii ¼ (xi � Xavg)Σ(j≠i)wij(yj � Yavg)

where xi is the level of attribute x for section i, Xavg is the mean level of attribute
x for the entire area, yi is the level of attribute y for section i, Yavg is the mean
level of attribute y for the entire area, and wij is the weighting value between
sections i and j.
Under the bivariate LMI, interpretation of the hot spots, cold spots, and

outliers changes slightly. A hot spot in this case indicates that a high level of
an attribute in an area is positively correlated with high levels of another
attribute in neighboring areas. Interpretation of the cold spots and outliers is
similar. The procedure for determining the significance of the test statistic
remains the same.
Our data on certified organic operations come from USDA’s National Organic

Program and are publicly available online. They consist of a list of all certified
organic operations, along with information such as operation name, certifying
agent, primary scope (i.e., handling, crops, and livestock), address, phone
number, and products produced. Approximately 60 percent of the operations
have crops as their primary scope while 28.5 percent have handling, 11.4
percent have livestock, and less than 1 percent have wild crops as their
primary scopes. The data on agricultural operations come from the 2007 U.S.
Census of Agriculture and includes information on agricultural farms. To
facilitate the comparison between organic hot spots and general agricultural
hot spots, we also create a variable for organic production operations (crops
and livestock) only.

Hot Spot and Cold Spot Results

Figure 1 shows the clusters identified in our analysis for certified organic
operations with separate maps of clusters for all organic operations and for
organic production (crops and livestock), crops, handling, and livestock
calculated using the univariate LMI statistic and a queen contiguity matrix
(which considers both shared boundaries and shared points as contiguous).4

We find that the clusters for all organic operations and organic production
are very similar. The largest hot spot for both runs along nearly the entire
West Coast. Another large hot spot is centered in part of Wisconsin and
southeastern Minnesota, and others appear in Maine, New Hampshire,
Vermont, Massachusetts, upstate New York, and southeastern Pennsylvania.
Some relatively small hot spots are found in the Midwest and West. Cold
spots, on the other hand, occur mainly in Southern states and cover many
areas from Texas to Virginia. There are also relatively small cold spots in the

4 Maps generated using a distance-band matrix showed hot spots and cold spots that were
larger but were located in the same general areas and a greater number of outliers.
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West, Midwest, Alaska, and Hawaii. The outliers are scattered throughout the
country.
Hot spots for organic crops and handling are similarly situated, mostly along

the West Coast and in the upper Midwest and parts of the Northeast and New
England. Hot spots for organic livestock, on the other hand, are more isolated
and scattered; the only concentrations are in northern New England and
New York. We find numerous cold spots for organic crops throughout the
South and in parts of the West, Appalachia, and the mid-Atlantic states; a

Figure 1. Organic Hot Spots, Cold Spots, and Outliers Based on Operation
Counts
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smaller number of cold spots for organic handlers; and even fewer cold spots
for livestock producers.
Figure 2 compares hot and cold spots for all organic operations in 2009 and

2013. We find that the distributions are generally the same, indicating that the
organic industry remained relatively stable during those years. One notable
difference is apparent growth of organic operations in southern Florida.
Among all U.S. counties, 26 were hot spots in 2013 but not 2009 and 12
were hot spots in 2009 but not 2013. Similarly, 156 counties were cold spots
in 2013 but not in 2009 and 145 were hot spots in 2009 but not 2013. It is
important to note that some of this variation may be related to our use of a
permutation method to identify hot spots. Because of a lack of data on
organic operations prior to 2009, it is difficult to draw more-general
conclusions about the distribution of organic operations over time.
We next identified hot and cold spots for all agricultural establishments using

U.S. Census of Agriculture data (2007) and the univariate LMI and then used a
bivariate LMI statistic that uses both organic production and agricultural farms
data to generate a different form of hot spots and cold spots. Figure 3.1 shows a
map of clusters of agricultural production. When compared to Figure 1.2,
Figure 3.1 shows that organic production hot spots and general agriculture
hot spots match some but not most of the time, so that organic production
does not necessarily follow the same pattern as conventional production.
Both maps show hot spots along the West Coast and throughout the Midwest.
However, many of the organic hot spots in the northeastern states are not
present for agricultural farming. Some agricultural production hot spots now
appear in Florida, Alabama, Louisiana, Texas, Oklahoma, and Arkansas.5

Figure 2. Organic Operation Hot Spots: 2009 and 2013

5 A potential avenue for future research would be to determine the reasons for these
discrepancies, though the ones in the Southeast likely reflect production of crops such as
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Figure 3.2 provides a more formal comparison of organic production and
general agricultural production. The definitions of hot spots, cold spots, and
outliers are somewhat different because we use the bivariate LMI. We are
particularly interested in areas with high-low spots—counties that have a
relatively large number of general agricultural establishments surrounded
by counties that have a relatively small number of organic production
operations—and in areas with low-high spots—counties that have a relatively
small number of agricultural production establishments surrounded by
counties that have a relatively large number of organic production
operations. Many of the high-low areas are in the South and Southeast with
others scattered around the rest of the country. The low-high areas are in the
Northeast and in the eastern portions of California, Oregon, and Washington.
These results show that organic operations do not necessarily concentrate in
primarily agricultural areas. In future research, it might be interesting to
analyze the factors associated with these discrepancies.
Another aspect of growth in the organic sector is the concern that certain

parts of this sector may not be growing at a sufficiently fast rate. To highlight
this, Figure 4 looks at one specific type of agricultural crop, corn.6 Figure 4.1
shows a map generated by the univariate LMI for operations that sell corn

