London Mathematical Society ISSN 1461-1570

AN ALGORITHM TO COMPUTE THE CANONICAL BASIS
OF AN IRREDUCIBLE MODULE
OVER A QUANTIZED ENVELOPING ALGEBRA

WILLEM A. DE GRAAF

Abstract

The paper describes an algorithm to compute the canonical basis
of an irreducible module over a quantized enveloping algebra of a
finite-dimensional semisimple Lie algebra. The algorithm works for
any module that is constructed as a submodule of a tensor product
of modules with known canonical bases.

1. Introduction

In this paper we consider the problem of constructing the canonical basisL{@gef an
irreducible module over a quantized enveloping algebra. There are several possible w
to approach this problem, and they may depend on how the module is constructgd. In |
an algorithm is described that works for any module, provided that we have a method f
computing the action of elements of the algebra.lh][and [12] the irreducible module

is first constructed as a submodule of a tensor product of other modules. Then, using
known canonical bases of these other modules, an algorithm is described for construct
the canonical basis of the submodule.

Since constructing irreducible modules as submodules of tensor products can be qt
efficient (see %)), it would be worthwhile to have an algorithm tailored to this situation.
Therefore, in this paper we take the second approach above. In fact, we describe an algori
that is very similar to those iriLfL, 12]. The main difference is that we do not assume that
the root system is of a certain type. The algorithm given here works for all types, assumil
that somehow we know the canonical bases of the fundamental modules. These can,
instance, be constructed using the algorithm of [4].

This paper is organised as follows. In Sectithe theoretical concepts and the notation
used in the paper are introduced. Then in SecB@result is described concerning the
form of the elements of the canonical basis of a tensor product. In Sekthis is used,
along with the description of a monomial basis of an irreducible module (fi@),[to
give an algorithm for constructing the canonical basis. Next, in Seéttbis algorithm is
compared to the algorithm froni]] in the A,-case. It is shown that in this case the two
algorithms are very similar (but not exactly the same). In the final section, some exampl
of practical experiences with the algorithm are reported.

2. Preliminaries

In this section we briefly sketch the concepts and notation that we will be using. Ot
main reference is [6].
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Computing canonical bases

Let g be a semisimple Lie algebra ov€t By ® we denote the root system gf and
A = {a1, ..., o} will denote a fixed set of simple roots df. Let W denote the Weyl
group of ®, which is generated by the simple reflectiops= s,, for 1 < i < /. LetR®
be the vector space ovBrspanned byb. On R we fix a W-invariant inner product, )
such that«, o) = 2 for short rootsr. This means thatw, o) = 2,4, 6 fora € .

We work over the fieldQ(g). For « € ®, we set ¢ = ¢*%/2, For n € Z, we set
[nle =" ™ +q." 2+ ...+ 27t Also[nly! = [nle[n — 11, ... [1], and

m o Inly!
kl,  [kla!ln —klo!

Let A = {a1,..., o} be a simple system ¢b. Then the quantized enveloping algebra
U, = U,(g) is the associative algebra (with an identity element) d¥&r) generated by
Fy, Ko, K71 andE, for a € A, subject to the following relations:

KoK =K 'Ky =1,
KoKg = KgKy,
EgKoy =~ “P Ko Ep,
KoFp =q~ “PFgK,,

Ky — K1
EQF/S = FﬁEa + aa’ﬁﬁ,
o Ya

o _ Vi v
Z (—1)¢ |:1 (/:, o )] EL-pe 'kgyE = 0,
o

1—(B,x

, B y s
Z (—1)f |:1 (f, o )} Fi-pe )~k pk — o
k=0 o

where the last two relations hold for all# 8.

LetU~, U%andU™ be the subalgebras of, generated, respectwely, By, fora € A,
K*lfora € A, andE, for « € A. Then, as a vector spadé, = U~ @ U’ @ U+ (see
[6 Theorem 4.21]). Let = Zk aroy With ai € Z>o Then we letU;} be the subspace of
U™ spanned by alE,, E,, such thabe,-1 + ... +a, =v. Similarly, U, denotes the
subspace ot/ ~ spanned by aIFa ... Fy, such tha't)z,1 +.. 4o, =,

We denote byr, ..., A; the fundamental weights, and W = 7Zx + ...+ Zay,
the weight lattice. AIso,PJr = Zzoh1 + ... + Zxoh is the set of dominant weights.
Now, for every dominant. € P, there is an irreduciblé/,-module vV (1). The module
V(1) is spanned by vectons, for 1 € P, with K, - v, = ¢*®v,,. Thesev, are called
weight-vectors of weight. Among them there is the vectoy, (which is unique up to
scalar multiples), wittU* - v, = 0. Thisv, is called thehighest-weight vector. We find
that V(1) = U~ - v,. Furthermore, every finite-dimensional irreducildfg-module is
isomorphic to & (1); see [6, Theorem 5.10].

