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DERIVATIONS TANGENTIAL TO COMPACT 
GROUP ACTIONS: SPECTRAL CONDITIONS IN THE 

WEAK CLOSURE 

OLA BRATTELI AND FREDERICK M. GOODMAN 

1. Introduction. Let G be a compact Lie group and a an action of G on a 
C*-algebra 3f as *-automorphisms. Let 31^ denote the set of G-finite 
elements for this action, i.e., the set of those x e 31 such that the orbit 
{a (x):g E G} spans a finite dimensional space. 31^ is a common core for 
all the ""-derivations generating one-parameter subgroups of the action a. 
Now let 8 be a *-derivation with domain D(8) = 9t£ such that 
ô(3l^) c 3Ip Let us pose the following two problems: 

1. Is 8 closable, and is the closure of 8 the generator of a strongly 
continuous one-parameter group of *-automorphisms? 

2. If 31 is simple or prime, under what conditions does 8 have a 
decomposition 

8 = 80 + 8, 

where 80 is the generator of a one-parameter subgroup of a(G) and 5 is a 
bounded, or approximately bounded derivation? 

To our knowledge, there are no counterexamples to 1 and there are a 
number of positive results, [4], [6], [7], [11], [16], [21], [27], [30]. It is even 
possible that if G is an arbitrary Lie group, then any *-derivation mapping 
the algebra C°°(3t, a) of smooth elements with respect to the action a into 
itself is a pregenerator. (This is more likely if the derivation commutes 
with the action a, see [16].) 

There are examples with G = T where the decomposition in 2 is not 
possible, see [7], Theorem 4.7 and Remark 4.10, but there also positive 
results in this direction; see [5], [6], [7], [8], [10], [21], [22], [25], [27] for 
situations where such a decomposition is valid. 

Our main result for non-abelian groups G (Theorem 2.5) does not 
require G to be a Lie group, but two interesting applications of the 
theorem are to product actions of closed subgroups of U(n), the group of 
n X n complex unitary matrices, on the UHF algebra 0 N MW(C) and to 
closed subgroups of U(n) acting canonically on Cuntz's algebra. For these 
C*-dynamical systems we prove that any *-derivation 8 mapping 3t^ into 
3t has a unique decomposition 8 = 80 + ô, with S0 the generator of a 
one-parameter subgroup of «(G), and 8 an inner derivation. In the case of 
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£)„, this is an improvement of results from [4]. In particular, 8 is a 
generator in these two cases since it is a bounded perturbation of the 
generator 80. This result is slightly surprising in that no conditions are 
imposed on the range 8(%a

F) of S, while in the classical case, i.e., in the case 
of abelian C*-algebras, one always has to impose some conditions on the 
range to ensure that 8 is a generator, for example that 8 maps into once 
differentiable elements, [2]. 

Our second main result (Theorem 3.4) concerns actions of compact 
abelian Lie groups. Assuming a spectral condition, that there exists a 
faithful G-covariant representation of 21 such that in this representation 
the range projections of the ideals %a(v)%a(v)* are equal to 1 for all v e G, 
we prove that 21^ consists of analytic elements for any *-derivation 8 
mapping 21^ into 21^, and consequently 8 has a generator closure. This 
generalizes the main theorems of [7] and [30], and the proof is partly based 
on ideas from these papers as well as [4]. 

In the case that G is the circle group T, this result (Theorem 3.5) can be 
strengthened somewhat: It is enough to assume that for each n e Z = T 
the range projections in (2T)" of 3la(«)3Ia(«)* a n d %a(n)*%a(n) are equal, 
Proposition 3.7. Also, in case that 21 is a separable, simple C*-algebra and 
G = T, we can use a theorem of Kishimoto to show that all *-derivations 
mapping 21^ into %a

F are pregenerators, Theorem 3.9. After finishing this 
paper, we received a preprint from Kishimoto, [20], where he proves a 
theorem which contains our Theorem 3.9 as a very special case: His results 
imply that if G is any compact abelian group, and the action a on 21 
admits a faithful family of a-covariant irreducible representations, and 8 is 
a *-derivation of %% into %% such that 8{ „ is bounded for each y e G, 

b h (y) . . . 

then 8 is a pregenerator. He also proves in this situation that if 

8° = JG
asodoasXdg 

denotes the invariant part of ô, then 8 — 80 is approximately bounded. 

2. Non-abelian compact group actions. In this section we consider a 
C*-dynamical system (21, G, a), where G is a (generally non-abelian) 
compact group, and a *-derivation 8 defined on the algebra 2l£of G-finite 
elements in 21, 8:3l£ —> 21. We give conditions which force 8 to be a 
bounded perturbation of the generator of a one-parameter subgroup of 
a(G). Although this conclusion is C*-algebraic, our methods are partly 
W*-algebraic, and our sufficient condition is the existence of a faithful 
a-covariant representation m such that 

(*) 77(2t)" H 77(20' = C 1, 

see Theorem 2.5. Examples of C*-dynamical systems satisfying this 
condition are product type actions on UHF algebras and "quasi-product" 
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actions on the Cuntz algebras £>w. We study these examples in Theorems 
2.1 and 2.4; although these two theorems are actually corollaries of 
Theorem 2.5, we find it instructive to sketch special proofs appropriate to 
these cases. In Theorem 2.5, we also introduce an auxiliary action T of a 
discrete group H on 31, commuting with both a(G) and ô; the form of our 
condition which takes into account the automorphism group (//, T) is the 
existence of an a X r-covariant representation TT such that 

77(1)" n 7T(%ay n K 2 t ) T = C 1. 

This leads to an infinitesimal version of the duality theorem of Araki, 
Haag, Kastler, and Takesaki, [29, p. 207]. We do not, however, recover 
from our methods the purely C*-algebraic infinitesimal versions of this 
theorem in [6], [21], and [27]. 

Before continuing we recall some notions and establish some notation 
relating to a continuous representation a of a compact group G on a 
Banach space 91. Associated to a d(y)-dimensional irreducible unitary 
representation y of G are continuous operators on 51, 

0>a(yy.x h-» jf d(y)ttMg)jag(x)dg 

and 

Pfay-x i-> fc d(y)(y~(g))ag(x)dg (1 ^ i,j ë d(y) ) . 

These satisfy the following relations: 

(i) ^?<Y) 0>a
kl{y) = 8H0>l(y). 

(ii) !?a(y) 0><*(y) = 0>%y)0a(y) = 0>%y), 
(0>a{y) f = <?a(y). 

(iii) *g(&%y)(x) ) = 2 PUyXxKkM)-
k 

Here (i) and (ii) follow from the orthogonality relations for {y^} and (iii) 
simply from the fact that y is a unitary representation. Another way to 
write (iii) is 

(iv) ag( [^(y)(x) ] ) = [&*(y)(x) ] • ( l a 0 y(g) ) 

(where [^"(YXJC) ] is a af(y) X d(y) matrix over 21). We denote by 
1ia(y) the range of the projection &a(y) and by 2l£ t n e linear span of 
{3ta(y):y e G}. If * G 2ta(y), then 

x = 2 ^"-(YXJC), and 

span {«g(x):g e G} = span {0>%yXx):l ^ i,j £ d(y) }. 
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Note that x e 2f£if and only if span {ag(x):g e G} is finite dimensional. 
Following [4], we say an « X d(y) matrix [x'j] over 31 is in 

K(y) if 

agaxiJ]) = [xiJ}-(l%®y(g)). 

Thus (iv) says that 

[0>«(y)(x) ] e SC5(Y)(Y) for I Ê ! 

In preparation for Theorem 2.1, we review some facts about product 
type actions on UHF algebras. Let % = ® N M„(C) be the UHF algebra 
of type n°°. An automorphism group a:G —» Aut (31) is said to be of 
product type if there is an automorphism group 0\G —» Aut(M„(C) ) such 
that 

«(g) = Ç «(g). 