Figure 3. Hot Spots, Cold Spots, and Outliers of Agricultural Farms

cotton, which are prevalent in the area (Environmental Protection Agency 2014) and are not
typically produced according to organic standards. For example, according to the National
Agricultural Statistics Service (Economic Research Service 2008) only 0.14 percent of cotton
produced in the United States in 2008 was certified as organic.
6 Similar analyses for soybean crops yield very similar results.
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crops. It essentially shows that corn production was concentrated in the
Midwest and almost nowhere else. More interesting, however, is Figure 4.2,
which shows a bivariate analysis of corn to organic crops. Particularly
relevant is the large area of low-high spots in the Midwest—counties that
have a relatively low number of corn production operations but are
surrounded by counties with high numbers of organic crop production
operations. These low-high spots are consistent with concerns about
insufficient expansion of organic corn crops discussed in Dimitri and
Oberholtzer (2009).
Figure 5 presents the results of a similar comparison of organic establishments

versus establishments in general. We use business establishments in general as a
proxy for density of economic activity and proximity to urban areas to determine
whether organic agriculture thrives only in areas with high levels of economic
activity. Comparing Figures 5.1 and 1.1, we find that hot spots of business
establishments generally are less common than hot spots of organic
operations. The largest concentrations of businesses in general are in northern
and southern California, the Southwest, Florida, the Northeast corridor, and a
multi-state area surrounding Chicago. The bivariate LMI analysis (Figure 5.2)
identifies large areas of low-high spots along the West Coast, in parts of the
Midwest, and in the Northeast. Interestingly, these same areas are organic hot
spots (see Figure 1.1).
This result suggests that organic operations do not necessarily gravitate to

areas that have a large number of establishments in general; on the contrary,
we find that organic operations tend to concentrate in areas that have

Figure 4. Hot Spots, Cold Spots, and Outliers of Corn Production

Marasteanu and Jaenicke Organic Hot Spots in the United States 495

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
6.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2016.5


relatively few establishments and would not be characterized by sprawling
development (Brown, Goetz, and Fleming 2012). Some of these areas (parts
of the Midwest and West Coast) coincide with hot spots of agriculture
generally and thus may indicate the presence of large agricultural industries.
Figure 5.2 also shows some isolated high-low spots scattered across the
country, especially in the South.
Figure 6 shows the results of a bivariate LMI analysis for different types of

organic operations. The first panel (6.1) shows the results of a comparison
of handling versus production (crops and livestock) and identifies a number of
areas in California and the Midwest in which there is a high level of organic
production but relatively few handling operations. This pattern could reflect
either a reliance on direct market sales in those areas or that organic
production in those areas is transported to other areas for primary handling.7

The second panel (6.2) compares production of organic crops with handling
and suggests that their spatial distributions are similar with few high-low and
low-high spots. The last two panels compare organic livestock production to
organic crops (6.3) and organic handling (6.4). Many areas scattered
throughout the country have a high level of organic crops or handling and few
organic livestock operations. The only large area that has a high level of
organic livestock and a low level of crops or handling is in the upper Northeast.

Figure 5. Hot Spots, Cold Spots, and Outliers of General Establishments

7 Factors associated with these differences would be interesting to analyze further in future
research.
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These results provide a starting point for further exploration of factors
associated with the presence and formation of hot spots of organic
operations. Several studies of the organic sector have addressed factors that
promote or inhibit its growth. Farmer et al. (2013) and Farmer (2014), for
example, cited challenges and costs associated with sustaining organic
growing methods, the cost of USDA certification and producers’ cynicism
about it, concerns about a lack of benefit from certification (especially among
operators of small farms), and producers’ and consumers’ lack of access to
information as factors that inhibited the growth of organic agriculture in
West Virginia. They also found that farmers who chose to pursue organic
certification tended to be relatively young, had a higher level of education,
split work evenly among men and women, operated relatively small farms,
and had better access to the internet. On a more general scale, Marasteanu
and Jaenicke (forthcoming) discuss several factors potentially leading to
formation of hot spots of organic agricultural in the United States and find

Figure 6. Comparison of Types of Hot Spots based on the Bivariate Local
Moran’s I
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that population density, farm income, the presence of natural amenities, land
values, proximity to urban areas, and support for the Green Party are
significantly associated with the presence of hot spots.
To better place our findings within the context of existing literature and of future

research, Figure 7 shows the relationships between the spatial distribution of
organic operations and nine county-level variables that influence growth. Panels
7.1, 7.2, 7.4, 7.6, and 7.8 display many high-to-high and low-to-low areas and
relatively few low-to-high and high-to-low areas, which indicates that organic
operations tend to cluster in areas with a high average farm income, industry-
entropy index, population density, value of land and buildings per acre, and
receptiveness to organic (proxied by votes for the Green Party), respectively. On
the other hand, panels 7.3 and 7.9 display many low-high and high-low areas
and relatively few high-high and low-low areas, which suggests that organic
operations tend to cluster in areas with shorter distances to highways and
lower urban influence codes, respectively. The pattern is less clear for the score
on the natural amenities scale (7.5) and property taxes (7.7). Further research is
required to fully capture the effect of county-level characteristics on the spatial
distribution of organic operations.

