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SUBGROUPS OF THE ADJOINT GROUP OF A RADICAL RING

B. AMBERG, O. DICKENSCHIED AND YA. P. SYSAK

ABSTRACT. Itisshown that the adjoint group R° of an arbitrary radical ring R has
aseries with abelian factors and that its finite subgroups are nilpotent. Moreover, some
criteriafor subgroups of R° to be locally nilpotent are given.

1. Introduction. Let R be an associative ring, not necessarily with an identity
element. The set of all elements of R is a semigroup with identity element O € R under
theoperationaob = a+b+abforal aandbin R. Thegroup of all invertible elements of
thissemigroup iscalled the adjoint group of Rand denoted by R°. Following Jacobson[5],
aring Risradical if R = R°, which means that R coincides with its Jacobson radical.
An important subclass of the class of radical rings is the class of nil rings, i.e., rings R
such that for every element a of R there exists a positive integer n = n(a) with a" = 0.
The relation between aradical ring and its adjoint group R° has been investigated for
instancein [11], [8] and [1]. Herewe will study how the nilpotency structure of aradical
ring R is influenced when finiteness and nilpotency conditions are imposed on certain
subgroups of R°.

The first theorem shows that the adjoint group of an arbitrary radical ring satisfies
some solubility condition. Recall that a group G is an SN-group if it has a series with
abelian factors (see[9], Vol. 1, pp. 9f and 25).

THEOREM A. Theadjoint group R° of every radical ring R is an SN-group in which
every finite subgroup is nilpotent.

Using Zelmanov's theorem on the restricted Burnside problem (see [14] and [15]),
we can deduce the following from Theorem A.

COROLLARY 1. Let G be a subgroup of the adjoint group of a radical ring and
suppose that one of the following conditions holds:
(a) Gislocallyfinite,
(b) G hasfinite exponent,
(c) Gisann-Engel group for somen > 1,
(d) Gislocally artinian.
Then the group G islocally nilpotent.
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Note that alocally noetherian subgroup of the adjoint group of aradical ring need not
be locally nilpotent. This can be seen from an example of Neroslavskii [8] of a radical
algebra R over the field with p elements (p > 2) whose adjoint group R° contains a
polycyclic subgroup G isomorphic with the semi-direct product (a) x (b) of an infinite
cyclic subgroup (a) and a cyclic normal subgroup (b) of order p with a~‘ba = b?.

However, if apolycyclic subgroup G of the adjoint group of aradical ring R generates
Rasaring, then G must be nilpotent. Thisfollowsfrom atheorem of Roseblade (see[10],
Corollary 8.4.14) andisa so containedin our next result. A group Gisstrongly restrained
if there exists an integer n such that for every two elementsx, y € G, the subgroup (x))
of G can be generated by n elements; see[6]. Obviously every polycyclic-by-finite group
and every group with finite exponent is strongly restrained.

THEOREM B. Let G be a strongly restrained subgroup of the adjoint group R° of a
finitely generated radical ring R. If G generatesR asaring, then the ring R and so also
the group G are nilpotent.

Let x and y be elements of aring R and define [x, kY] by [X,oy] = X and [X, k+1Y] =
[[x, kY], Y], where[x, y] = xy — yx denotes the ring commutator. A ring Risan Engel ring
if for every two elements x,y € R there exists an integer k > 0 such that [x,xy] = O.
Moreover, Risan n-Engel ring if [x.,y] = Ofor al x.y € R.

COROLLARY 2. Thefollowing conditions on the finitely generated radical ring Rare
equivalent.
(1) Risann-Engel ring for somen > 1,
(2) Risanilpotent ring,
(3) R°isann-Engel group for somen > 1,
(4) R°isanilpotent group.

Theorem B and Corollary 2 do not hold in general when the ring R is not finitely
generated, since even a commutative radical ring need not be nil. Also it was noted by
Brown (see [4], remarks before Corollary 4.6), that aradical ring Ris locally nilpotent
if it is generated asaring by alocally polycyclic subgroup of R° with finite torsion-free
rank. Note also that in statements (1) and (3) of Corollary 2, then-Engel condition cannot
be replaced by the Engel condition, as a well-known example of Golod shows (see for
instance [10], Theorem 6.2.9).