Let M be afinite-dimensiondl,-module. ThenV has a crystal bagem, B) as defined
in [6, 9.4]. HereM is anA-submodule of\f, whereA is the subring of)(¢) consisting of
rational functions without pole at 0, a8l is a basis ofM /g M. Fora € A, we have the
KashlwaraoperatorEa E, : M — M, andtheinduced operatofs E,: B — BU{0};
see [6,9.2,9.4].
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There is aQ-algebra isomorphism
TiU; > Uy, Withg=g 1 Ey=Ey, Fq=F,andK, = K, %

see [6, Proposition 11.9]. ¥ (1) is an irreduciblel/,-module with highest weight, and
fixed highest-weight vectar, , then we have an induced map

V) > V() by u-v=u-v;.

(This is well defined by [6, Proposition 11.9].) The fixed choice #grleads to a fixed
crystal basgL(}), B()) of V(%), whereL()) is spanned by allﬁ)l,.l ... Fy, (v), for

r > 0. Now (for example, by]6, Theorem 1.8] and5] Theorem 11.10]) there is a unique
basis{G, (b) | b € B(1)} of L(L), such that:

1. Gy (b) = b modgL(L);
2. Gy.(b) = Gy(b).

This basis is called theanonical basis o¥ (1).

In the discussion that follows, when we writhé crystal base’ or ‘theanonical basis’
of V(1), we are always assuming that a fixed highest-weight vagtdras been chosen,
which makes the choice of the crystal base or the canonical basis unique.

The crystal graphi™, of the moduleV (1) is defined as follows. The points @f, are
the elements ofB (1), and there is an edgeg LN by if Fa(bl) = by. There is a very
elegant method of computing the crystal graph, using Littelmann’s path methoR.A_et
be the vector space ov& spanned by the weights. L&t be the set of piecewise linear
pathsz : [0,1] — RP, such thatt(0) = 0. Fora € A, Littelmann defined operators
ey, fo 1 I — I1U {0} (see [13,14]), with the following property. Let. € P* be a
dominant weight, and let, be the path given by, (r) = Ar (that is, a straight line from
the origin tol). Let IT,, be the set of allfy, fa, (7r3). Then all paths i1, end in an
element ofP. Furthermore, the number oflpaths endingig P is equal to the dimension
of the weight space with weight in the irreduciblel/,-moduleV (1).

Now we consider the directed labeled graph with poinisgtand edges L o if
f« (1) = 2. This graph is isomorphic to the crystal graphvaf.); see [8].

Let M1 andM> be U,-modules; therd/; ® M> is aU,-module via the comultiplication
of U,. There are many possible ways of defining this, and the comultiplicatio&, —
Uy ® U, that we use is given by

A(Ey) = Eq ® K '+ 1® Eq;
A(F) =F, ®1+ Ky ® Fy;
A(Ky) = Ko ® Ko

see [6, 9.13].

3. Canonical bases of tensor products

Here we give a description of the canonical basis of a tensor product, followin
[6, Chapter 9] and [17, 27.3].

Let V(n) andV (1) be two irreducibld/,-modules, with highest weightsandu’. Let
C ={v1,...,vu}andC’ = {vy,...,v,} be fixed canonical bases &f() andV (").
Denote the weights af; andv]’. by v; andvjf, respectively. Them; = u — )", ax joi With
a,; € Z>o, and we say that ", ax ; is theheight ofv;. The height oﬁ)/’. is defined similarly.
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We assume that the basésandC’ are ordered according to increasing heightvge- v,
andv] = v,y are the highest-weight vectors.

Let (£, B) and(L’, B) be crystal bases df (1) andV (u”) respectively. Heref and
L’ are spanned b¢ andC’, respectively. Furthermore8 and 8’ consist of the cosets
v; modg<L and v]/. modg£’. Now, by [6, Theorem 9.17)(£L ® L', B ® B') is a crystal
base ofV (1) ® V(u').