Figure 7. All Organic Operations versus County-level Characteristics
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Methodology and Data: Identification of Spatial Autocorrelation by Type

In the second part of our analysis, we identify types of spatial autocorrelation
present in the distribution of certified organic operations. In regressions,
spatial autocorrelation typically takes two forms: spatial lag and spatial error.
To illustrate this concept, we begin with the general spatial autoregressive
model (LeSage 1998, Anselin 1999):

y ¼ ρW1y þ xβþ μ

where μ¼ λW2μþ ε, ε is distributed N(0,σ2In), and W1 and W2 are weighting
matrices. As explained in Schmidtner et al. (2012), the significance of λ
implies that some spatially correlated explanatory variables are important in
the error specification (spatial error/heterogeneity) and the significance of ρ
implies that some explanatory variables that are correlated with the average
of the dependent variable are important in the model specification (spatial lag).
In this case, y is a matrix of elements representing the number of certified

organic operations as a share of total establishments in a particular county.8 The
elements in the x matrix represent county-level variables related to economic,
demographic, climate, land, and political characteristics. To provide additional
insight and check the robustness of our results, we also define alternative
versions of y in which the elements represent the share of certified organic
operations that have a specific primary scope (crops, handling, and livestock).9

For the weighting matrices W1 and W2, we use a row-standardized inverse-
distance weighting matrix as we believe that is the most appropriate
specification for our data. A common alternative is the contiguity-based
weighting matrix, which would typically assign a weight of 1 to counties that
are either adjacent to each other or have a shared corner and a weight of 0
otherwise (LeSage 1998, Anselin 1999). In our case, however, missing
county-level data causes some observations to be dropped and a contiguity-
based weighting matrix would create “islands” that do not exist. Distance-
band weighting is another common alternative, but a brief analysis suggested
that its results would not be significantly different from those of the inverse-
distance weighting matrix. First, when comparing these two matrices, we find
that they are correlated with a correlation coefficient of 0.6469. We also find
that the correlation coefficient between the spatially lagged dependent
variable with the inverse-distance matrix and the spatially lagged dependent
variable with the distance-band matrix is 0.8688 and that the correlation
coefficient between the spatially lagged matrix of independent variables with

8 For comparison and for consistency with our cluster identification, we also compare results
using the count, rather than the share, of organic operations as the dependent variable.
9 Again, we also compare the counts.
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the inverse-distance matrix and the spatially lagged matrix of independent
variables with the distance-band matrix is 0.7548. These results are consistent
with LeSage and Pace (2010), which noted that estimates from spatial models
are not highly sensitive to the specification of the weighting matrix.
Althoughsimple statistical tests are available for spatial lagandspatial error ina

linear regression, we need to consider potential nonlinearity of our model. Close
to half of the counties in our data set do not have any certified organic operations
so our dependent variable is censored at 0. To account for this censoring, we
consider a Tobit model (Sigelman and Zeng 1999) instead of a linear model
when testing for spatial lags and errors. The Tobit model is defined as

yi
� ¼ x0iβþ εi

where yi* is an unobserved latent variable (Greene 2008). The observed
variable, yi, is determined as follows.

yi ¼ 0 if yi
� � 0

yi ¼ yi
� if yi� > 0

Because we are aware of no established spatial autocorrelation tests for Tobit
models, we estimate a Tobit spatial autoregressive model implemented in
Matlab to determine whether our model exhibits a statistically significant
spatial lag and to examine the statistical significance of the coefficient of the
spatially lagged dependent variable. To test for the presence of spatial error,
we estimate a Tobit spatial error model and look at the statistical significance
of the coefficient for the spatially lagged error term (LeSage 2001).
When choosing an estimator for our spatial Tobit models, we need to take

several details into account. First, according to literature addressing spatial
autoregressive models (e.g., LeSage 1998, Kelejian and Prucha 1998,
Fingleton and Le Gallo 2008), the spatial lag variable is endogenous because
it captures simultaneous spatial interactions (Fingleton and Le Gallo 2008).
Second, the estimator must account for the multivariate normal distribution
of the dependent variable (LeSage and Pace 2009).10 We therefore use a
Gibbs sampling method to estimate a Bayesian spatial Tobit heteroskedastic
model. This method appropriately defines the distributions of all of the
parameters of interest and allows for sampling from multivariate and
unknown distributions. The distribution of a parameter value of interest is
calculated using an algorithm that starts with the initial values of the
parameter and updates those values based on the other parameters and on
draws from the appropriate distribution (formulas provided in LeSage (1998,

10 We thank James LeSage for this note.
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1999b)). To implement this method, we use LeSage’s (2001) spatial
econometric toolbox. To assess the accuracy and convergence of the Gibbs
sampler, we follow LeSage (1999b) and examine estimates of autocorrelation,
Rafterty-Lewis Markov-chain Monte Carlo convergence diagnostics, and
Geweke numerical standard errors, relative numerical efficiency estimates,
and chi-squared tests.
The data on certified organic operations for this analysis again come from