Define 
m 

2l0 = C • 1, »m = J> M„(C), and 31° = ^ 3tm 

(without closure). There is an embedding o ^ u(o) of the infinite 
symmetric group S(oo) in 31 with the following properties: 

(i) for a e £(«) c ^(oo), and a = ^ ® . . . ® a„ e 31„, 

Ad(fi(a) )(fl) = fla-i(1) ® . . . ® a a-i ( w ) , 

and 
(ii) 1/(5(00) ) is contained in the fixed-point algebra for any product 

type automorphism group of 51. 
These matters are discussed in detail by Powers and Price [25]. Let 

(77, J% £2) be the GNS representation of 51 associated with the trace tr. 
Identify 31 with its image 7r(3t). For integers r > m ^ 0, let Smr c S(oo) 
be the subgroup fixing N\{ra 4- 1,. . . , r} and define 

« V » = 7TT-7 2 Ad(w(a) )(a) 

for # e 91. Powers and Price show that in the trace representation, 

strong lim <pm/a) = <pm(a)9 
r—*oo 

for all A G 1 , where <pm is the conditional expectation of 51 onto 3lw with 
respect to the trace. In particular, 

tr(a)l = st.lim qpo,r(fl)-

Since strong convergence in the trace representation is equivalent to 
convergence with respect to the trace norm ||x||2 = tr(x*jc) ' (on bounded 
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sets), 21 is trace-norm dense in Wl = 21"', and the limits above are also valid 
for a G W. In particular, 

u(S(oo)y n m = C 1; 

i.e., ^(oo) acts ergodically on Wl. This conclusion appears as Lemma 4.2 in 
[9]. 

If D c 21 are *-algebras, we use the notation Der(Z), 21) for the set of 
*-derivations from D into 21. 

THEOREM 2.1. Le/ a: G —> Aut(2t) Z?e a product type action of a compact 
Lie group G on the UHF C*-algebra 21 of type n°°. 

Every * -derivation S:2t^ —> 21 has closure generating a strongly continuous 
one-parameter group of * -automorphisms of%. Furthermore, 8 has a unique 
decomposition 

8 = S0 + 8, 

where 80 generates a one-parameter subgroup of a(G), and 8 is inner. The 
inner part 8 is zero if and only if 8%» = 0. 

Remarks. 1. For each n e. N U {00}, the restriction map 8 —> 5| is a 
bijection of Der(C"(2t, a), 21) onto Der(2t£, 21), the inverse map being 
extension by closure; in particular, the decomposition 8 = 80 + 8 is also 
valid for 8 e Der(C"(2t, a), 21). These statements follow from the theorem 
because each 8 e Der(C"(21, a), 21) is automatically continuous with 
respect to the C"-topology on C"(2t, a), and 2t£ is C"-dense in C"(2t, a). 
(See [ [23] and [5], Theorem 3.1].) 

2. We repeat for emphasis that by a product type action we mean a 
restricted product type action 

G ^ g\-+® 6(g). 
n 

The theorem is definitely not valid for unrestricted product actions 

Ucn 3 (g„) ^ ® e„(gn), 

see [7, Example 5.1.4]. 

Proof Consider 21 acting in the trace representation with weak closure 
$Jl. In this representation, a is implemented by a unitary representation of 
G and so extends to a a-weakly continuous action of G on Wfl. Let 

8 e Der(2t£, 21). 

Since 2la is AF, it follows that there is a skew-adjoint h ^ W such that 
8(a) = [h, a] for all a e 21a; use, for instance, Christensen's theorem 
[14, Theorem 2.3]. We noted above that (2T)' n 29? = C • 1 and therefore h 
is unique up to addition of a scalar. Define 
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8 = [h, a] for a G 3t and 

80(a) = 8(a) - 8(a) for Û G 3l£. 

Observe that 

S = 0 <̂> /z is a scalar <=» 8, = 0. 

We now have a *-derivation 50:5t̂ —> 3K such that 80| a = 0 and a bounded 
derivation 8:31 —> 30Î such that 8 = 80 + 8 on 3Ip We will prove that in 
fact 80(3l£) c 31^ and 80 has a closure generating a one-parameter 
subgroup of a(G). 

The first major step in the proof of Theorem 2.5 below is to show that 
the restriction of 80 to each space 3ta(y) is a-weakly continuous and hence 
bounded. The proof in this special case is not much different so we will 
take a short-cut and consider it done, remarking only that it uses the fact 
recorded above that (9Ra)' Pi SSI = C • 1. Since a is of product type, 

31° c %a
F c D(80). 

Since 80. is implemented by an element of Wl for each m G N, we 
have 

i r ° 8(%o = 0; 
A ^ 

but since for each y G G, 3P n 3T(y) is dense in 3T(y), and 80 is bounded 
on 31a(y), it follows that tr o 80 = 0 on all of 3l£. Hence 80 is weakly 
closable. 

We can now employ the argument of Powers and Price [25] to show that 
80 leaves each matrix algebra 3lm invariant: If a G 3Im, then 

a = ymr(a) for all r > m 

and 80(<pmr(a) ) = <Pm/80(a) ) converges to <pm(80(a) ) strongly. By weak 
closability of 80, 

8o(a) = <Pm(so(a))-

It follows that 80(3l°) c 31° and that 3T° is a norm dense space of 
analytic elements for 80. Since both 8 and 80 map 31° into 31, so does 8, and 
since 8̂  is bounded, this implies that 8(31) c 31. But then, because 
8(3l£) c 31, we have 80(3t£) c 31. Because tr o 80 = 0 and 80 has a dense 
family of analytic vectors, we can conclude that 80 generates a strongly 
continuous one-parameter group of *-automorphisms of 31, say {/?,} 
[12, Theorem 3.2.57]. The group {/?,} also extends to a a-weakly 
continuous group of automorphisms of ffll. Since 80| a = 0, each )8r is the 
identity on 3la, and hence on Wla. Each jit commutes with the ergodic 
group {Ad(w(a) ):a G ^(oo)} of automorphisms of Tt, as do the 
automorphisms {a(g):g G G}, and therefore the duality theorem of Araki, 
Haag, Kastler, and Takesaki [1], [29, p. 207] implies that jit G a(G). 
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Finally, £ = 5 0 + S i s a generator by perturbation theory, and 8 is 
inner by Sakai's theorem [28, Theorem 4.1.11]. The decomposition is 
unique because if 8 = 80 + 8 and 5 = 8'0 4- 8' were two such 
decompositions, then 50 — 8'0 would be a bounded, hence inner, 
*-derivation killing %a. But any element implementing 50 — 8f

0 would be 
contained in (31°)' n % = C • 1, so 50 - 8'0. 

Our next theorem is an analogue of Theorem 2.1 for the Cuntz C*-
algebra €)m (m = 2, 3, . . . ) and extends Theorem 3.3 of [4]. The 
C*-algebra £>m is generated by m partial isometries sx, . . ., sm satisfying 

m 

2 sts* = 1, and st*S; = 8t • 1. 
1 = 1 

Since m is fixed, we will denote this C* -algebra by £) in the remainder of 
this discussion. The full unitary group U(m) has a canonical action on £) 
which on the generators is given by 

m 

Tig)(Si) = 2 gift (g G U(m)). 
7 = 1 

The action of the circle T • 1 = Z(U(m) ) is given simply by 

riOiSj) = tst. 

The fixed point algebra J^for the circle action, which is isomorphic to the 
UHF algebra of type m°° [15], is evidently globally invariant under U(m), 
and the induced action of U(m ) on J^may be identified with the canonical 
product type action of U(m) on ® N Mm(C), namely 

g -> § Ad(g). 

Let 

co = tr o JT r{t)dt, 

where tr is the unique normalized trace on J*T Denote the GNS 
representation corresponding to co by (TT, 3% 12); since co is T-invariant, r is 
implemented by a unitary representation of U(m) on 3% and therefore 
extends to a a-weakly continuous action on 77(C))" = Wl. We henceforth 
consider £) as acting in this representation and suppress the notation m. 
The following is an extension of Theorem 3.2 in [4]. 