We let® be the element from [17, 4.1], and then

P:U,®U;, — U, ®U,
is the algebra homomorphism defined Bya ® b) = b ® a. We set & = P(®); then
oY = Y50 @2, where the sum runs over ajl= ", bray With by € Z>o. Furthermore,
0 + - 0 _
0,elU, ®U, and O5=1®1.
NowWo : V(n)®V(u) — V(n)®V(u)isthe map defined byo(v@v') = @°w®7).

LemMA 1. We havebo(u-v®@v') = u-Wo(v@v') forallu € U~ . Furthermore W2 (v@v') =
vvforallve Viu),v e V).

Proof. This is the same as the proof of the corresponding resultdin 27.3.1]. The
difference is that we use a different comultiplication. Denoting the comultiplication use
in [17] byA ., we haveA (F,) = F, ® K;* + 1® F,. This means that far € U~, we
have _ _

A(u) = P(Ar(u)), where Ap(u) = Ap(u).

The property that; (u)® = ©Ay (u) (see [17, Theorem 4.1.2]) now translates to
Aw)O° = OYA®),

where A is defined similarly toA;. From this, the first statement follows. The second

follows from ©°8° = 1 ® 1; see [17, Corollary 4.1.3]. O

We define a partial order on the ® vj/.. We set p ® v]/. <y uyifandonlyifi < k,
j > 1, andy; —{—vj/. =+

ProposITION 2. There are unique elemenis; € V(1) ® V(u') such that

(i) Wo(w;j) = wij;

(i) wj=v® vj’. + Dk Ckvi, ® vj’.k, with &k € qZl[q], andv;, + vj’.k =v; + v/’..
Also,v;, ® v]’.k < ® v]’. for all k. The elements);; form a basis oV (1) ® V (u').

Proof. This proceeds in the same way as the proof of [17, Theorem 27.3.2]. Note that

Wo(v; ® vj) = v; ® V) + Zékvik ® v, 1)
k

with & € Z[g, ¢~ *]. From®) € U," ® U, and the assumption on the ordering®and
C’, itfollows thatv;, ®v]/.k < ®vJ’. forall k. Let X be the set of alli, ;) with v; +v]/. =,
for a certainv. Order the elements of in such a way that; ® v, < v, ® v,/ implies that
(i, j) appears beforék, I). Let (i, j) be the smallest element &f. Then, by (), we see
thatWo(v; ® vJ’.) = v; @ v’. Soin this case we sef;; = v; ® v:. Now choose &k, ) € X,
and suppose that, ; exist for all (r, s) € X appearing beforék, /). Then, using 1) and
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the triangular form of thev, 5, we can write¥o(vy ® v)) — vk ® v; = D, ( &y 5wy 5, Where
v ®v; < v @ ;. After taking images undebp, and using the fact thaltg is an involution,
we see that the, ; € Z[q, ¢ ] satisfy¢,; = —¢,,. This implies that there are unique
8y € qZIg] With &5 = 8,5 — 8r.5. NOW S€twi; = vk ® v] 4+ X, ,5wys. For the
unigueness, suppose that therezafjee V(u) ® V(u') satisfying conditions (i) and (ii).
Then we writew; . as a linear combination aé;;. By condition (ii), the coefficients are in
Zlq]- Then cond]ition (i) implies that they are 7 Finally, from condition (ii) we see that
one coefficient is 1, and the others are 0. O

Let V(1) denote the/,-submodule oV (1) ® V(1) generated by, @ v,y = v1 ® v].
So V(a) is the irreducibleU,-module with highest weight = n + u'. SetL(A) =
(LRLYNV),andB(L) = (B ® B') N L(X)/qL(\). Then, by B, Proposition 9.10],
(L), B()) is a crystal base of (1) (the hypotheses of this proposition are satisfied by
[6, Proposition 9.23 and Lemma 9.26]).