Recall that the class E of elementary amenable groups (see [7]) is the smallest class
of groupswhich

(1) containsall abelian and all finite groups,

(2) isextension closed,

(3) isclosed under direct unions.
It iseasy to seethat E contains every group whosefinitely generated subgroups have an
ascending series with locally finite or locally nilpotent factors.
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THEOREM C. Every elementary amenable subgroup of the adjoint group of anil ring
islocally nilpotent.

Golod's example shows that for each integer r > 1, there exists a finitely generated
non-nilpotent subgroup of the adjoint group of a nil ring in which every r-generator
subgroup is nilpotent. The last theorem strengthens this result slightly. Indeed, for each
r > 0, every finitely generated non-nilpotent subgroup of the adjoint group of anil ring
contains a non-nilpotent subgroup, which isfinitely generated but not r-generated.

THEOREM D. Let G be a subgroup of the adjoint group of a nil ring. If there exists
an integer r > 0 such that every finitely generated subgroup of G is r-generated or
nilpotent, then the group G islocally nilpotent.

Since every group with finite Prifer rank satisfies the hypothesis of Theorem D,
we obtain the following corollary, which can also be proved using a result of Wilson
(see[13], Theorem 1).

COROLLARY 3. Let G bea subgroup of the adjoint group of a nil ring.
(a) If every finitely generated subgroup of G has finite Prifer rank, then G islocally
nilpotent.
(b) If thereisaninteger r > 0 such that every two-generator subgroup of G hasfinite
Prifer rank bounded by r, then G islocally nilpotent.

The notation is standard and can for instance be found in [9], [5] and [10].

2. General propertiesof the adjoint group of aradical ring. The proof of Theo-
rem A requires the following two lemmas, the first of which is due to Neroslavskii.

LEMMA 1 ([8], PROPOSITION 6). Let Rbearadical algebra over the field F.
(a) If F hascharacteristic zero, then the adjoint group R° is torsion-free.
(b) If F has prime characteristic p, then every element of finite order in R° is a
p-element.

LEMMA 2. Let Rbearadical ring suchthat N, p"R = 0 for someprime p. Then every
periodic subgroup of the adjoint group R° of Ris a p-group.

PROOF. Let g bean element of R° with prime order g. There existsaminimal integer
n > O such that g ¢ p"R. Hencen > 0 and g + p"R has order q in the adjoint group of
the ring p"~*R/p"R, which is obviously aradical algebraover the field with p elements.
Thusq = p by Lemma 1, and the lemma is proved. ]

The following simple observation will be used without further reference. Let G be a
subgroup of the adjoint group of the radical ring R. If Sisaradical subring of Rand T
anidea of S then (GN'S)/(GNT) isisomorphic with a subgroup of the adjoint group
(S/T)° of thering S/T.
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PROOF OF THEOREM A. To prove the first assertion, consider R as a left R-module.
We will use the notion of a series of left R-submodules defined in the same way as
in[9], Val. 1, pp. 9f for groups. It follows from Zorn's Lemma that the module R has a
composition series, i.e., a series with no proper refinement. Let T /Sbe afactor of this
series. As aradical ring, R has no irreducible left R-modules; see [5], p. 9, Theorem 2.
ThusR(T/S) = 0,and so RT C S In particular TSas well as ST are contained in S.
Hence Sis a (two-sided) ideal of T. The left ideals Sand T are both radical subrings
of R Since TT C S the factor ring T/Shas trivial multiplication and the factor group
T°/S =~ (T/9° is abelian. Thus every composition series of the module R forms a
series of R° with abelian factors, and R° is an SN-group.

Assume there exist finite non-nilpotent subgroups of the adjoint group of a radical
ring R and let G be such a group with minimal order. We may suppose that R is the
radical join (G)ra Of G, i.e., the smallest radical subring of R which contains G. By
Zorn'sLemmathere existsanideal M of R, whichis maximal with respecttoMNG = 0.
The subgroup G = {g+ M | g € G} of (R/M)° is isomorphic with G. Passing to the
factor ring R/M = <é>raj, we may suppose that each non-trivial ideal of R intersects G
non-trivially.