USDA’s National Organic Program. Data for the county-level variables come
from the U.S. Census Bureau (2010) and USDA’s (2007) Census of Agriculture.
Economic theory provides little guidance regarding specific variables to

include in x, which controls for factors other than the number of neighboring
organic operations that may affect the spatial distribution of the organic
operations, and we rely extensively on the current empirical literature to
determine its specification. Table 1 provides descriptions and descriptive
statistics for the variables chosen, and Table 2 presents our rationale for
including each variable, assigns the variables to one of eight categories
(opportunity cost, resources, risk, size, urban sprawl, receptiveness to
organic, market access, and time spent on the farm), and cites the studies on
which inclusion of the variables were based. We assigned the variables to
categories solely to provide justification for their inclusion. We are mainly
interested in testing for the presence of spatially lagged dependent variables
and/or errors and do not attempt to test any hypotheses regarding the
categories in which the independent variables fit. Because some of the
studies of organic operations and clustering have yielded mixed results,
variables sometimes fit into more than one category. For example, a negative
coefficient for land values would fit into opportunity costs while a positive
coefficient for the same variable would fit into resources.
Tomitigatepotential simultaneity and/orendogeneity,weadd time lags formany

of thevariables inx. Specifically,weusedata from2009 foryanddata from2007 for
many of the variables included in x, especially those that represent economic
conditions and could affect the location of organic operations if concurrent data
are used. Any other unaccounted-for factors are captured by the spatial error
term, which captures spatial autocorrelation in the residuals.

Results of the Analysis of Spatial Autocorrelation

As shown in Table 3, all of the spatial autoregressive models (share of all
organic operations and share of organic operations by primary scope) pass
the accuracy and convergence tests and point to the presence of both spatial
lags and spatial error11 (positive and significant spatial lag and spatial error
terms). The positive spatial lag implies that organic operations in general and

11 This also holds for models that used the corresponding count variables.
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Table 1. Summary Statistics and Description

Variable Description Obs. Mean Std. Dev. Min. Max. Source

Organic share Number of certified
organic operations
divided by the total
number of
establishments
(2009)

2,031 0.0091982 0.0298247 0 0.983871a National Organic
Program and U.S.
Census

Organic number Number of certified
organic operations
(2009)

2,031 7.358444 18.97139 0 287 National Organic
Program

Org share-crops Number of certified
organic operations
for which primary
scope is crops
divided by the total
number of
establishments
(2009)

1,958 0.005971 0.020225 0 0.596774 National Organic
Program and U.S.
Census

Org share-handler Number of certified
organic operations
for which primary
scope is handling
divided by the total
number of
establishments
(2009)

1,958 0.00233 0.0112 0 0.387097 National Organic
Program and U.S.
Census
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Org share-live Number of certified
organic operations
for which primary
scope is livestock
divided by the total
number of
establishments
(2009)

1,958 0.000617 0.003336 0 0.08284 National Organic
Program and U.S.
Census

Org number-crops Number of certified
organic operations
for which primary
scope is crops (2009)

1,958 4.42288 12.70936 0 227 National Organic
Program

Org number-handler Number of certified
organic operations
for which primary
scope is handling
(2009)

1,958 1.897344 5.92727 0 133 National Organic
Program

Organic number-live Number of certified
organic operations
for which primary
scope is livestock
(2009)

1,958 0.602656 2.795615 0 44 National Organic
Program

Retail sales-07 Retail sales for human
consumption in 2007
in dollars

2,031 447.389 1051.356 1 17,170 Census of
Agriculture

Ag receipts-07 Receipts from
agricultural services
and custom work in
2007 in dollars

2,031 771.1359 1469.303 1 28,290 Census of
Agriculture
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Table 1. Continued

Variable Description Obs. Mean Std. Dev. Min. Max. Source

Temp workers-07 Number of workers
hired for less than
150 days, 2007

2,031 686.9581 1988.774 38 52,428 Census of
Agriculture

Conserve receipts-07 Receipts from federal
conservation and
wetland programs
measured in dollars
per operation, 2007

2,031 4.222664 4.326851 0.067 50.534 Census of
Agriculture

Commodity sales-07 Total commodity sales
in 2007 in dollars

2,031 4074.684 7412.908 20 160,498 Census of
Agriculture

Avg farm income-07 Receipts of income and
farm-related totals
measured in dollars
per operation, 2007

2,031 14.79669 10.19674 2.001 100.165 Census of
Agriculture

Avg commute
time-07-11

Average travel time to
work for workers 16
years and older not
working at home,
2007–2011

2,031 22.58203 5.072798 8.5 42.5 U.S. Census

Pop density-09 Population per square
mile in 2009

2,031 129.9401 264.9883 0.26522 3,002.117 U.S. Census

Nat amenities scale-09 Natural amenities scale 2,031 �0.37106 2.109244 �6.4 11.17 USDA Economic
Research Service

Land values-07 Value of land and
buildings per acre,
2007

2,031 3.004897 2.3005 0 27.122 Census of
Agriculture

Dist to interstate-07 Distance of the county
from an interstate
highway measured in
kilometers

2,031 12.12979 22.28624 0 148.0272 U.S. Geological
Survey (distance
calculated in GIS)
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Urban areas Number of urban areas/
clusters in the county

2,031 1.770556 1.668172 0 15 U.S. Census (number
calculated in GIS)

Politics Dummy variable for the
county voting for
Obama in the 2012
election

2,031 0.194485 0.395902 0 1 Politico

Insurance numbers-07 Number of operations
participating in crop
insurance programs,
2007

2,031 149.1467 163.1179 1 2,115 Census of
Agriculture

a The maximum value corresponds with Kidder County, North Dakota, which is a sparsely populated, rural county (U.S. Census Bureau 2010). The second
highest share is 0.341615.
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Table 2. Independent Variables and Prior Studies by Category

Category Variable Direction of Correlation Based on Literature Source

Opportunity cost: A high
value of assets implies a
high opportunity cost of
using them for farming.