THEOREM 3. The elements of the canonical basigaf.) have the form
w@ )+ Y g, @,
k
with & € qZ[q], andv;, ® v}k <1 ® vJ’. for all k.
Proof. We know that¥p(vy ® v}) = v1 ® v].
So by Lemmal, ¥g coincides with~ on V(1) (whereu - v1 ® v} = u - v1 ® v}). Hence
the elements of the canonical basidaf) are invariant undewg. Also, since the elements

of the canonical basis lie uf (1) and are equal toa ® v; mod ¢ £(1), they must be of the
formv; @ vj + Y &kvi, ® vJ’.k with ¢x € gZ[q]. Now Propositior? finishes the proof. [J

Now let Vipa), ... Vin) be irreducible U,-modules with canonical bases;
= {v}, ..., v,,}, ordered according to increasing height. We consider the tensor produ
V=V(u)®...® V(u). We write

1 r 1 r
Vi, ®R...Q v;, <lexVj; ®R...Q vy

if there is ak with i1 = j1, ..., i = jr andigs1 < je+1. Setr = p1 + ... + u, and let
V(1) be theU,-submodule oV generated byl ® ... ® v}.

CoROLLARY 4. The elements of the canonical basidaf) have the form

vi11®...®v,~rr+2§kxk,
3

wheregy € qZ[g), xk € C1® ... ® Cy, andxk<|.3xvl.1l ®...0.

Proof. The case = 2 is covered by Theorel®, so suppose that> 2. LetW be theU,,-
submodule oV (u2) ® ... ® V(i) generated byf ®...®v]. ThenW is the irreducible
U,-module with highest weightt + ... + u,. Let{w1, ... , ws} be the canonical basis
of W. Then by Theoren3 the elements of the canonical basisitf.) have the form

vl-ll Q wj, + ngvilk ® wj,,
k=2
with iy < i forallk > 2, andg, € gZ[q]. We obtain the result by writing alb; fork > 1
as linear combinations of elements@f ® ... ® C,, and then using induction. O
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4. A monomial basis o¥ (1)

In this section we first describe a basisofi), following [10]. Then, using this, we
derive an algorithm for constructing the canonical basi¥ ¢f), whenV (1) is viewed as
a submodule of a tensor product.

Letz € IT,. Then the first direction ot is w(x) for somew € W/ W, (see [13, 5.2]),
whereW, is the stabilizer ok. Set¢ () = w. Lets;, ...s;, be the reduced expression for
¢ (), which is lexicographically the smallest. (Hesg,. . . s;, is lexicographically smaller
thans;, ...s;, ifthereisak > Osuchthat; = ji, ... ,ik—1 = jkx—1andiy < ji.) Thenwe
define integeray, ... , n,, and pathsrg, 71, ... , 7, in the following way. Firstyrg = 7.
We letn; be maximal such thaﬂfk me—1 # 0, and we set; = egfk Tr—1. Set

Ne = (n1,...,n,) and Fy = Fog,_"lv...poggr).

Letb, € B()) denote the unique element of weigh(it is the coset ob; modulog L (1)).

Set - -
bx = Fyt ... Fy (by);

thenB8(A) = {b, | m € II,} (this follows from B]). In the discussion that follows,
we let <p denote the Bruhat order on the Weyl grobf The lexicographical order on
sequences of lengthis defined by(my, ... , m,;)<jex(n1, ... , n,) if there is ak such that
mi=na,...,mg_1 = ng_1andmy < n;. We now define a partial order am, as follows.
Firstofall,m < o if ¢() <p ¢ (o). Secondly, ifp () = ¢ (o), thenw < o if Ny >jexny-
For the proof of the folowing theorem we refer to [10].

THEOREM 5.
Fr v =Gubr)+ Y LroGrlbo),

o<

where¢, » € Zlq, g7 11.

CoROLLARY 6. The sef{F,, - v, | m € Iy} is a basis ofV (A).

Letw e Iy, andF, = Foﬂj’ll) . FOE”) Then we say that is of weightv = >, nxa;, .
We note that this means thay, - v, is a weight vector irV/ (1) of weightir — v. By IT, ,,
we denote the set of all € IT, of weightv.

Suppose that = w1 + ... + 1, where theu; are dominant weights. Also suppose
that we are given the modulés(u;) with canonical base€; = {vi, ce vjnl_}, ordered
according to increasing height. We identify1) with theU,-submodule oV (1) ® ... ®
V(u,) generated by, = v% ®...0 v,l. SetC = C1 ®...Q® C,, which is a basis of
Vu) ® ... V(u,), ordered with respect taex (see the previous section).

Theoremb leads to the following algorithm for computing tlig, (b ), for = € I, .
Let o1, ..., 0, be the elements froml, , that are smaller tharm. We assume that the
G.(bs;) have already been computed. Write (bs;) = yi + D) &k yix, Wherey;, yix € C
andy; >exy; « for all k. We assume that; <iexy; implies thati > j. Then we proceed as
follows.