Assume that pR # R #Z gR for two different primes p and g. Then G pR # G and
GNgR # G. Thechoice of G impliesthat the groups GNpRand GNgR are both nilpotent.
The factor group G/ (G N pR) isisomorphic with a subgroup of the adjoint group of the
radical algebra R/pR over the field with p elements. By Lemma 1, G/(GNpR) isap-
group. Similarly G/(GNaR) isag-group and hence G = (GNpR)(GNQR). By Fitting's
Theorem (see[9], part 1, p. 49, Theorem 2.18), G is nilpotent. This contradiction shows
that there exists a prime p such that qR = Rfor al primesq # p.

We define adescending chain of ideals of Rasfollows:

Ro=R
R.+1= () p"R, for every ordinal « and
n=1
Ry = () R, forevery limit ordinal \.
a<\

Assumethat there exists a prime q # p such that gR,, # R, for some ordinal « and let «
be minimal with this property. Clearly o = 3 + 1 for some ordinal 3, and so

R, = P"Rs.
n=1

If a € Ry, thena = gbfor someb € R;. For every n € N, there exist integers u and v
such that ug + vp" = 1. Hence

b=ugb+vp"'b=ua+vp'b e p"R;

forevery n € N. Thusb € R, and so gR,, = R,,.. This contradiction showsthat gR,, = R,
for every prime g # p and every ordinal c.
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Let S= N, R« Then pS= S Since also gS = Sfor every prime q # p, the additive
group S" of Sis divisible. The torsion subgroup of S forms an ideal T of R, whichis
the ring-theoretical direct sum of its primary components. Assume that more than one
of them is non-trivial. Then T can be written as the direct sum of two non-trivial ideals
T, and T, of R. The intersection G N Ty is a non-trivial normal subgroup of G. Thus
|G/(GNTy)| < |G| and sothefactor group G /(GNTy) isnilpotent. Similarly G/ (GNTy)
is nilpotent. As (GN Ty) N(GNT,) =0, the group G is isomorphic with a subgroup
of the direct product of G/(G N Ty1) and G/(G N T,) and hence is also nilpotent. This
contradiction showsthat T* is a g-group for some prime g.

Assumeq#pand T #0.1ft € T, then 't = O for somen € N. AsgR = R, every
r € Risof theformr = gq"swith s € R Thereforert = 0 and tr = 0, which shows that
T is contained in the two-sided annihilator of R. Thusthe non-trivial subgroupGN T is
central in G. By the minimality of G, the factor group G/(GN T) and so G are nilpotent,
acontradiction. Hence T* is a p-group.

AspS= S it follows as above that T is contained in the two-sided annihilator of S.
ThusGN T isap-group. Thegroup (S/T)* = S"/T* istorsion-free and divisible, since
S’ isdivisible. Hence S/T can be considered as an algebra over the field of rationals,
and so (S/T)° istorsion-free by Lemma 1. Thisimpliesthat GN'S= GNT. Since every
factor group (GNR,)/(GN 9 is ap-group by Lemma 2, the group G/(GN S) and so
also G are p-groups, a contradiction. The theorem is proved. ]

PROOF OF COROLLARY 1. If (a) holds, the statement is trivial. Condition (b) im-
plies (a), since every SN-group of finite exponent is locally finite; this can be seen in
the same way as Theorem 7.16 of [9] by replacing Kostrikin's theorem by Zelmanov's
theorem (see[14] and [15]). To deal with condition (c) note that every non-trivial finitely
generated SN-group has a non-trivia finite epimorphic image. This implies that every
n-Engel subgroup of the adjoint group of aradical ring islocally nilpotent by [6], Corol-
lary 6 and Theorem A. Finally, condition (d) implies (a), since every artinian SN-group
issoluble; see[9], part 1, p. 71, Corollary. ]