Land values-07 Negative: Higher value of land and buildings
per acre implies higher opportunity costs of
farming.

Brown, Goetz, and Fleming
(2012), Mishra and
Goodwin (1997)

Nat amenities scale-09 Negative: A higher natural amenities scale
implies a higher value of the location as a
place to live, which may imply a higher
opportunity cost.

Resources: Availability of
labor and capital affects
farm viability. Organic
operations tend to rely
more on their own
resources.

Ag receipts-07 Ambiguous: While Argiles and Brown (2010)
and Schmidtner et al. (2012) mentioned
that organic farms may rely more on their
own resources than conventional farms,
Brown et al. (2012) suggested that the
availability of agricultural services may help
farms that are unable to afford to buy their
own harvesting equipment. Since organic
farms tend to be smaller, they may be less
likely to afford machinery. It also may be
more efficient for them not to buy their own
machinery given their small scale.

Argiles and Brown (2010),
Schmidtner et al. (2012),
Brown, Goetz, and Fleming
(2012), Lotter (2003),
Klonsky and Tourte, (1998),
Goetz (1997)

Pop density-09 Positive: This variable may capture labor
supply, which would imply a positive effect
given the fact that organic operations tend
to be more labor intensive.

Land values-07 Positive: A higher value of land and buildings
per acre may imply availability of better
resources.

Nat amenities scale-09 Positive: A higher natural amenities scale may
imply availability of better resources.
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Risk: Activities and
programs that decrease
the risk of farming (i.e.,
uncertain crop yields)
and improve farm
viability; however, the
presence of these
programs may also
reflect the need for
them.

Insurance numbers-07 Ambiguous: Crop insurance programs
decrease the risk of losses from uncertain
crop yields but may also imply unfavorable
conditions that lead to the need for them.

Brown, Goetz, and Fleming
(2012)

Conserve receipts-07 Negative: High receipts from government
conservation programs and wetlands may
imply unfavorable conditions that lead to
the need for them.

Size: Organic farms tend to
be smaller and make less
money on sales (75
percent of certified
organic farms are under
2.5 hectares with about
half grossing less than
$15,000).

Commodity sales-07/
Avg farm income-07/
Retail sales-07

Negative: Organic operations are smaller and
associated with lower sales.

Lotter (2003), Klonsky and
Tourte, (1998), Dimitri
(2010)

Urban sprawl: Protection
from sprawling
development may be
beneficial to farm
viability.

Dist to interstate-07 Positive: A greater distance from a highway
may imply protection from sprawling
development.

Brown, Goetz, and Fleming.
(2012)

Urban areas Negative: Being close to fewer urban areas
may imply protection from sprawling
development.

Pop density-09 Negative: Lower population density may
imply protection from sprawling
development.

Avg commute
time-07-11

Positive: A longer travel time to work may
imply protection from sprawling
development.
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Table 2. Continued

Category Variable Direction of Correlation Based on Literature Source

Receptiveness to
organic: Certain areas
may be more receptive
to organic than others.

Conserve receipts-07 Positive: High receipts from government
conservation programs and wetlands may
imply a socioeconomic environment that is
receptive to the idea of organic agriculture.

Schmidtner et al. (2012)

Politics Positive: Liberal areas are generally associated
with more receptiveness to organic.

Market access: Proximity
to roads and urban
centers provide market
access.

Dist to interstate-07 Negative: Being closer to a highway may
provide market access, which encourages
the development of farms.

Mishra, El-Osta, and Sandretto
(2002), Brown, Goetz, and
Fleming (2012)

Urban areas Positive: Being close to urban areas may
provide market access, which encourages
the development of farms.

Pop density-09 Positive: Being in highly populated areas may
provide market access, which encourages
the development of farms.

Avg commute
time-07-11

Negative: A longer travel time to work may
imply limited market access. As long as the
population density is constant (i.e.,
nonsignificant), travel time to work can
capture the distance travelled.

Commodity sales-07/
Avg farm income-07/
Retail sales-07

Positive: Higher sales may imply greater
market access.

Time spent on the farm:
Organic farmers may be
inclined to participate in
off-farm activities.

Temp workers-07 Positive: For about two-thirds of organic
farms, sales of organic products account for
less than half of the net family income. This
may indicate that organic farm owners
work off-farm jobs (seasonality may also be
an explanation).