1. Write X = F;; - vy as a linear combination of elements®f

2. Fori =1,...,r, we act as follows.
Let Si be the coefficient of; in X. Let&; be the unique element @fg, ¢—1] such
thatt; = & and¢; + & € qZIq].
SetX (= X + &G (by,).
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ProrosiTiON 7. When the loop in Stepterminates, we hav® = G, (by).

Proof. Note that by Theorerh there are coefficients such that

Gilbx) = Fr - va+ Y_&Gi(bs).
i=1

This implies thatt; = &;. Also, by Corollary4, we know thatG; (b,) is of the form
x + ), wexi, Wherex, x; € C andwy € gZ[g]. Note that by Corollary, y; does not
occur in anyG, (bs,), except forG, (bs,). Therefore & is uniquely determined by the
requirements that it should be invariant undeand¢1 + & € gZ[q]. Then, in the same
way, we see that, is uniquely determined, and so on. O

ExamprLE 8. Let @ be the root system of typ€6,. We denote the simple roots df by

«a and B, whereg is long. The fundamental moduké(ry) is seven-dimensional, and the
canonical basis i€1 = {v1, ... , v7}; these are weight vectors of weighits 0), (—1, 1),
(2,-1),(0,0), (—2,1), (1,—1) and(—1,0). Here we abbreviate a weighti1 + nio as
(m, n). The fundamental modul& (1) is fourteen-dimensional and has canonical basis
Cz = {w1, ..., w14}. Thew; are weight vectors of weight®, 1), (3, —1), (1,0), (-1, 1),
(-3,2),(2,-1),(0,0), (0,0, (3,-2), (—2,1),(1,-1),(-1,0), (—-3,1) and(0, —1). A
description of the action of the generatorgffon V (A1) can, for instance, be found i
and the action o/, on V (i») is described in§, 5A.4]. Alternatively, these modules can
be constructed using th@AP4 packageQuaGroup [2, 3]. This package has been used to
perform many of the calculations used in the rest of this example. Now iies&i1 + 1.
ThenV (1) is the submodule oV = V(11) ® V(A1) ® V (A2) generated by; ® vi ® ws.
We construct the elements of the canonical basig @f) that are of weighix = (-2, 2).
We use the following elements of weigt

X1 =v1 ® v2 ® wio; X2 =11 ® v4 @ ws; X3 =v1 ® vs ® wy;
X4 =02 ® V1 ® wig; X5 =102 ® v2 ® wy; X6 = V2 ® v2 ® ws;
X7 =12 ® V3 ® ws; Xg = 12 ® v4 @ wy; X9 =12 ® U5 @ w3;
X10 = V2 ® v7 Q@ w1, X11 = v3 ® V2 @ ws; X12 = V4 @ V1 ® Ws;
X13 = V4 ® V2 ® wy; X14 = v4 ® v5 ® wi; X15 = U5 ® V1 ® w4;
X16 = U5 ® 12 ® w3; X17 = 5 ® v4 ® wi; X18 = V7 ® v2 ® wi.

They are listed in lexicographical order; thatis<|exx2<lex - - - <lexX18. The weight space
of weightu in V(1) is five-dimensional. So we have five pathsn the crystal graph. The
corresponding words in the Weyl group are

@ (1) = SuSSq;

¢ (2) = 5g5a58;

¢ (713) = SaSpSas

@ (74) = SuSgSasp:

@ (5) = SuSBSaSESa-
Settingn; = n,, we haveny, = (4,2,1), 92 = (1,5,1),n13 = (3,2,2), na = (3,1,2,1)
andns = (2,1,2,1,1). Sowe see that; < 73 < m4 < 715 andny < m4.
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Therefore we have
G(br,) = Fryvx
= x16+ ¢%x15 + ¢3x13 + ¢%x12 + ¢Bx11 + gxo + ¢3xg + ¢ "x7 + ¢ x3 + ¢
Gi(bxy) = Frpvp = x11+ ¢°x7 + ¢%xe.
Also,
Fravn = x17+ g*x16+ gx1a + ¢3x13 + ¢®x11 + ¢3x9 + ¢°xg + ¢%x7.
All the coefficients, except the first one, arejifi[g]. HenceG (bx,) = Fryvi. Now
Fryvi. = (g +q Dxte+ (g + ¢Dxas+ A+ + ghxas+ (@ +¢° + ¢ Dxz
+@®+a°+q" +q)xn+ A+ Do+ (24 + s+ (6% +24° + ¢%)x7
+q*xs + %+ (g% + ¢®x3 + (¢° +¢" + ¢D)x2 + ¢ x1.