3. Finitely generated radical rings.

PROOF OF THEOREM B. Since each of the finitely many generators of the ring R can
be written in terms of finitely many elementsof G, it followsthat Ris generated asaring
by afinitely generated subgroup H of G. The subgroup H isan SN-group by TheoremA.
Thisimpliesthat each non-trivial finitely generated subgroup of H hasanon-trivial finite
epimorphicimage. Hence H is polycyclic-by-finite by [6], Theorem A. Let Az (H) bethe
augmentation ideal of the group ring ZH and let the Z-linear map «: Az(H) — R be
defined by (h — ) = h. Then « is aring epimorphism whose kernel | is an ideal of
ZH. ThusAz(H) /I isaradical ring, sinceit isisomorphic with R. Therefore Az (H) /1 is
the Jacobson radical of ZH/I. By Roseblade’s theorem, the Jacobson radical of every
epimorphic image of ZH is a nil ideal. Since ZH is also noetherian (see [9], Val. 1,
p. 163, Corollary from Lemma5.35) it follows from [10], Theorem 2.6.23, that Az (H) /|
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isanilpotent ring. Thusthe ring R and so also the group G are nilpotent. The theoremis
proved. L]
If xandy are elements of aring Rand k > 0, then it is easy to see that

— k i+1/k i —i
() b = 3 \i>yxyk :

Recall that aring Ris called a PI-ring if it satisfies a polynomial identity with integer
coefficients (see [10], Definition 6.1.2).

PROOF OF COROLLARY 2. If thering R satisfies condition (1), then it isa Pl-ring by
the above formula (x). Hence R is nilpotent by theorems of Amitsur-Procesi and Braun;
see [10], Theorems 6.3.3 and 6.3.39. Thus (1) implies (2), and it follows immediately
from (x) that (2) also implies (1). Moreover, it is obviousthat (2) implies (4) and that (4)
implies (3). It remains to show that (3) implies (2). Indeed, if R° is an n-Engel group, it
is strongly restrained (see [6], Lemma 1) and hencethe ring R is nilpotent by Theorem
B. [

Thering of all rationals with even numerators and odd denominatorsis aradical ring
in which no non-trivial finitely generated subring is radical. Hence Theorem B does not
give information about arbitrary finitely generated subrings of aradical ring. However,
more can be said for nil rings, because every subring of anil ring is again nil. Moreover,
itiseasy to seethat aradical ringisnil if each of itsfinitely generated subringsisradical.
The following proposition gives another sufficient condition for aradical ring to be nil.
We will need some definitions. If Ris aradical ring, then its adjoint group R° operates
onitsadditive group R* viatherulerS=r +rsforal r € R" ands € R°. The semi-direct
product G(R) = R° x R" is called the associated group of R. The “diagonal subgroup” S
of G(R) givesriseto aso-called triple factorization

G(R) =R x R" =Sx R' = RS

of G(R). This allows to use results on radical rings in order to study factorized groups,
and vice versa; see[1] or Chapter 6.1 of [2].

ProPOSITION. Theradical ring Risnil if and only if every element of G(R) whichis
contained in R* is a right Engel element. In particular, if G(R) is an Engel group, then
Risnil.

ProoF. If r isan element of R, let r* and r° denote the corresponding elements of
G(R) which are containedin R" and R°, respectively. By (X, y) we denote the commutator
of x and y in the group G(R), and write (X,oy) = X and (X, k+1Y) = ((x, ky).y) for all
X,y € G(R) and each k > 1. By induction on k we have (r*,s°) = (rs€)* for all r,.s € R
and k > 1. For s=r, the proposition follows. ]

It seems unknown, whether the adjoint group of every nil ring is an Engel group.
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4. Elementary amenable groups. It is clear that a maximal abelian subgroup of
the adjoint group of aradical ring forms a radical subring. The next lemmaimplies a
similar statement for every maximal locally nilpotent subgroup of the adjoint group of a
nil ring.

LEMMA 3. Let Rbeanil ring. If G isalocally nilpotent subgroup of R°, the subring
(G)rg Of R generated by G islocally nilpotent.

ProOCF. If Hisafinitely generated subgroup of G, then H is nilpotent and the subring
(H)rg of Risfinitely generated. Therefore by Theorem B thering (H)q isnilpotent. Thus
(G)rg isalocally nilpotent ring. "

Lemma 3 can also be proved without using Theorem B by induction on the nilpotency
classof H, because the centre of H generatesanilpotent ideal in (H)g.

Combining Corollary 1 and Lemma 3 we obtain the following.

COROLLARY 4. If the adjoint group of a nil ring R satisfies one of the conditions of
Corallary 1, then thering Ris locally nilpotent.