Lotter (2003)
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when broken down by primary scope tend to cluster near areas that have a high
number of organic operations. The significant spatial error implies that
variables that are not included in our model likely affect the spatial
distribution of certified organic operations.
Since we find that both spatial lag and spatial error are present, we cannot

determine whether the spatial autoregressive or spatial error model is most
appropriate. To our knowledge, there is no established method by which to
compare the appropriateness of these two models, but LeSage and Pace
(2009) suggested an interesting solution: a spatial Durbin model is the
proper specification when the probabilities of the correct model specification
being a spatial autoregressive model and of being a spatial error model are
both greater than zero. A spatial Durbin model (LeSage 1998) is defined as

y ¼ ρWy þ xβ1 þWxβ2 þ ε:

According to LeSage (1998), the results of this model take the possibility of
spatial lag in both the dependent variable and in the independent variables
into account. In our case, the coefficients in front of the spatially lagged
independent variables show the effects of changes in the values of the
independent variables in one county on the share of organic operations in
neighboring counties. We therefore estimate spatial Durbin Tobit models.
The results of the spatial Durbin Tobit models, all of which pass the accuracy

and convergence tests, suggest the presence of spatial autocorrelation and
spillovers when analyzing the shares and counts of all organic operations and
of the three types of organic operations (crops, handling, and livestock).
Table 4 presents the results of the spatial Durbin Tobit model, which

Table 3. Tests for Spatial Lag and Spatial Error in the Tobit Models

Dependent Variable Tobit Spatial Error Model Tobit Spatial Autoregressive Model

λ ρ

Organic share 0.990727*** 0.914124**

Organic number 0.982933*** 0.963783**

Org share-crops 0.994286*** 0.911364**

Org number-crops 0.972535*** 0.957396**

Org share-handler 0.983324*** 0.845932**

Org number-handler 0.936908 *** 0.924824**

Org share-live 0.970087*** 0.952625**

Organic number-live 0.984535 *** 0.977669**

Note: * Significant at the 10 percent level. ** Significant at the 5 percent level. *** Significant at the 1
percent level.
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Table 4. Results: Share of Operation That Is Organic

Variable Coefficient Interpretation/Fit with Literature Direct Effects Indirect Effects

Constant �127.663204**

Retail sales-07 �0.000043 �0.000048

Ag receipts-07 0.000129* Resources (beneficial to organic) 0.000145

Temp workers-07 0.000039 0.000037

Conserve receipts-07 0.057305** Receptiveness 0.058739

Commodity sales-07 �0.000002 �0.000002

Avg farm income-07 �0.010543 �0.011984

Avg commute time-07-11 0.037465** Urban sprawl 0.03457

Pop density-09 �0.000259 �0.000243

Nat amenities scale-09 0.037212 0.03303

Land values-07 �0.041379 �0.03714

Dist to interstate-07 0.007262** Urban sprawl 0.007521

Urban areas �0.182286** Urban sprawl �0.186243

Politics �0.02731 0.029495

Insurance numbers-07 0.000586 0.000459

W-Retail sales-07 �0.001506 �0.00904

W-Ag receipts-07 0.004752** Resources (beneficial to organic) 0.028536

W-Temp workers-07 �0.000553 �0.00305

W-Conserve receipts-07 0.388469 2.555781

W-Commodity sales-07 0.000029 0.000155

W-Avg farm income-07 �0.42524** Size �2.54931

W-Avg commute time-07-11 �0.900275** Market access �5.11773
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W-Pop density-09 0.004861 0.026724

W-Nat amenities scale-09 �1.283749* Opportunity cost �7.34866

W-Land values-07 1.308321* Resources 7.520867

W-Dist to interstate-07 0.071512 0.456497

W-Urban areas �1.045417 �7.00379

W-Politics 17.145372** Receptiveness 100.5659

W-Insurance numbers-07 �0.038746** Risk (need) �0.2248

ρ 0.693221** Similar observations tend to be close together

Number of observations 2,031

Number censored 663

Notes: A Bayesian spatial autoregressive Tobit heteroskedastic model yields similar estimates but with higher magnitudes and more significant variables.
*Significant at the 10 percent level. ** Significant at the 5 percent level. *** Significant at the 1 percent level.
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analyzes the share of all organic operations regressed against county-level
factors. The positive significant coefficient ρ for the spatially lagged
dependent variable implies that similar observations tend to be located close
together; that is, counties that have a large share of organic operations tend
to be relatively close to other counties that have large shares of organic
operations.12 As with hot spots, this result indicates that the intensity of
organic operations of neighboring counties is positively related to a county’s
intensity of organic operations.
Seven of the fourteen spatially lagged independent variables are significant,

suggesting the presence of cross-county spillover. For example, the positive
significant coefficient for agricultural receipts (W-Ag receipts-07) indicates
that availability of agricultural services in a county is positively related to the
intensity of organic operations in neighboring counties. Simultaneously, there
is a significant positive coefficient for land values (W-Land values-07) and a
significant negative coefficient for the natural amenity score (W-Nat amenities
scale-09). Considered together, these results point to cross-county spillovers
for inputs and farm resources. The positive significant coefficient for support
for the Democratic Party (W-Politics) suggests that political receptiveness to
organic in one county may spill over into neighboring counties. Similarly, the
negative coefficient for the number of organic operations participating in
crop insurance programs (W-Insurance numbers-07) suggests that
perceptions of risk associated with farming may also spill over into
neighboring counties. The negative significant coefficient for average farm
income (W-Avg farm income-07) indicates that the intensity of organic
operations in a county is relatively high when the county is surrounded by
counties that have a large number of small farms. The negative significant
coefficient on travel time to work (W-traveltimetowork-07-11) suggests that a
county’s level of market access spills over to neighboring counties.
It is also interesting to examine the direct and indirect effects of the