LEMMA 2.2. Let £) be the Cuntz C*-algebra generated by m isometries, 
acting in the cyclic representation arising from the canonical state co. Let &be 
the gauge invariant subalgebra, & = £) , and let u\S(po) —> & be the 
standard embedding of S(00) in the UHF algebra IF. 

Then u(S(00) )' n £)" = C • 1. 
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Proof. Let Wl denote £)". First we observe that 

WlT n u(S(oo)y = C- 1: 

The representation of & on [J^fi] is evidently equivalent to the trace 
representation, so if x G 9KT PI U(S'(OO) )', then the restriction of x to 
[^12] is a scalar, by the ergodicity of S(oo) in the trace representation (see 
above). Since x —> JCJ is faithful, x G C • 1. 

The remainder of the proof is like that of Theorem 3.2 in [4]. 

We need one more lemma before proceeding to Theorem 2.4. This 
cohomology result is also a useful complement to Theorem 2.5. We 
already used the same technique in the case of a compact abelian group G 
in [7, Lemma 5.1]. 

LEMMA 2.3. Let 91 be a C* algebra acting on a Hilbert space 3% and let 
a: G —> Aut(5ï) be an action of a compact group G on%. Let 8\%a —» %a

Fbe a 
derivation. Then'. 

(i) There is a finite subset A c G such that 8{%a) c %\K). 
(ii) There is an element h in the o-weak closure of%a(A) such that 

8(a) = [h, a] for alla G 3la. 

If 8 is a * derivation, then h can be chosen skew-adjoint. 

Remark. The same proof also shows the following: Suppose a:G —» 
Aut(3t) extends to a a-weakly continuous automorphism group of 
2ft = 21"; if 5:2la —> Wl^ is a derivation, then 8 is implemented by an 
element of Wla

F. 

Proof First note that f o r / G C(G), 

a^ fGf(g)ag(8(a))dg 

is a derivation from %a into 5(p In particular for y G G, ^ a (y ) o 8 and 
&"j(y) o ô are derivations. If (i) were false, then there would be a sequence 
Y/(/ G N) of distinct elements in G such that 

^ a(7 l . ) o 8(3Ia) * (0). 

The operator 

i G N 

makes sense on 91 £ and £P o 8 is a derivation from SIa into span {9ta(yz): 
/' G N}. By Ringrose's theorem [26], & o 8 is continuous, so 

Xn = {a ^ %a:0>o8(a) G span {^(y^i l ^ / ^ n) } 

is an increasing sequence of proper closed subspace of St" with union equal 
to %a. This contradicts the Baire category theorem, and the contradiction 
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proves (i). 
Fix y G G of dimension d and let 

ir(a) = a 0 \d for a G 2T. 

For \ ^ i = d, the map 

foY)(S(a) ) 

V,{a) 

PUyMa)) 

satisfies the derivation identity 

Vt{ab) = wia)Vi(b) + Vt(a)b9 

and ^.(fl)*^(i) G 2T for all A, 6 G 2T, since Vt(a)* G 2l?(y). Therefore a 
theorem of Christensen and Evans [13, Theorem 2.1] gives an element 

hs = 

Hd 

in the a-weak closure of the linear span of {Vj(a)b:a, b G 9la} such that 

Vt(a) = hfl - ir(a)hi for a G 2T*. 

In particular, 

0">,(y)(o(a) ) = V - ah,, and 

^"(y) O 0(a) = 2 <?«,{?) o 8(a) = [ 2 A«, «]• 

Define 

A(Y) = 2 A//. 

It follows that 8 is implemented by the element 

h = 2 MY)-
yeA 

A - ft* 
If 8 is a *-derivation, it is also implemented by . 

The proof of the next theorem has a lot in common with that of 
Theorem 3.3 in [4]; the reader is referred to that paper for further 
details. 
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THEOREM 2.4. Let £) be the Cuntz C*-algebra generated by m isometries 
{sh . . . , sm). Let G be a compact subgroup of U(m) and a: G —» Aut(£)) the 
restriction to G of the canonical action r:U(m) —> Aut(O). 

Every * -derivation 8 :£)£—» £) /IOS « generator closure. Furthermore 8 has a 
unique decomposition 

8 = 80 + 8, 

w/zere S0 generates a one-parameter subgroup of a(G) and 8 is inner. The 
inner part 8 is zero if and only if ' 8\ = 0. 

Remarks. 1. As in Theorem 2.1, it follows that the decomposition 8 = 80 

+ 8 is also valid for 

8 e Der(C"(£), a), £)), for « G N U {oo}. 

2. (due to George Elliott, David E. Evans, and Palle E. T. Jorgensen). 
This decomposition is also unique with respect to the property that 8 is 
approximately inner. This is because the generator 80 of a one-parameter 
subgroup of the U(m) action on O is not approximately inner unless 
80 = 0. This can be seen as follows: 

Let £ e Cm with ||£|| = 1, and let co^ = ® N (£ | • £> be the corresponding 
product state on £)T = J^ Then if /z <E J^ 

sz[/z, sf ] G f for / = 1,. . . , m, and 

m 

( w m \ 

ZJ SflS* — ^ 5Z-5*/Z I 
/ • = 1 7 = 1 ' 

= œç(h) - u£h) = 0, 

where we used that 
m 

h ĥ  2 V«f 
/ = i 

is the one sided shift o n ^ = ® N Mm(C), cô  is shift invariant, and 

m 

2 stsf = 1, [4]. 
* = i 

Next let 80 be the generator of a one-parameter subgroup of the U(m) 
action and let X = [xtj] be the corresponding (skew-adjoint) element of the 
Lie algebra of U(m). Then 
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2 u£sfi0(s?)) 
i 

= 2 ^ U 2 * / • XjA 
i j 

= 2 2 XjjU^SjSf) 
i J 

= 2 2 xJ{(& v/O 
' J 

= (t\x*s). 

Now suppose that ô0 is approximately inner on the polynomial algebra 
generated by {st}; i.e., there exists a sequence kn in £) such that 

80(x) = lim [£„, x] 

for x in this algebra. Since T is the center of U(m), 80 commutes with rt for 
/ e T, and thus 

80(x) = rfi0r~\x) = lim [Tt(kn)9 x]. 

Integrating this over T, we get 

80(x) = lim [hn, x] 

where hn = j T rt(kn)dt lies inJ^ 
But then for all £ e Cm, 

= 2^A(^*)) 
i 

= lim 2 w^-[/iw, sf]) = 0, 

and hence X = 0; i.e., 80 = 0. 
In particular, this shows that any approximately inner derivation 

ô:£)^ —» © is actually inner. This situation is quite different from that of 
Theorem 2.1, where 80 is always approximately inner. 

Proof of Theorem 2.4. Consider £) acting in the GNS representation 
arising from canonical state co, with weak closure Wl. The fixed point 
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algebra 0 T of the U(m) action is an A F algebra, so proceeding as in 
the proof of Theorem 2.2, we get a decomposition 8 = 80 + 5, where 
8 :£) —> 2)? is bounded and 80:D£ —» 3K satisfies 80^T = 0. We will prove 
that in fact S0^a = 0, 80(£)£) c £)£, and SQ generates a one-parameter 
subgroup of a(G). 

Define a matrix L = [Z^] e 99? 0 Mm(C) by 

The discussion surrounding [4, Lemma 3.1] shows that 

(i) [8o(s\), • • • , $ 0 ( O ] = [s\> • • • >sm\ ' L-

(ii) L is skew-adjoint, 

(iii) L e [2R n (£)T)'] 0 Mm(C). 

But since Wl n (£)T) = C • 1 (Lemma 2.2), L is a skew adjoint matrix of 
scalars and 

(exp(/L) } c 1 0 U(m). 

Therefore 80 agrees on the *-algebraj^ generated by [sl9 . . . , sm} with the 
generator 8j of the one-parameter group {r(exp(7L) ) }. 

The first step in the proof of Theorem 2.5 shows that 80 is bounded on 
each spectral subspace Oa(y)(y e. G). The key to this is that 80^a is 
bounded and that 

m n (£)<*)' = C 1. 