LEMMA 4. Let thering R be generated by the subgroup G of R°. If N is a normal
subgroup of G and Sisthe subring of R generated by N, then| = SR+ Sisanideal of R.
If in addition Sis nilpotent, then | is a nilpotent ideal of R.

PROCF. It is easy to see that G normalizes the adjoint group S° of the subring S
generated by N. Hence for every g € G and every s € S there existsan elementt € S
suchthat socg=got. Thisimpliesthat sg=gt+t—se€ gS+S ThusSg C gS+ Sfor
every g € G, from which it follows that SR+ S C RS+ S since R is generated by G.
Similarly RS+ SC SR+ S Hence

| =SR+S=RS+S

isanidea of R
By induction on k we obtain I = SR+ S for every integer k > 1. Indeed

I = (SR+S)(SR+9
= S(RS+9R+F(RS+9
= F(SR+9R+ F(R+9
= SHR+ S,
Therefore, if S'=0, thenalso I" = S'/R+ S = 0. n
LEMMA 5. Let xandy be elements of aring Rwith identity element 1. If y € R°, then
(@+y)™@+y)" | m>0) = (A+y) "xmy] [ M>0), .

In particular, if y" = 0 for somen > 1, then the subring ((1+y)"™x(1+y)™ | m > 0)
of Risgenerated by at most 2n elements.
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PROCOF. Putam = (1+y) ™1 +y)™and by = (1 +Yy)"™[X, my] for every m> 0. Itis
easy to seethat
(1+a)b(l+a)=b+(1+a)'[b.a]

for al a,b € R By induction,

which implies thefirst assertion. The second statement follows from (x). ]

LEMMA 6. Let N be a locally nilpotent subgroup of the adjoint group R° of a nil
ring R. If x € R° normalizes N, then the subgroup (N, X), of R° generated by N U {x} is
locally nilpotent.

ProoF. We will useaformal identity 1 for R. Clearly
X oyox=(1+x)"y(l+x)

for every y € R. Hence the adjoint conjugation by x is an automorphism of thering R.
Thus x normalizes the adjoint group M° of the subring M = (N)g of R. Moreover, M is
locally nilpotent by Lemma 3.

Wewill provethat (N. x).q isalocally nilpotent ring. If Sisafinitely generated subring
of (N.X)rg, then Sis contained in (K, x)q for some finitely generated subring K of M.
Henceit is sufficient to show that (K. X)q is nilpotent. The subring

L= <(1+x)*”K(1+x)n |n> O>rg

of Risfinitely generated by Lemma5. As x normalizes M° and K is contained in M, it
follows that L is a subring of the locally nilpotent ring M and so is nilpotent. Clearly
L° is normalized by x, which meansthat L(1+ x) = (1 +X)L. HenceLx C L + xL and it
follows by induction that

LX CL+XL+X2L+--- +XL
for every i > 1. Since x™* = 0 for somen > 1, we have that
(LyX)rg = (X)rg + L+ XL +X°L +--- + XL,

where the additive group of (x)g is finitely generated. As the additive group L* of the
finitely generated nilpotent ring L is also finitely generated, it follows that the additive
group of the ring (L. X)g is finitely generated. Thus (L. X,y is nilpotent by [11]. In
particular, (K. X)g is nilpotent. This proves the lemma. "
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To prove Theorem C we need the following characterization of the classE of elemen-
tary amenable groups. Let X, denote the class of all finitely generated abelian-by-finite
groupsand let

%0 = {1}
Xo+1 = (LX,)X, foreachordinal o and
X, = X, foreachlimitordinal \.

a<i
If X =, X« then we have the following.

LEMMA 7 ([7], LEMMA 3.1).
(@ X =E.
(b) Each X, is subgroup closed.

Thislemmaassociateswith every group G € E theleast ordinal o suchthat G € X,,.

PROOF oF THEOREM C. By Lemma 7 it suffices to show that for every ordina «,
each finitely generated X ,-subgroup of the adjoint group of the nil ring R is nilpotent.
Assumethat thisisfalse, and let o be the least ordinal for which there exists a counter-
exampleG € X,. Then o = 3 + 1 for someordinal 8. ThusG € X, = (LX3)X,, which
means that G contains a normal subgroup H € LX; such that the factor group G/H is
abelian-by-finite. By the choice of «, it follows that the group H islocally nilpotent, so
that we may suppose that the ring R is generated by G and that H is the Hirsch-Plotkin
radical of G.