independent variables. The indirect effect of a variable represents the sum of
its effects on observations outside of its area (∑(j≠i) ∂yj / ∂Wxi), and the
direct effect represents the variable’s effect on observations inside its area
(∂yi / ∂xi). The total effect is the sum of the direct and indirect effects
(LeSage and Pace 2009). We find that the directions of the direct effects are
consistent with the coefficients of the independent variables with no spatial
lags and that the directions of the indirect effects are consistent with the
coefficients of the spatially lagged independent variables.
Table 5 presents the results of the same analysis applied to the share of

organic operations broken down by primary scope. As with the results for
organic operations in general (crops, handling, and livestock), the coefficient

12 The model that used the corresponding count variable also yielded a positive and significant
spatially lagged dependent variable but the coefficients for the independent variables were
somewhat different.
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Table 5. Results of Estimation by Primary Organic Scope

Variable Crops Effect Handling Effect Livestock Effect

Direct Effects

Constant 0.044496* 0.055419* 0.098823**

Retail sales-07 0.00583 0.001893 0.006035 0.005523 �0.018106 �0.00348

Ag receipts-07 0.060198* 0.062538 0.072958** 0.0698 0.029281 0.022195

Temp workers-07 0.026485 0.025074 0.00657 0.007345 0.004592 0.003307

Conserve receipts-07 0.06767** 0.071405 0.047824* 0.049554 0.010455 0.006418

Commodity sales-07 �0.00091 �0.00037 �0.015087 �0.01372 0.045043* 0.042427

Avg farm income-07 �0.053123** �0.05967 �0.032569 �0.03378 �0.031444 �0.03842

Avg commute time-07-11 0.081378** 0.075737 0.059173** 0.05749 0.044239* 0.03241

Pop density-09 �0.00782 �0.00469 �0.007243 �0.00575 �0.008268 �0.01282

Nat amenities scale-09 0.005255 0.003776 �0.036111 �0.03713 �0.041537 �0.04025

Land values-07 �0.05289 �0.04875 �0.010392 �0.01005 �0.017697 �0.02446

Dist to interstate-07 0.034348 0.038332 0.021142 0.023483 0.089441** 0.083208

Urban areas �0.103593** �0.1042 �0.047011* �0.04652 �0.050557* �0.05568

Politics 0.00356 0.012367 0.040845* 0.041975 �0.016884 �0.00281

Insurance numbers-07 0.02975 0.024404 0.005739 0.00586 0.005325 0.001885

Indirect Effects

W-Retail sales-07 �1.179052** �7.40902 �0.367035 �1.10129 2.305392** 27.58374

W-Ag receipts-07 0.642246 4.367561 �2.224181** �6.54877 �1.137373 �13.3984

W-Temp workers-07 �0.44652 �2.6732 0.51674 1.564406 �0.208365 �2.45848

W-Conserve receipts-07 1.052494** 6.987673 1.149518** 3.560505 �0.643363* �7.63358
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Table 5. Continued

Variable Crops Effect Handling Effect Livestock Effect

W-Commodity sales-07 0.165886 1.035439 0.958572 2.852855 �0.448757 �4.91476

W-Avg farm income-07 �1.906339** �12.3028 �0.813779* �2.53375 �1.063943** �13.2269

W-Avg commute time-07-11 �1.736015** �10.5253 �1.178692** �3.44388 �1.885721** �22.3148

W-Pop density-09 0.940148 5.859772 1.035576 3.093935 �0.705305 �8.60007

W-Nat amenities scale-09 �0.43847 �2.71686 �0.655695 �2.03254 0.242238 2.480588

W-Land values-07 1.28513** 7.850575 0.271042 0.8185 �1.040558** �12.6909

W-Dist to interstate-07 1.16009* 7.500384 1.602668** 4.878192 �1.057128 �11.7347

W-Urban areas �0.09388 �1.11196 0.372533 1.041539 �0.756047 �9.64913

W-Politics 2.617899** 16.47569 0.744992* 2.316695 2.219676** 26.57333

W-Insurance numbers-07 �1.618736** �10.0474 0.065034 0.204524 �0.544982 �6.53967

ρ 0.726291** 0.468207* 0.860965**

Number of observations 1,875 1,875 1,875

Number censored 1,441 1,509 1,667

Notes: * Significant at the 10 percent level. ** Significant at the 5 percent level. *** Significant at the 1 percent level.
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for the spatially lagged dependent variable is positive and significant. Handling
has the lowest coefficient and livestock has the highest.13