Now for each y e G we have that 80 = Sj on j / 0 n £a(y), J^0
 n °a(ï)is 

dense in £)a(y), 80 is bounded on Oa(y) and 8j is closed; it follows that 
D(8X) D £)£ and Sj extends 80. In particular 

80(©£) c © and S(O) c O. 

Now we want to show that 

s o| c , = 0. 

The linear span of { T S ^ - 1 ^ e U(m) } is finite dimensional (say as 
operators on C°°(£), T) ), and therefore span [a S0a~l:g e G) is finite 
dimensional (say as operators on s/0). It follows by continuity that for 
a e £)a, {a 80(a):g e G} has finite dimensional span; that is, 

Ô0(D
a) c £>«. 

Hence by Lemma 2.3, there is a skew adjoint k e ïft such that 

8O(0) = [fc, A] for all a e £)a. 

But 80 already satisfies 80| = 0, and therefore 

H e i n (£)T)' = C • 1 and 80Ua = 0 
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as desired. 
The last paragraph implies that the automorphism group {r(exp(7L) } 

is the identity on €>a and hence also on Wla. Since both a(G) and 
{V(exp(/L) } commute with the ergodic automorphism group {Ad(u(o) ): 
o G S(oo) }, the duality theorem of Araki et al., [29], shows that 

expfVSj) = r(exp(VL) ) c a(G). 

But then £)£ is a dense invariant space of analytic vectors for 8X and hence 
5, = 80. 

The remaining points are taken care of exactly as in the last paragraphs 
of the proof of Theorem 2.2. 

We now proceed to the main abstract result of this section. 

THEOREM 2.5. Let 21 be a C*-algebra, a:G —> Aut(2t) a strongly 
continuous action of a compact group G on 31, and r:H —> Aut(2t) an action 
of a discrete group H such that [a , rh ] = 0 for all g G G and h G H. 
Suppose that 8:21^ —» 21 is a *-derivation such that [8, rh] = 0 for ail 
h G H. 

Assume that {21, G X H, a X T} admits a faithful covariant representation 
{TT, £/ X F, ^ } JMCA //2a/ 

(*) 77(2r),/ n 77(2iay n {V(H) y = c • 1. 

(i) If 8^ a = 0, //ze« 8 /za.s a closure generating a one-parameter subgroup 
ofa(G). 

(ii) //*S|s a w implemented by an element ofir($l)" and H is amenable, then 8 
has a generator closure. Furthermore, 8 has a unique decomposition 

8 = 80 + Ô, 

where 80 has a closure generating a one-parameter subgroup ofa(G), and 8 is 
bounded. 

Remarks. 1. The condition in (ii) that S| a is implemented by an element 
of 77(21)" means that there exists a skew adjoint element h G 77(21)" such 
that 

7T(8(a) ) = [A, 77(a) ] for all a G 2T. 

It may be that this always holds; in any case, the condition is valid under 
the following circumstances: 

a. 8(2T) c 2l£ (Lemma 2.3). 
b. 77(2T)" is injective or 77(21)" is finite ( [14, Theorem 2.3] ). 

2. Two special cases of the theorem are of importance, the case that H is 
trivial and 

77(21)" H 77(2T)' = C • 1, 
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and the case that H acts ergodically on 77(2Ï)". The C*-dynamical systems 
considered in Theorems 2.1 and 2.4 can be regarded as instances of either 
special case; take the trace representation for the UHF algebra and 
the 60-GNS representation for the Cuntz algebra, and in both cases take 
H = S(oo). 

3. The case that H acts ergodically on 7T(%)" gives an infinitesimal 
version of the duality theorem of Araki et. al., [29, p. 207]. 

4. In case G is a compact Lie group, the conclusions are also valid for 
derivations defined on Cn(%, a) (n <= N U {oo} ). See the remarks 
following Theorem 2.1. 

5. (due to George A. Elliott). Part (i) of the theorem is rather similar to 
Theorem 3.1 of [6], which says that if T is a strongly topologically 
transitive action of a group H on a C*-algebra 9t, a an action of a compact 
group G on 51 such that [a, T] = 0 and 8 is a *-derivation on 21 with 
D(8) = 2l£, 5| a = 0, and [8, T] = 0, then 8 is closable and 8 generates a 
one-parameter subgroup of a(G). It may be that one of these theorems 
implies the other, but there are technical difficulties in establishing either 
implication. If there were an a X T-covariant representation 77 such that T 
remained strongly topologically transitive on 7r(2l)", then T would be 
ergodic on 77(2()", and Theorem 2.5 would apply to give an alternate proof 
of Theorem 3.1 of [6]. On the other hand, if the hypothesis (*) is satisfied 
in some a X T-covariant representation 77, then H together with the 
unitary group of 77(21") define an ergodic action of a group H on 77(2t)", 
and both a and 8 commute with this action if ô| a = 0. If ergodicity 
implied strong topological transitivity for a von Neumann algebra, then 
Theorem 2.5(i) would follow from Theorem 3.1 of [6] together with 
Observation 2 below. 

Proof of Theorem 2.5. We drop the notation 77 and consider % as acting 
on 3tf\ we put Wl = %". To begin the proof let us take any 8 G 
Der(2ï£, W). Take y G G of dimension d = d(y), and define 8 on 3l"(y) 
by 

8( [^} ) = [ô(^) ]. 

Observation 1. ô:3t"(y) —> 9D̂  is a-weakly closable. 
Proof of Observation 1. The restriction of 8 to %a is bounded and in fact 

a-weakly continuous, by an argument of Kadison [12, 3.2.24], or by [26]. 
Let xn be a net in 2t?(y) such that xn —» 0 and 8(xn) —» z a-weakly. Then for 
all y G 2ï?(y), x„y* is an element of %a and 

8{x^) = 8(xn)y* + xn8(y*). 

Taking a-weak limits we get zy* = 0, and therefore zp = 0, where p G 
W ® M^(C) is the range projection of y*y. Hence zE = 0, where E is the 
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supremum in W ® M^(C) of all such range projections. We claim that in 
fact E = 1, whence z = 0. 

In this paragraph y denotes an arbitrary element of 9I"(y) and p is the 
range projection of y*y. If a e 2Ia, then y (a* ® 1̂ ) is also contained in 
»?(y), so 

[ (a ® \d)pJ?d\ c £ • JT J 

Hence 

£ e (3K n (3la)') ® M^C). 

Secondly, if /z G F , then 

T/,(.V) = M ^ 1 ) , . . . , Th(/) ] 

is also in 9t?(y). The range projection of T^(J^)* is rh(p), and it follows that 
is is invariant under Th, 

E e ( $ r n (2T)') ® M^(C), 

which is 1 ® Mj(C), by hypothesis (*). Finally, since 

ag(y*y) = Ad( l a ® y(g)*)(.y*y), 

the range projection of a (y*)a (y) is 

Ad( l a ® y(g)*)(p). 

But since E is a matrix of scalars and y = yE, 

<*g(y) = 0Lg(yE) = ag(y)ag(E) = ag(y)E. 

Therefore E dominates the range projection Adfl^ ® y(g)*)(p) of ag(y*), 
and hence E also dominates the sup of all such projections as y 
varies, namely Ad(ls^ ® y(g)*)(E). Thus E is invariant under the group 
{Ad(l2t ® y(g) ) }, and so E = 1, as y is irreducible. This completes the 
proof of Observation 1. 

Observation 2. There is an extension of 8 to a *-derivation 8:Wl^ —> Wl 
which is a-weakly continuous on each spectral subspace Wla(y). 

Proof of Observation 2. Since 5l"(y) is norm closed and 8 is a-weakly 
closable on 3t"(y), 8 is bounded and a-weakly continuous on bounded 
subsets of 2t?(y). It follows that 8 extends by a-weak continuity to 
2ft"(y); we have only to show that any x e 3ft"(y) is the a-weak limit of a 
bounded net in 2l?(y). Write x = [x\ . . . , xd\. By Kaplansky's density 
theorem, there is a bounded net yn in % converging to JC1 a-weakly. For 
each n and for 1 ^ i ^ j , define 

4 = n<y)U)-
Then 
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z„ = [z\,. . ., zd„] e 2l?(y) and 

4 ^ ^ w ( r ) ( * ' ) = xl a-weakly, 

by a-weak continuity of ^"z . 
It also follows that 8 is a-weakly continuous on 5ta(y) and so extends by 

continuity to Wla(y); in fact, the map 

3t°(y) 3 * 1 ^ [^(y)(*) ] = [*"] e ^ ( y ) 

is a-weakly continuous, as is the map 

8:[x*]h+[8(x*)]. 