Let F/H be the Hirsch-Plotkin radical of G/H. As G/H is finitely generated and
abelian-by-finite, the subgroup F /H is nilpotent and has finite index in G/H. We claim
that F = H. Indeed, for each element x of F, the subgroup V = (H, x), of G generated
by H U {x} is locally nilpotent by Lemma 6. On the other hand, the cyclic subgroup
V/H issubnormal in G/H. It follows that the locally nilpotent subgroup V is subnormal
in G and hence is contained in H; see [9], Theorem 2.31. ThusH = F has finite index
in the finitely generated group G, and so is likewise finitely generated. As H is locally
nilpotent, thisimplies that H is even nilpotent.

Let S= (H)/y be the subring of R generated by H. Then Sis afinitely generated ring
whichislocally nilpotent by Lemma 3. It follows that Sisnilpotent, and so | = SR+ Sis
anilpotent ideal of R by Lemma 4. Consider the factor ring R/, which is generated by
thesubgroup G = {g+1 | g € G} of (R/1)°. AsH C I, it followsthat G is an epimorphic
image of thefinite group G/H. Thus G isafinite nilpotent group by Theorem A. AsR/I
isgenerated by G, Lemma 3 impliesthat R/I isanilpotent ring. Hencethering R and so
also the group G are nilpotent. This contradiction proves the theorem. ]

5. Groupswith finite Prifer rank and generalizations. Thefollowing result will
play an essential role in the proof of Theorem D. Recall that the standard polynomial of
degreenisgiven by

Si(Xe, .-, X) = D SON(M)Xir - - - Xar-
reSym(n)
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PROPOSITION ([3], PROPOSITION). Let A be an abelian group of finite Priifer rank
at most r. Then the endomorphismring End(A) of A satisfies the standard polynomial
identity of degree 2r.

LEMMA 8. Letthegroup G bethecartesian product of nil potent groupsof finite Pr iifer
rank bounded by some positive integer r. Then G has an abelian normal subgroup A
such that the factor group G /A is embedded in the group of units of a ring satisfying the
standard polynomial identity of degree 2r.

PROOF. Let H be a nilpotent group with Prifer rank r(H) < r. If Ais amaximal
abelian normal subgroup of H, then Cy(A) = A; see[9], Vol. 1, Lemma 2.19.1. Hence
the factor group H /A can be embedded into the group of units End(A)* of End(A). By
the preceding proposition End(A) satisfies the standard polynomial identity of degree 2r,
asr(A) <r.

Now let G = Crj¢ H; bethecartesian product of the nilpotent groupsH; withr(H;) <.
If A isamaximal abelian normal subgroup of H; for each i, then A = Criq/A has the
desired properties. n

The next lemmais probably known.

LEMMA 9. Let R be a ring with an identity element which satisfies a polynomial
identity and G a finitely generated subgroup of the group R* of units of R. If G has no
non-abelian free subgroups, then G is hyperabelian-by-finite.

ProOOF. Note first that aring S contains a non-trivial nilpotent ideal if and only if
N(S # 0, where N(S) is the set of all a € Ssuch that there exists somen = n(a) € N
with (sa)" = 0 for every s € S, see Theorem 2.6.17 and Proposition 2.6.26 of [10]. It
follows by transfinite induction that R has an ascending series of ideals J,, with Jop = 0
such that the factor ring J,+1 /J is nilpotent for each ordinal « and non-trivial whenever
N(R/J.) # 0. There exists an ordinal = such that J = J. = J.4+1, which implies that
N(R/J) = 0. Thus by Theorem 6.1.26 of [10], thering R/J is embedded in the ring of
n x n matrices over some commutativering K. If H, = GN (1 +J,) for every o < 7,
we obtain that the H,, form an ascending series of normal subgroups of G which finally
reachesH = GN (1 +J) such that its factors Hy+1 /H, are nilpotent. Moreover, G/H is
isomorphic with a subgroup of R* /(1 + J). As the latter is embedded in GL(n, K), the
group G/H islinear over the commutative ring K.