There are some differences, however, in the spatially lagged independent
variables. For crop operations, the coefficients are negative and significant for
average farm income, average commute time, and number of crop insurance
participants and positive and significant for land values and political support
for the Democratic Party. The coefficient for distance to the nearest interstate
is positive and significant, indicating that the negative effects of urban sprawl
may spill over county lines, and the positive significant coefficient for receipts
from conservation programs (W-Conserve receipts-07) implies that the effects
of receptiveness to organic may spill over county lines. The negative
significant coefficient for retail sales suggests that the concentration of
organic operations in a county is higher when the county is surrounded by
counties with large numbers of small establishments.
The results for the share of organic operations with handling as the main

scope are similar, except for the lack of significance for retail sales, land
values, and number of participants in crop insurance programs and a positive
significant coefficient for agricultural receipts. In the results for the share of
organic operations with livestock as the main scope, the coefficient for
support for the Democratic Party is significant and positive and the
coefficients for average farm income and travel time to work are significant
and negative, which is consistent with the results for crops and handling.
However, the positive significant coefficient for retail sales (which fits into
the market access category) and the negative significant coefficients for
receipts from conservation programs (which fits into the risk category) and
land values (which fits into the opportunity cost category) are not consistent
with the results of the other groups.
The coefficients for the independent variables without spatial lags are less

significant and are not necessarily consistent with the coefficients for the
corresponding spatially lagged variables. Table 4 shows that the coefficients
are significant for only five of the variables. The positive significant
coefficient for agricultural receipts fits into the resource category and is in
line with results of prior studies that showed that greater availability of
agricultural services can be beneficial to organic farms. The positive
significant coefficient on receipts from conservation programs fits into the
category of receptiveness to organic, supporting the notion that organic
operations are likely to be more prevalent in areas that are receptive to the
idea of organic production. The positive significant coefficients for average
commute time and distance to the nearest interstate and the negative

13 The models that used the count of organic livestock and crop operations also yielded positive
and significant spatially lagged dependent variables but the coefficients for the independent
variables were somewhat different. The model that used the count of handling operations
yielded a statistically insignificant spatially lagged dependent variable.

Marasteanu and Jaenicke Organic Hot Spots in the United States 515

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
6.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2016.5


coefficient for the number of urban areas all fit into the category of urban
sprawl, in which organic farms tend to fare better when they are sheltered
from urban development.
Table 5 shows that the results for the share of organic operations with crops

and handling as the main scope are similar to those in Table 4, with the
exception of the nonsignificant coefficient for distance to the nearest
interstate and the negative significant coefficient for average farm income
(crops only), which fits into the size category. For share of livestock
operations, we find that the coefficient for the number of urban areas is
negative and significant and the coefficients for average commute time and
distance to the nearest interstate are positive and significant. The coefficient
for commodity sales is also positive and significant, placing it in the market
access category.

Conclusion

We document statistically significant hot spots and cold spots of certified
organic operations under a broad definition and compare those results to
organic hot spots and cold spots under three narrower definitions—crop
producers, livestock producers, and handlers. We then compare all of those
maps of distributions of organic hot spots and cold spots to those of
agricultural farm establishments generally and of all business establishments.
We find that the largest hot spots for organic operations in general, crop

operations, and handling operations occur along the West Coast of the United
States from southern California to northern Washington. This extensive
organic hot spot closely matches one of the hot spots for agricultural
operations in general. However, many of the other organic hot spots do not
match hot spots for general agriculture. This is particularly true for the
Northeast, where we find numerous organic hot spots and almost no
agricultural hot spots, and for the South and Southeast, where we find
numerous agricultural hot spots and organic cold spots. Our spatial analysis
thus demonstrates that organic operations follow a different geographic
concentration pattern than agricultural operations generally and business
establishments generally.
We also confirm the presence of spatial autocorrelation using various spatial

autoregressive models that examine the shares or counts of certified organic
operations. Spatial dependence is confirmed for a large number of variations
in how organic operations are measured and for a number of spatial
econometric models.
The results of this study clearly demonstrate the importance of spatial

spillovers in organic agriculture. As a matter of policy, spatial dependence
can be an important consideration for USDA and state governmental agencies
that provide assistance to organic farmers. Our results suggest, for example,
that public and private policies aimed at promoting organic agriculture might
be most effective in areas where organic agriculture already has a foothold.
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In the future, a spatio-temporal analysis of organic operations over time could
provide a fuller picture of the areas in the United States in which organic
agriculture is prevalent and growing.
Our analysis of factors associated with the distribution of organic operations

provides a starting point for further exploration of the formation of hot spots of
organic operations. The results suggest, for example, that the degree of urban
influence and distance to highways are negatively related to the formation of
organic hot spots. We also find that the three types of organic operations—crop
producers, livestock producers, and handlers—respond differently to these
factors, potentially providing insight into their functions. One potentially
interesting avenue for further study would be to analyze why receipts from
agricultural services and custom work appear to have a significant association
with organic crops and handling operations but not with organic livestock and
why the distance to a highway appears to have a significant effect on organic
livestock operations but not on crop and handling operations.
Our research also could be useful for understanding the consequences of the

rapidly expanding demand for organic products and the potential for supply
shortages. We find that areas of the United States known to be agricultural
strongholds, such as the corn and soybean belts, are not hot spots of organic
production. This research implicitly shows that some barriers exist in
extending agricultural success in these prevalent and highly valued crops to
similar success in their organic counterparts, which are known to be in great
demand. Our results potentially provide a logical first step to a deeper
investigation into organic agriculture’s role as a rural development tool.
Documenting hot spots and cold spots is a necessary starting point for
investigating their potential economic impact on local economies.
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