But 8(x) = 2 / o(Vz) is then also a-weakly continuous. Letting y vary in G, 
we extend ô to U iïfta(y), and then by linearity to $ft£. The extended ô is 
a-weakly continuous on each set 

3Ka(A) = 2 Wla(y), 
Y<EA 

for A a finite subset of G. Given yl5 y2
 e G> there is a finite subset A such 

that 

ma(yiW
a(y2) c 2T(A); 

we can therefore conclude that ô satisfies the derivation identity on Tl^, by 
a standard argument: Given x e 21°^) and y e 30^O!(y2), one checks 
that 

8(xy) = 8(x)y + x8(y) 

by approximating 7 by a net in 2la(y2) and using the continuity of ô on 
Wla(A). A second, similar step establishes the identity for x <E ¥ta(y]) and 
y e Wla(y2). It is evident that the extended ô also preserves adjoints. 

Observation 3. Let x = [xij] be an element of 9W"(y), and let x = 
(xx*)l/2 u be its polar decomposition. Then u e 30î"(y). 

Proof of Observation 3. On the one hand 

ag(x) = x ( l a ® y(g) ) = ( ^ * ) 1 / 2 « ( l a 0 y(g) ), 

and on the other hand, 

ag(x) = ag(xx*)V2ag(u) = (xx*)V2ag(u). 

Comparing these two expressions and using the uniqueness of the polar 
decomposition, we get 

ag(u) = i i ( l a ® y(g) ), 

and this proves the observation. 
We now begin the proof of statement (ii), and take 

8 e Der(5ï£, SI) 
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such that 5| a is implemented by an element of Wl. Then there is a 
skew-adjoint r0 G 9K such that 

8(x) = [r0, x] for all x G Wla. 

Every element in the a-weak closure of the convex hull of {Th(r0):h G / / } 
also implements 8 on Wla, and by amenability of H, this set contains an 
//-invariant element r. Define 8(x) = [r, x] for x e l , and 80 = 8 — 8 on 
29? £. Then 80:Wl^ —> 9K is T-invariant and is zero on 90ta. We show that in 
fact S0(3t^) G 2l£, and Ô0 generates a one-parameter subgroup of a(G). The 
proof of this also proves statement (i). 

Observation 4. For each y G G, there is a skew-symmetric matrix of 
scalars 

L(y) G l a ® Mrf(y)(C) 

such that <50(x) = xL for x G SD?"(y). 

Proo/ 0/ Observation 4. Fix y G G of dimension d. Let F be the union 
over n G N of the partial isometries in 2ft"(y), and give F the following 
partial order: 

« % v if w*w ^ v*v in m 0 M^(C). 

Observe that F is directed since if u, v G F and w is the partial isometry 

part of , then w*w dominates both u*u and v*v. For each u G F, 

define 

L(w) = w*50(w) G $? ® M^(C). 

If x G $D?"(y) has the polar decomposition x = (xx*) ' u and if v =F u, 
then x = xv*v and 

80(x) = xv*ô0(v) = xL(v), 

since xv* is a matrix over $Jla. Hence if v = F w, then 

(2.1) u*uL(u) = u*80(u) = u*uL(v). 

We define an operator L(y) on Uw€EF w*w • f̂7 = W by putting 

L(y)£ = -L(u)*£ for £ G w*w • J K 

Note that M̂  is a vector space since F is directed and (2.1) implies that 
L(y) is well defined on W. We claim that L(y) is skew-symmetric on W. 
Given £, TJ G JF, choose w G F such that 

w*w£ = £ and u*urj = 17. 

Then 
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= -(TI\L(U)*U*I4) 

= —(u*wq\80(u)*i4) 

= - (uri\u8Q(u*)u£) 

= - (uri\[80(uu*) - 8Q(u)u*]ug) 

= (80(u)*un\u*i4) 

= (-L(y)T, |0. 

Next we show that L(y) is affiliated with (2Ra)' ® M^C). If v G 2)?a is 
unitary and u e F, then w(v ® 1̂ ) G F, so 

(v* ® \d)W = W. 

Take % <^ W and choose u e F such that w*w£ = £• Then 

(v ® ld)L(y)(y* ® 1 ^ 

= (v ® lrf)L(y)(v* ® 1 > * K | 

= - ( v ® l ^ ) S 0 [ ( v * ® l > * K 

= -80(u)*u£ = -L(«)*f = L(y)£ 

The next step is to show that L(y) is affiliated with 

{V(h):h e i / } ' ® Mrf(C). 

(Recall that /z I—> J^(/Î) is the unitary representation of H on 3tf 
implementing T on 9DÎ.) For h ^ H and M G F, 

(K(/i) ® ld)u*uJ>?d 

= (V(h) ® 1^)M*M(K(A)* ® l j ) ^ 

= T A (K*)T A ( I I ) JK 

Since TA(W) G F, Wis thus invariant under { (V(h) ® 1̂ ) }. Take i ^ W 
and choose w so that w*w£ = f. Then for all h ^ H, 

(V(h) 0 ^)L( y ) (F( /0* 0 1 )̂1 

= (F(/0 0 lrf)L(Y)(K(A)* 0 ld)u*ut 

= (K(A) 0 ^ ^ ' ( ^ - ' ( " X ^ ) * 0 ld)è 

= - (7 ( / i ) 0 ld)ô0(^\u))*T;\u)(V(hr 0 1 ^ 

= -(K(A) 0 1^\80(uru)(V(h)* 0 ld)£ 

= -80(u)*t4 = L(y)i 
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The last paragraph together with the hypothesis (*) imply that L(y) is 
affiliated with the finite matrix algebra 1^ 0 M^(C) and therefore L(y) 
is itself a matrix of scalars. Finally for u e F, 

u*uL(y) 

= —u*uL(y)* 

= -(L(y)u*u)* 

= (L(u)*u*u)* 

= u*uL(u). 

Hence if x e 2R"(y) and w G F i s its partial isometry part, then 

xL(y) = xu*uL(y) = xu*uL(u) = xL(u) = 80(x). 

This completes the proof of Observation 4. 
Given x G 3Jla(y), let 

Then 

[oo(x<0 ] = [x'J] • L(y), 

and hence 

d 

S0(x) = 2 S0(x
il) 

is in the linear span of {V7} and therefore in the (at most d2) dimensional 
linear span of {a (x)\g e G}. In particular, S0 maps 2Ia(y) into itself and 
Wla(y) into itself, and these spaces consist of analytic elements for S0. 
Furthermore, the faithful conditional expectation &a(0) onto the fixed 
point algebra Wla satisfies 

so it follows from [18, Lemma 2.2] that S0| « has norm closure generating a 
strongly continuous one-parameter groups/?, of *-automorphisms of 2L 
Similarly (ô0| «)~a"wea generates a a-weakly continuous one-parameter 
automorphism%roup of Wl, which we also call fit. Each /?, is the identity on 
Wla, since 80|s « = 0> a n d Pt

 a^ s o commutes with T(7/) . Thus j8/ commutes 
with the ergodic group of automorphisms of Wl generated by 

{Ad(u):u e #(3»a) } U {Ad(F(A)):A G H], 

as does a(G), and by the duality theorem of Araki et al., [29], /}, is a 
one-parameter subgroup of a(G). 

This completes the proof except for the uniqueness statement in (ii). 
Suppose Ô = ô0 + ô = ô o + 5' are two decompositions. Then the 
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a-weakly continuous extension of A = 8 — ô' to 9W commutes with T(H) 
and kills 9K°\ By the derivation theorem of Kadison and Sakai, 

A = ad(r) f o r r e S K n (ÏT) ' , 

and, averaging over the amenable group H, r can be chosen in 9KT n (3K0)' 
= C • 1. Thus A = 0. 