The coefficient ofx16 is not in ¢gZ[q]. Following the algorithm, we see thét, (br,) =
Fr,vs — (g + ¢ 1 Gy (by,); we obtain

G(bry) = x13+¢°x12+ (3 +¢°)x11+¢%xs + (g% +¢%)x7+ g% x5+ ¢%xa+¢°x2+q x1.

Finally,

Frgvy = x18+ (29 + ¢ Hx17+ (2¢° + 29 + ¢ Hxis+ (g + ¢¥)x15+ (29 + ¢)x14
+2q* +3¢° + Dxaz+ (a3 +¢° + q)x12+ (g + 24+ 3¢° + 29" + ¢)xna
+¢°x10+ (1 + 29% + 2¢%)x9 + (29° + 3¢* + ¢%)xs
+(29* +3¢° + 3¢ + ¢"Ox7 + (¢* + ¢®x5 + ¢°xa
+q* +¢%x3+ (@°+ 4" +¢%x2+ ¢ x1.

We see that the highest basis vector not having a coefficigfiZin] (apart fromx1sg) is
x17. SO we look at

Frgus — (@ + ¢ HGo(bry) = x18+ (% + g + ¢ Y)x1e
+(q* +2¢° + Dxiz+ (@ + >+ D+ ...

(here, all the coefficients that have not been written ligZifig]). Now x16 does not have a
coefficient ingZ[q], so we look at

Frgvi — (@ + ¢ HGlbry) — (¢ + ¢ HG3(bry) = x18+ (g% + Dz + ... .
We see that
G (brg) = Frgvs — (q + ¢ HG3(bry) — (g + ¢ HGi(bry) — Gi(bry).

REMARK. Letw € II,, and let¢ () = s, ...s; be the reduced expression that is the
smallest in the lexicographical order. Let

Fr = Fg’ll) L F.
Write « = o, If n1 > 1, then by [13, Lemma 5.3(b)§ (e, 7)) = ¢ (), and hence
Fopw = Fgfll—b . F,gij.

Ontheotherhand, if; = 1,then by [L3, Lemma5.3(a)] we see thaip (e, ) £5 ¢ (eqm).
So by [13, Lemma 5.3(b)lp () = se¢(eq). Thereforep (eqm) = si, ... si,, Which is
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the smallest reduced expression (in the lexicographical ordeg)(fgrr ). Hence
F, » = F(nz) CFr)

a;,

The conclusion is that

Fr vy, = _Fa‘(Feun'vk)-
[n1]a

So, in order to computg;; - vy, we have only to act witlt,, on a vector that we have already
computed.

REMARK. Instead ofthe algorithm described here for getting the monorfjglene can also
follow the procedure outlined irLp] for constructing so-called ‘adapted strings’. Instead of
¢ (1), this procedure uses the longest element in the Weyl group. However, the monomi:
that one finds in that case are generally different from the ones that we obtain. Moreov
they do not in general have the nice property described in the previous remark.

5. TheA,-case

In this section we assume that the root systetig of type A,,. We use results fromg]
to show that in this case our algorithm is very much like the algorithm described.]n [
The simpleroots arey, . .. , «,, where we use the usual ordering of the nodes of the Dynkin
diagram (see [1]).

Since the fundamental weights are all minuscule, the corresponding irredigible
modules are easy to construct (see [6, Chapter 5A]).VF@r;), we consider the set of
sequences = {(i1,...,i;) |1 <i1 <iz2 <...<i; <n+1}. LetV be the vectorspace
overQ(q) spanned by fors € S. Lets € S. If i occurs ins, buti + 1 does not, then we
let s'~ be the sequence obtained franby replacingi by i + 1, and we sebi~ = v,;-.
Otherwisepi~ = 0. Also, ifi +1 occurs ins, buti does not, then we Iat* be the sequence
obtained froms by replacing + 1 by, and we setit = v, . Otherwisep!* = 0. Now
aUj,-action onV is defined byF,, - vy = v}™, Eq - v = vit, and

qus, ifieSandi+1¢S§,
Ky -vs=1{q v, ifigSandi+1les,
Vs, otherwise.