Assumethat G/H containsanon-abelian free subgroup F /H. Then the extension F of
H by F/H splits and thus G contains a subgroup isomorphic with F /H, a contradiction.
Therefore G/H contains no non-abelian free subgroups. As G/H is finitely generated,
we may suppose that the ring K is likewise finitely generated. It follows from [12],
Theorem 13.31, that the group G/H is soluble-by-finite. Hence G is a hyperabelian-by-
finite group. ]

The following two lemmas are perhaps of independent interest. The Hirsch number
of the polycyclic group G will be denoted by ro(G). Moreover, for eachn > 1, let G" be
the subgroup of G generated by all elements g" with g € G and G’ the derived subgroup
of G.
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LEMMA 10. Let F be a finitely generated torsion-free nilpotent group.
(@) If pisaprimethen F hasasubgroupV suchthat V /V'VP isan elementary abelian
p-group of rank ro(F).
(b) If T isafinite nilpotent group, thenr(T x F) = r(T) + r(F).

ProoF. It iswell known that every finitely generated nilpotent group is polycyclic.
Thus all subgroups of F are finitely generated. For each such subgroup U of F let
d(U) denote the minimal number of generators of U. We will prove (a) by induction on
r = ro(F), the result being clear if r = 0. Suppose now that r > 1. Then F has a normal
subgroup F1 with ro(F1) = r — 1 such that the factor group F/F isinfinite cyclic. Thus
F = (f) x F1 for some element f of F. By induction, F1 has a subgroup W such that
W/WWP hasrank r — 1. It follows from a theorem of Glushkov (see[9], part 2, p. 140)
that

ro(F1) > ro(W) = r(W) > r(W/WWP) = ro(Fy).

So ro(F1) = ro(W), which meansthat W and hence also W'WP havefiniteindex in F;. As
the finitely generated group F; has only finitely many subgroups of index |F; : WWP|,
the characteristic core C = N{(W'WP)a | o € Aut(F1)} of WWP in Fy isacharacteristic
subgroup of finite index in F1. Thus f induces an automorphism of the finite factor
group F1/C. Therefore some power g = f" of f centralizes F;/C, which implies that
[W.g] C [F1.g] € WWP. Thusif V is the subgroup of F generated by W and g, then
WWP is anormal subgroup of V and V/W'WF is the direct product of the elementary
abelian p-group W/WWP of rank r — 1 and the infinite cyclic group generated by
g = gWWP. It follows that V has anormal subgroup N such that V /N is an elementary
abelian p-group of rank r. Hencetherank of V /V/VP is at least r, while on the other hand
Glushkov's theorem implies that the rank of V /V'VP isat most r(F) = ro(F) = r. Hence
part (a) is proved.

To prove (b) let T; be a subgroup of T such that r(T) = d(Ty). If Ty = Ty /T4,
then it is easy to see that d(T1) = d(T1). As Ty is a finite abelian group, we have
r(T) =d(Ty) = d((T_l)p) for some prime p, where (T1), denotesthe primary p-component
of T;. ThusT hasan elementary abelian p-section of rank r(T), while F hasan elementary
abelian p-section of rank ro(F) = r(F) by (a). Therefore T x F hasan elementary abelian
p-section of rank r(T) + r(F), which showsthat r(T x F) > r(T) + r(F). Asclearly also
r(T x F) <r(T) +r(F), thelemmais proved. ]

LEMMA 11. Let G be afinitely generated nilpotent group and r a positive integer. If
every subgroup of finite index in G is an r-generator group, then the Prifer rank of G
does not exceedr.

ProOOF. Clearly the maximal periodic normal subgroup T of G isfinite and the factor
group G/ T istorsion-free. We will first show that r(G) = r(T) + ro(G).

Asapolycyclic group, G has atorsion-free normal subgroup F of finite index. Since
TNF = 1, wehaver(G) > r(TxF) = r(T)+r(F) by Lemma10. It followsfrom Glushkov's
theorem and the finitenessof G/ F that r(F) = ro(F) = ro(G). Hencer(G) > r(T) +ro(G).
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On the other hand, we have r(G) < r(T) +r(G/T), where r(G/T) = ro(G/T) = ro(G),
since G/ T istorsion-free. Thusr(G) = r(T) + ro(G).