3. Abelian compact group actions. Let a be an action of a compact 
abelian group G on a C*-algebra 3Ï, and let 8 be a *-derivation defined on 
the G-finite elements 3t£ such that 8(31 J) c 3t£. We will show that under 
some circumstances 8 is a generator, and the core of the proof is to show 
that 3t^ consists of analytic elements for 8. To prove this we will consider a 
decomposition 8 = 80 + 8 similar to the one considered in Section 2, but 
where 50 is

 n o w characterized only by 80| a = 0. We thus have to study the 
structure of *-derivations 8 with the properties 

D(8) = %a
F and 8)3[« = 0. 

In case that the dynamics satisfy the condition Y of [7], i.e., 

3T(y)3T(y)* = 3la for all y e G, 

it was proved in [7] that these derivations are characterized by a certain 
cocycle G 3 y M> L(y) with values in the relative commutant of 2la in the 
multiplier algebra M{%) of 31. The cocycle relation is 

(c) L(Yl + y2) = L( 7 l ) + i8Yi(L(y2) ) 

where /?y is the unique automorphism of (2Ia)r n Af (31) determined by 

fiy(a)x = xa 

for all x G 3ta(y) and a G (3T)' n M(3t). The relation between 8 and L(y) 
is given by 

ô(̂ c) = L(y)x 

for all x G 3la(y). Since 6 preserves adjoints, L satisfies the additional 
relation 

L ( - y ) = j8_Y(L(y)*), 

which implies that L is skew-adjoint, L(y)* = —L(y). 
We will now extend this description of 8 to the case where condition Y is 

not fulfilled. To this end, we suppose that 31 is faithfully represented on a 
Hilbert space Jif'm such a fashion that a extends to a a-weakly continuous 
action (also called a) of G on SDÎ = 31". (We say that the representation is 
a-covariant.) For each y e G, let £(y) be the projection onto 

[m\y)je] = [3T(y)JT]. 
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Under a very weak (and possibly unnecessary) regularity condition on Ô, 
we obtain bounded operators L(y)(y e G) on J f such that 

8(x) = L(y)x for all x e %a(y). 

In general, these operators satisfy only a certain partial cocycle relation. 
However, in case all of the projections E(y) are equal to 1, the regularity 
condition mentioned before is automatic and the full cocycle relation (c) is 
satisfied. This will be true for any a-covariant representation in case a 
weakened form of T is satisfied: 

(Tn) 2T(Y)3T(Y)* " ' " = 2T for all y e G. 

All of the conclusions of [7] and [30] which depended on condition T and 
the existence of a cocycle L determining 8 can be recovered when the 
weaker condition Tn is satisfied. See, for example Theorem 3.4 of this 
section, which generalizes the theorem in [30]; the proof we give here is 
shorter and depends in part on ideas from [4]. 

Let us now proceed with the construction of L. Note that 

E(y) = [Wl\y)Jf] 

is a central projection in Wla = (2la)", and we have that 
a-weak 

ma(y)ma(y)* = ma • EM = EM • ma, 
since the left hand side is a closed ideal in Wla. 

Let V(y) be the relative commutant of Wa • E(y) in E(y) • m • E(y). 
Then, for each y there exists a *-isomorphism 

uniquely defined by 

Py(a)x = xa 

for a e #( — y), and x G Wla(y). The proof of this is exactly as the proof of 
Lemma 1.5 of [10]; the assumption there that a is contained in the center 
of Wla - E(y) is not essential for the proof and can be replaced by the 
assumption that a e #( — y). 

LEMMA 3.1. Adopt the assumptions and notation of the previous 
paragraphs, and let S be a * -derivation with the properties 

8:%a
F - * TO, 

Assume in addition that for all y e G and all x G 3ta(y), 

E(y)8(x) = 8(x). 

Then: 
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(i) 8| a is bounded and o-weakly continuous for each y, and therefore 8 
extends to a * -derivation on Wl^ which is o -weakly continuous on each 
spectral subspace Tla(y). 

A 

(ii) For each y G G, there is a skew-adjoint operator L(y) e #(y) such 
that 

8(x) = L(y)x for all x <= 2tta(y). 

If E(yx, y2) denotes the projection 

£(Y l ,Y2) = E(y])^](E(-y])E(y2)) 

then L satisfies the partial cocycle relation 

L(yx + Y2)£(Yi, y2) = L(y)E{yx, y2) 

+ pyi(E(-yl)L(y2))E(y^y2) 

and the skew-adjointness relation: 

L(-y) = y6_Y(L(Y)*). 

Remark 3.2. We do not know whether the condition 

E(y)8(x) = 8(x) for x e %a(y) 

is automatically satisfied, but the condition is fulfilled in the following 
cases: 

1. E(y) = 1 for all y G G (trivially). 
2. The derivation 8 is closable, or only: 8\ n is bounded for each 

Y e G. 
The ideal %a{y)%a(y)* in 3la contains an approximate identity of the 

form 

V T 7* 

er = 2J atat , 
i 

with aj e %a(y); see the proof of Lemma 4.4 in [3]. Hence for x e 

x = lim e^, 
T-^OO 

and if 8 is bounded on tyLa(y), then 
5(x) = lim Sie^jc) = lim eT5(x). 

As eT ^ E(y) for all T, the condition 8(x) = E(y)8(x) follows. 
3. %a(y)%a(y)*%a(y) = 3Ia(y) for all y <= G. 
It follows from the existence of an approximate identity as in (2) that 

the left hand side is always dense in 2îa(y), and we do not know any 
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example where equality does not hold. 
If the condition is fulfilled, then each x in 3la(y) has the form 

x = 2 y?ï 
i 

where j , e 2T(Y)3Ï"(Y)*, z,- e 2tQ(y), and the sum is finite. Then 

«(*) = 2 J A ^ ) = £(Y)5(x). 

Remark 3.3. If one assumes from the outset that 8(2I£) c 91, then it 
follows that L(y) lies in the relative commutant <@(y) of 

in the multiplier algebra of 

2T(y) • % • 3T(y)* " ". 

In this case j3y defines a *-isomorphism between 3)( — y) and <^(y). 
Conversely, a mapping 

G 9 y H L(y) G 3)(y) 

with the cocycle and skew-adjointness properties defines a *-derivation 8 
with 

/>(«) = 2l£ and Ska = 0. 

This follows from the proof; see also [3], [10], [7] and [24]. 

Proof of Lemma 3.1. Let eT be an approximate identity in 9la(y)2Ia(y)* of 
the sort described in Remark 3.2. Then 

lim eT = E(y) strongly on Jff? 
T—^OO 

Define 

Lr = 2 S(a1)afx. 
i 

If JC e 2T(y), then 

A-* — 2 8(a])aT
i*x 

i 

= 2 aT
tafô(x) = eT8(x). 
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Thus if x has the particular form x = ay, where a G 9la(y)9la(y)* and 
y G 3T(y), then 

lim LTay = lim eTa5(j) = Û5(J>) = 8(ay), 

where the limit exists in norm. Hence we may define an operator L0(y) 
from E(y)Jf?into E(y)Jfwiih domain 

D(L0(y)) = n)nr%a(y)Jf 

by 

A)(Y)(2 *£•) = lim LT(2 xtU = 2 8(*/)É, 

for x, e 9Ia(y)2la(y)*la(Y) and £, e ^ f A s 

0 = 2 Ka]af) = 2 ( 8 ( « > f + a]8(af) ) = LT + L* 

each LT is skew-adjoint; hence L0(y) is skew symmetric and therefore 
closable. Denote the closure of L0(y) by L{y). 

Since %a(y) is a module over 5ta, it follows that for x G 
yta(yWa(y)*%a(y), a G 2T, and £ G ^ « J C | G £(L(y) ) and 

L(y)0x£ = 8(ax)£ = a8(x)£ = aL(y)x£. 