Then theU,-moduleV is isomorphic toV (1;). To see this, we note that is a weight
vector of weightuy; = air1 + ... + a,Ar,, Whereq; = 1ifi € S,i+1¢ S;a;, = -1
ifi ¢ S,i+1¢€ §;anda; = 0 otherwise. Set,, = (1,2, ... ,k); thenuw = Ak.
Ifi € Sandi +1 ¢ S, thens,, (ns) = u,i—. Since all elements of can be obtained
from s;, by a sequence of ‘moves’ — s'~ (see [9, Proposition 3.3.1]), we find that
{us | s € S} = W - . Finally, we compare this with [6, 5A.1].

Let L£(1x) be theA-submodule ofV spanned by the,, and let8B(A;) be the set of
all vy modgL(Ay). Then(L(ry), B(1y)) is a crystal base oV (see [6, Lemma 9.6]).
Furthermore(; = {v, | s € S} is the canonical basis df. (Indeed, they, are certainly
invariant under — because they are of the formFal.l o Fyy g Secondly,
{vs Mod gL (M) | 5 € S} = B(ui).)

So the elements a3();) are labeled by the elements 8f From [9] we obtain the
action of the Kashiwara operators as foIIovis;(vs) = vé’ mod gL (Ay), andﬁai (vy) =
vit mod gL (Ax).
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We write a sequence= (i1, ... , ir) as a diagram with one column of lengttand the
elementsy, ... , i, from top to bottom. For example, the sequefited, 5) is
.

Now letA = air1 + ... + a,A, be a dominant weight, and consider the tensor product
W =VOh)®1 ®...Q0 V(,,)®. The basis elements are labelled by tableaux with
ap+ay—1+...+a1 columns. Thefirst, columns have length, the followinga, —1 columns
have lengthn — 1, and so on. The tableaux are filled with element§loP, ... ,n + 1},
such that every column is strictly increasing. Then every column of leng#termines a
basis element o¥ (1;). Tensored together, they form a basis elemenvofor example,

1[1[4]
2|3 —.®I
El

Then the highest-weight vectoy, of weight in W, is labelled by the tableal, , where
theith row contains only the numberLet V (1) denote the submodule 8&f generated by

v,. Let (L(1), B(1)) be the crystal base df (1). Then, by P], the elements of3(1) are
labelled by tableaux with non-decreasing rows. In particular, these tableaux label the poil
in the crystal graph. Fron®], we obtain the following algorithm for computir@i (T)and

E,. (T), whereT is such a tableau.

1. Write the numbers in the tableau as a sequence, starting from the top right, and goi
along the columns from right to left, top to bottom. Below each number, write' a *
if it is equal toi, a ‘—"ifitisi + 1, and a blank otherwise.

2. If there is a+ followed by a— (maybe separated by blanks), then replace them by
blanks. Continue until this operation is no longer possible.

3. (a) Ifthere is not left, thenF,, ;(T') = 0. Otherwise, change thiecorresponding to
the leftmost+ to ani + 1. Rebulld the tableau, and the resulﬂ§(T)
(b) Ifthere is no— left, thenEy, ;(T) = 0. Otherwise, change tfie- 1 corresponding
to the rightmost- into ani. Rebuild the tableau; the result@ (T).

ExaMPLE 9. Let the root system be of typés, and set

1[1[3]
T=22 .
3]

Then the sequence that we obtain,id 2, 1, 2, 3. If i = 2, this corresponds teo +o0 + —
(where we represent a blank by). After the operation of step 2, this becomes + ooo.
We see that

1[3]

- 1/2]
3 and E,(T) = .

2

Fo,(T) =

(w[n[e

(W[N]

Now, from a tablead” we obtain a monomiaF; = F(’"l). F(m") in the following
way. Letsr be the path corresponding 10 (since the paths ifl;, Iabel the points of the
crystal graph, and so do the tableaux, there is a natural correpondence between the twe
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Let¢ () = si; ...si, be the lexicographically smallest reduced expressiomptar).
We obtain the exponents, ... ,m, as follows. We lein, be maximal, such that

EqH(T) #0;
thenmy is maximal, such that
Eq2EQH(T) # 0,
and so on. Once we have the monomigjsfor all the tableaux’’, we proceed with the
algorithm of Sectiont.

The algorithm described iri[L] for computing the canonical basis¥fi) has the same
steps as our algorithm. First, for every tablggua monomial

Fr=FgV. . F"

Ol,'t

is computed. Secondly, from the vectdrs - v, the canonical basis is computed using a
triangular algorithm similar to the one that we use. Therefore, the main difference betwe
the algorithms lies in the first step. We investigate this step a little further.