Let U beasubgroup of G such that d(U) = r(G). Then TN U isthe maximal periodic
normal subgroup of U. By the above equation, we obtain r(U) = r(T N U) + ro(U) as
well asr(U) =d(U) =r(G) =r(T) +ro(G). Asr(TNU) < r(T) and ro(U) < ro(G), this
impliesro(U) = ro(G). Hence U must havefinite index in G and thus r(G) = d(U) <'r.
Thelemmais proved. ]

LEMMA 12. Let R be a residually nilpotent ring and G a subgroup of R°, in which
every finitely generated non-nilpotent subgroup is an r-generator group for some fixed
r > 0. Then G is elementary amenable.

ProoF. If G, = GNR" for each n, then we have N, G, = 0, since Ris aresidually
nilpotent ring. As each factor group G/ G, isisomorphic with asubgroup of the nilpotent
group (R/R")°, it follows that the group G is residually nilpotent.

In order to prove that G € E, it sufficesto show that U € E for every r-generator
subgroup U of G, since every nilpotent group is elementary amenable. Therefore we
may supposethat G is an r-generator group.

If thereisann € N suchthat G/ G, containsasubgroup H / G, of finiteindex whichis
not an r-generator group, then H isfinitely generated but not an r-generator group. Thus
H is nilpotent by hypothesis, which impliesthat G is nilpotent-by-finite and in particular
GekE.

Hence we may suppose that for each n € N, every subgroup of finite index in the
group G/G, is an r-generator group. By Lemma 11, the Prifer ranks of the groups
G/ Gp are bounded by r. As G can be embedded into the cartesian product of the factor
groups G/Gp, Lemma 8 implies that G has an abelian normal subgroup A such that
G/Ais embedded into the group of units of aring satisfying a polynomial identity. Let
H/A = (hiA. ... . hA) be afinitely generated non-nilpotent subgroup of G/A. Then
H/A = XA/A for the finitely generated subgroup X = (h;..... h¢), which cannot be
nilpotent, since it has H /A as an epimorphic image. Thus X and so also H/A are r-
generator groups. It follows that the hypothesis of the lemma carries over from the group
Gtoitsepimorphicimage G/A. In particular, G/ A has no non-abelian free subgroups. It
followsfrom Lemma9 that G/ A and hencealso G are hyperabelian-by-finite. Therefore
G is elementary amenable and the lemmais proved. ]

PROOF OF THEOREM D. Of course we may suppose that G is finitely generated and
that it generatesthering R. We will show that the ring Ris nilpotent. Consider the ideal
RY = Npen R of R Then R/R” is aresidually nilpotent ring which is generated by the
group G = {g+ R’ | g € G}, in which every finitely generated non-nilpotent subgroup
is an r-generator group. By Lemma 12, the group Gis elementary amenable and thus
locally nilpotent by Theorem C. Hence R/R is alocally nilpotent ring by Lemma 3.
As R s generated by any finite set of generators of G, the ring R/R* is even nilpotent.
Hence R" = R™? for some positive integer n. Since R” is also afinitely generated ring, it
follows from [5], p. 200, Proposition 2, that R" = 0. The theorem is proved. m
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PROOF OF COROLLARY 3. Statement (a) follows immediately from Theorem D. To
prove (b), let every two-generator subgroup U of G havefinite Priifer rank bounded by r.
Then each such U is nilpotent by (a). Therefore G is strongly restrained and thus locally
nilpotent by Theorem B. ]

Theorem D hasthe following consequence.

COROLLARY 5. If Gisa group in which every finitely generated non-nilpotent sub-
groupisan r-generator group for somefixedr € N and if the augmentation ideal Ak (G)
of the group ring KG over some commutative ring K with identity is a nil ideal, then G
is alocally nilpotent group.

PROOF. Let R = Ag(G) be the augmentation ideal of the group ring KG and G* =
{g— 1] g € G}. Then G* is a subgroup of R° which is isomorphic with G. Hence
G ~ G~ islocally nilpotent by Theorem D. ]
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