As L(y) is closed the relation 

L(y)a£ = aL(y)£ 

holds for all a G (2T)" = 9Ka and £ G D(L(y) ); i.e., L(y) is affiliated with 
(arca)'£(Y)-

Next take any x G %a(y) and £ G ^ Then (with er the approximate 
identity used above) 

e^xi G D(L(y) ) for all T, and 

L{y)e7x£ = 8{e,x)£ = eT8(x)£. 

Now 

lim e^xi- — x£, 
T—^OO 

and 

lim eTô(x)è = E(y)8(x)i 

and hence, as L(y) is closed, 

x£ G Z)(L(y) ) and L(y)x£ = £(y)8(x)£. 
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Thus 

L(y)x = E(y)8(x) 

for all x e 2T(y). 
Using the (presumably redundant) technical assumption 

E(y)8(x) = 8(x), 

we have 

L(y)x = 8(x) 

for all x e 2T(y). 
We now argue that ô| a is bounded. If xn e 9la(y) is a sequence such 

that xn -> 0 and O(JCJ -V;/, then, for all £ G jg? 

while 

L(Y)X„É = «(*„)£-»>£ 

As L(y) is closed, it follows that j£ = 0 and so y = 0. Thus ô| a is closed 
and therefore bounded. 

Next we observe that ma(y)J^cz D(L(y)) and that L(y)^ a (y) c Wl. 
Let x e Tia(y). Using the Kaplansky density theorem and applying the 
a-weakly continuous projection 

from 2» onto 3»a(y), we can find a net xT in 2T(y) such that ||JCT|| ^ ||JC|| 

and xT converges weakly to x. Considering the boundedness of 8 on 21 a(y) 
and the weak compactness of the unit ball of 2ft, and passing to a subnet 
of xT9 we can suppose that 8(xT) converges to some y e 2ft. But then as L(y) 
is closed with respect to the weak topology on ^fand 

8(xT) = L(y)xT for all T, 

it follows by limiting that 

x^Tc D(L{y)) and>> = L(y)x. 

We can now define an operator 8 from 2ft ̂  into 2ft by 

8(x) = L(y)x for x G 2ft"(y). 

As L(y) is closed it follows as above that 8 is a-weakly closed and hence 
a-weakly continuous on each spectral subspace 2fta(y). The operator ô 
extends our original o, and it follows by taking limits that the extended 5 is 
a *-derivation. This completes the proof of (i). 

We already proved that L(y) is affiliated with (WlayE(y); but as 
L(y) is a limit of operators in E(y) • 2ft • E(y), it is also affiliated with 
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2s(y) - ïïl • 2s(y), and hence with #(y). Our goal is now to show that L(y) is 
bounded. 

If x G Wla(y), and x = w|x| is its polar decomposition, then u e 2fta(y) 
and |JC| <= 9D?a. If {wT} is a family of partial isometries in Wla(y) with 
mutually orthogonal initial projections u*uT ^ E( — y) and mutually 
orthogonal range projections uTu* = 2s (y), then 

w = ^ uT 
T 

is a partial isometry in 3Dta(y), and by Zorn's lemma, there exists a 
maximal partial isometry in Wla(y). Maximality is characterized by the 
property 

(E(y) - uu*)Wla(y)(E(-y) - u*u) = 0, 

since if this space is not zero, then it contains a partial isometry which can 
be added to w, and, on the other hand, if w is a partial isometry properly 
containing w, then 

(E(y) - uu*)w(E(-y) - w*w) * 0. 

Next we show that if u is a maximal partial isometry in Wla(y), then 
there exists a projection 2s in the center of $JlaE(y) with the property 

uu*(E(y) - E) = £(y) - £ 

and 

u*up_y(E) = fi_y{E). 

This can be seen as follows: Let £ be the central support of the projection 
E(y) — uu* in WlaE(y). Then clearly 

uu*(E(y) - E) = E(y) ~ E, 

while uu*P =£ P whenever P ^ E is a non-zero projection in the center of 
Wla. Suppose now that 

P_y(E)(E(-y) - u*u) * 0; 

then 

0 * ^a(y)£_y(2s)(2s(-y) - u*u) 

= E^ a (y))8_Y (£)(£(-y) - H*I/). 

If x is a non-zero element in the latter space, then 

x = uu*x + (2s (y) — uu*)x 

= uu*Ex + (2s (y) — uu*)Ex, 

and hence either 
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1. (E(y) - uu*)Ex ¥= 0, or 

2. uu*Ex ¥= 0. 

In case 1, the condition 

(E(y) - uu*)Wl\y)(E(y) - u*u) = 0 

is contradicted. In case 2, as uu*P $ P for each central projection P % E 
in 3Ka, there is an element y e Wla with 

0 ^ ( £ ( Y ) — uu*)yuu*Ex 

= (E(y) — uu*)yuu*Ex(E(y) — w*w), 

and since yuu*Ex e 9^a(y), this again contradicts the maximality of u. 
This contradiction shows that 

u*u/3_y(E) = 0_y(E). 

It now follows from this and the other identity 

uu*(E(y) ~ E) = £(y) - £ 

that any x e 9Wa(y) has the decomposition 

x = (E(y) — E)x 4- isx 

= (E(y) - E)x + xj8_y(£) 

= ( £ ( Y ) — E)uu*x + xu*ufi_y(E) 

and as w*x and xw* lie in 9D?a, we get 

L(y)x = 8(x) 

= (E(y) - E)8(u)u*x + xu*8(u)/3_y(E) 

= [ (E(y) - E)8(u)u* + Py(u*8(u) )E] • x. 

It follows that 

L(y) = (E(y) - E)8(u)u* + Py(u*ô(u) )E, 

and L(y) is a bounded element in (3Ka)' Pi Wl. 
The partial cocycle relation is now a straightforward consequence of the 

derivation property of 8, and the skew-adjointness relation follows from 
8(x*) = 8(x)*; see [7], proof of Proposition 2.3. 

THEOREM 3.4. Let a be an action of a compact abelian Lie group G on a 
C*-algebra % and assume that there exists a faithful G-covariant 
representation of% such that for each y e G the range projection of the ideal 
2T(Y)2T(Y)* in %a is equal to 1. 

Let 8 be a * -derivation with domain D(8) equal to the algebra %a
F of 

G-finite elements of%, and with the range contained in %a
F It follows that %a

F 
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consists of analytic elements for 8, that 8 is closable, and that 8 generates a 
one-parameter group of *-automorphisms. 

Remark. The dynamical assumption E(y) = 1 is fulfilled in the case 
T(a) = G, where T(a) denotes the gamma-spectrum of the extension of a 
to yjl = W. In fact, the single condition T(a) = G is equivalent to the two 
conditions 

E(y) = 1 

and 

ma n (my cwinw; 
see [3], Remark 4.9. The dynamical assumption is in particular fulfilled in 
the case (ffiay n 9ft = C • 1, but in this case we already have the stronger 
Theorem 2.5. 

Note that Theorem 3.4 generalizes the main theorem of [7] and [30]. 
Example 5.14 in [7] shows that the theorem may fail if G is not a Lie 

group. 

Proof of Theorem 3.4. We follow partly ideas from [4] and [30], showing 
that all the elements of %a

F are analytic for 8 with a uniform radius of 
analyticity. 

By Lemma 2.3, 8 has a decomposition 8 = 80 + 8, where 80 and 8 are 
*-derivations mapping 9t£ into %R% 80| a = 0, and 8 = ad(/z), with 
h e 2)îp Next, Lemma 3.1 implies that 80 and 8 extend to Tl% and 
80 is defined by a cocycle 

G 3 y H-> L(y) G (Wlay n Wla
F. 

In particular, 8(Wla
F) c Wla

F. 
A 

For each y e G, let w = w(y) be a maximal partial isometry in 
3ttfc i.e., 

(1 - m/*)2r(y)(l - w*w) = 0. 

One can see from the proof of Lemma 3.1 that this implies that the central 
supports of both uu* and u*u in Wla are equal to 1. 