In[11, 4.1], the authors describe the following algorithm for obtaining a mono#jial
from atablead’. Leti1 be the smallestindex such thiat-1 occurs in am:th row of 7', with
m < i1. Furthermorer1 is the number of occurrencesigf+ 1 on anmth row withm < i.
ThenT: is obtained from" by replacing these; occurrences ofy + 1 byi;. Continuing
with Ty instead ofT’, we eventually arrive at the tabledy, at which point the algorithm
stops. We have obtained the sequenges . , i; andry, ... , r,, and the monomial is

Fr=FgV . Fg.

We note that applyin@a, amounts to replacing an+ 1 by i. Since this + 1 was put
there by a series of applications &, , starting with7;,, we see that this+ 1 must occur on
themth row withm < i. By induction on the number of columns Bf it can be shown that
if i1 is minimal such that; + 1 occurs in amth row of T with m < iy, thenEail(T) # 0.
So our algorithm for obtaining the monomidly is quite similar to that ofI1]. However,
in our algorithm we follow the lexicographically smallest reduced expression of a word ii
the Weyl group, in order to find the sequeiige . . . This means that sometimes we obtain a
different monomial from that found with the algorithm froiil]], as the following example
shows.

EXAMPLE 10. Set

1[4]

T = 3

WIN| -

Then the monomial obtained by the algorithm of [11] ig, F,, Fu, Fo,- Let w be the
corresponding path; thef(ir) = sy354,5«,- This means that the monomial that we obtain

. 2
iS Fus Fi2) F,

We conclude that in thd,,-case our algorithm is very similar to, but not the same as,
the algorithm described in [11].

6. Practical experiences

In this section we discuss some practical experiences with an implementation of t
algorithm inside the packag@uaGroup [3], which was written in the computer algebra
systemGAP4 [2].
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LetA = nir1+ ...+ nA be adominant weight. The input to the algorithm.jslong
with the modules/ (1;), for 1 < i < [. These modules are given by their canonical bases.
Furthermore, for a generatéy, and an element of the canonical basis of@(%;), we can
computerF,, - v by a table lookup.

We recall the notation used in Sectiém. = u1 + ... + w,, wherew; = A;,. We work
inside the tensor produd¥ (L) = V(1) ® ... ® V(u,), with basisC = C1 ® ... ® C,.

We setv;, = v, ® ... ® v,,, Wherev,, is a highest-weight vector of (11;). Furthermore,
the lengthof an element oiv € W(1) is the number of elements @f that occur in the
expression ofv as a linear combination of elements©f

The algorithm consists of two steps. In the first step, we expfgssv; as a linear
combination of elements @f. As explained atthe end of SectidnF; -v; = ¢ Fy - (Fy-vy),
where; € Q(g) andF, - v, is a vector that we also have to compute. It follows that for each
F, - v, we have to compute one imadg - v. Hence in the first step we compute difgr)
times an imager, - v. In the second step we add some elements of the canonical bas
(which we have already computed) to the elemEpt v;. The number of these additions
for eachF, - vy is clearly bounded by diri¥ (1). Hence the total number of additions is
bounded bydim V (1))2.

So the total number of operations (computing an im&ge v, adding one element of
W (i) to another) is bounded by a polynomial in difngx). The cost of these operations
is polynomial in the length of the elements that occur. Now the dimensidir @f) is
exponential in the;. Therefore, an element &F (1) may have a length that is exponential
in then;. So the question is whether elements of that kind occur during the execution of tt
algorithm.

Table 1 contains experimental data obtained using the algorithm. The computatior
were done on a Linux system with a 600MHz Pentium Il processor and 64MB of working
memory forGAP. We see that the algorithm is efficient enough to be able to compute
canonical bases of modules of dimensions into the thousands. We also see that a jum|
the maximal length of the elements that occur in the algorithm corresponds to a jumpin t
running time of the algorithm. This confirms the conclusion of the arguments given abov
namely that the length of the elements that occur is an important factor in the running tim

The data given here do not lead to a conclusion as to whether the algorithm has
polynomial- or an exponential-time complexity. However, they do indicate that the maxime
length of an element — and the running time — can increase rather rapidly ¥ @im
increases. This is seen most spectacularly in the caSe.of
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