Now if all the i/(y)'s were unitary, the techniques of [4] would apply. We 
can reduce to this case by the following artifice. L e t ^ b e the Hilbert space 
on which Jt is acting, and replace Jt by ££($?) ® 2ft, a by id ® a, 8 by 
id ® 8 (and similarly for 80 and 8). Then clearly 

(J2pT) 0 2ft)id®a(y) = £e(tf) ® 2T(y), 

where the last space is the weak closure of the algebraic tensor product. As 
the restriction of id ® 80 to the algebraic tensor product ££(3^) ® Wla(y) is 
defined by left multiplication by 1 ® L(y), which is bounded, it follows 
that id ® fi0, and hence id ® ô, extend to (£pP) ® 3ft)p. A simple 
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Cantor-Bernstein type argument establishes that the initial and final 
projections of the partial isometry 1 ® u(y) are equivalent to 1 ® 1 by 
partial isometries i n i fp^ ) ® Wla, and modifying 1 ® u(y) by these partial 
isometries we obtain unitaries 

U(y) e (£>(JÏ?) ® Wl)id®a(y). 

Therefore the condition T of [4] is fulfilled for the action of G on the 
norm-closure of (^(J^) ® W)F. It now follows from Lemmas 2.4 and 2.5 of 
[4] that (Se(J^) ® W)F consists of analytic elements for id ® 8 and that 
±( id ® 8) is dissipative on (JZpP) ® Wl)F; it is crucial here that G is a Lie 
group. But then ± S is dissipative on 9l£ and %a

F consists of analytic 
elements for 8. It follows from the Lumer-Phillips theorem that 8 is 
closable and its closure is a generator, [12, Lemma 3.1.14 and Theorem 
3.1.16]. 

We do not have any very general results about the situation where the 
central projections E(y) vary with y. The few results we do have depend on 
the following lemma, which has some interest in its own right: 

LEMMA 3.6. Let 50 be a ^-derivation on a C*-algebra or von Neumann 
algebra 31. Let h = —h* G 2Ï be an analytic element for 50, and define 
another derivation 8 by 

D(8) = D(80l 

8(x) = 80(x) + [h, x] for x G D(80). 

If x is any analytic element for 80 and t0 is a positive number such that 

2 

*oW (*) i V lo l°o W H ^ j 
2^ -^—^ < oo, and 

n=0 n\ 

< oo, 
n=o n\ 

then x is also analytic for 8 and 

S tn\\8"{x)\\ ^ 
2a < OO 

«=o n\ 
for all t < t0. 

Proof A direct proof of the last estimate seems to lead to dire 
combinatorial difficulties, so we will give a proof based on the cocycle 
formalism for perturbations of derivations as presented in [12] or [9]. This 
proof was suggested in conversation with Palle Jorgensen. 

First define 
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0 0 /?£ " / v \ 

e<\x) = 2 ^ ^ 
«=o ft! 

for |/| < /0, and define ^ô°(/z) analogously. Next define 

It = 1 + 2 f0 dtx /!' dh . .. / J" ' dtne<»\h).. . e'^ih) 

for |/| < t0. Then Th
t is the unique solution of the differential equation 

y(r?) = r? A*) , 
at 

and the functions / -» ^ °(/z) and / —» 1^ clearly have analytic extensions to 
the disk {z: \z\ < t0}. 

Next define 

et8(x) = Th
te

t\x)Yh^ 

for \t\ < t0. Then / —> e' (x) has an analytic extension to the disk \z\ < f0, 
and we have 

j(e'\x)) 
dt 

= r j e'5°(Ô0(jc) + / « - xA) i t * 

= Th
te'\S(x))Yh

t*. 

Iterating this computation, we get 

J(^) \ .o = «"<*)• 
Therefore the analytic function ez (x) has Taylor series 

«» - 2 ^ . 
where the power series converges in norm for \z\ < t0, [12, Theorem 
2.5.21]. The lemma follows. 

We can now prove 

PROPOSITION 3.7. Let a be an action of the circle group T on a C*-algebra 
21, and assume that there exists a faithful G-covariant representation of 21 
such that E(n) = E(~n) for all n e Z, where E(n) denotes the range 
projection of the ideal 2T(>z)2t»* of%a. 

Let 8 be a * -derivation mapping 21^ into ^satisfying the condition 

E(n)8(x) = 8(x) forx e 2 1 » . 
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// follows that 31^ consists of analytic elements for 8, and 8 has a closure 
generating a one-parameter group of *-automorphisms of%. 

Remark 3.8. Note that the condition E(n) = E( — n) is automatically 
fulfilled if 31 is abelian. 

Proof Let Wl denote the weak closure of 31. Lemma 3.1 allows us to 
extend 8 to a derivation of 8:Wl°^ —> Wl% and Lemma 2.3 gives us a 
decomposition 8 = 80 + 5, with 50| « = 0 a n d ^ implemented by an 
element of Wl^. Using the technique of tensoring with j £ p f ) as in the 
previous proof, we may assume that each spectral subspace Wla(m) 
contains an operator U(m) with the property 

U(m)U(m)* = E(m) = E(-m) = U(m)*U(m). 

Thus any element JC e E(m)Tla
FE{m) has a decomposition 

oo 

x = 2 x„U(m)n, 
n= —oo 

where all the terms except a finite number are zero, and 

xn e 2T({0 , l , . . . , m - 1}). 

As 80(E(m) ) = 0, 50 maps the algebra E(m)Wa
FE(m) into itself, and also 

the restriction of 80 to 

E(m)Wla( {0, 1, . . . , m - 1} )£(m) 

is bounded and maps this space into some finite spectral subspace 9^a(A), 
where A is a finite subset of Z. Now one deduces as in [4], Lemma 2.3, that 
there exist finitely many bounded maps 

8n:E(m)Wla( {0, 1, . . . , m - 1} )E(m) 

-> E(m)Wla( {0, 1, . . . , m - 1} )E(m) 

such that 

80(x) = 2 ôw(x)[/(mf 

for all x G. E(m)$Jla( {0, 1, . . . , m — 1} )E(m). Next one concludes, as in 
[4], Lemmas 2.4 and 2.5, that E{m)Wa

FE(m) consists of analytic elements 
for 80 with a uniform radius of analyticity, and that zt50 is dissipative on 
E(m)$Ra

FE(m). The same holds for the linear span of a finite number of 
the spaces E(m)Wl^E(m), and hence Tl^consists of analytic vectors for 80 

and 80 is dissipative on Wl^. It follows from Lemma 3.6 that Wa
F also 

consists of analytic elements for 8 = 80 + 8, and ±8 is dissipative as ± 5 0 

and ±8 are so. 
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We end by stating a result which is essentially a corollary of a theorem 
of Kishimoto, [19]. 

THEOREM 3.9. Let a be an action of the circle group T on a separable 
simple C*-algebra 91, and let 8 be a closable ^-derivation with D(8) = %a

F 

and 8(%a
F) c W". It follows that ^consists of entire analytic elements for 8, 

and 8 is a generator. 

Proof By [19], Theorem 2.1, 91 has an irreducible T-covariant 
representation, and the action of T on 51" = J£(JF) is then implemented by 
a unitary group t M> exp(27ritN), where N is a self-adjoint operator with 
spectrum contained in Z. By Lemmas 2.3 and 3.1 (and Remark 3.2; here 
the closability of 8 is used), 8 has a decomposition 8 = 80 4- 8 and S0 

extends to J£pf )F. In this case, 80
 = ad(/i/), where H is affiliated to 

(J?(Jf)ay, the maximal abelian von Neumann algebra generated by the 
bounded functions of N. Thus H = f(N) for a suitable function/, and it 
easily follows that 

80(^(J^)a(n) ) c Se(J?Y(n) for all n. 

Thus 80 commutes with a, and 80 is a generator by [8] (or for elementary 
reasons). Also <Sf(JF)a

F consists of entire analytic elements for 80 and hence 
for 8, by Lemma 3.6. Furthermore, ±8 = ±(80 + 8) is dissipative on 
J>?p^)p Hence 5 is a generator. 
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