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Abstract

The codegree of an irreducible character χ of a finite group G is |G : ker χ|/χ(1). We show that the Ree
group 2G2(q), where q = 32 f+1, is determined up to isomorphism by its set of codegrees.
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1. Introduction

Let G be a finite group and Irr(G) be the set of all irreducible complex characters
of G. The concept of codegrees was introduced by Chillag and Herzog in [6], where
the codegree of χ was defined as |G|/χ(1) for a character χ ∈ Irr(G). The definition
was modified to cod( χ) = |G : ker( χ)|/χ(1) by Qian et al. in [18] so that there is no
different meaning for cod( χ) when χ is considered as a character in some quotient
group of G. Because the relationship between codegrees and degrees is very close, we
may expect to characterise the structure of groups by codegrees. During the past few
years, the study of character codegrees has been very active and many results have been
obtained, including the relationship between codegrees and element orders, codegrees
of p-groups and groups with few codegrees (see, for example, [2, 8, 11, 14, 15, 17]).

Let cd(G) = { χ(1) | χ ∈ Irr(G)}. Huppert made the following conjecture (which has
been verified for sporadic simple groups, alternating groups and some simple groups
of Lie type with low rank).

HUPPERT’S CONJECTURE: Let H be any finite nonabelian simple group and G a finite
group such that cd(G) = cd(H). Then G � H × A, where A is abelian.

We denote cod(G) = {cod( χ) | χ ∈ Irr(G)}. Qian made the following conjecture
(Question 20.79 in the Kourovka Notebook [12]).
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CODEGREE VERSION OF HUPPERT’S CONJECTURE: Let H be any finite nonabelian
simple group and G a finite group such that cod(G) = cod(H). Then G � H.

This conjecture was shown to hold for PSL(2, q) in [4]. In [1], the conjecture was
proven for 2B2(22 f+1), where f ≥ 1, PSL(3, 4), Alt7 and J1. The conjecture also holds
in the cases where H is M11, M12, M22, M23 or PSL(3, 3) by [9]. For PSL(3, q) and
PSU(3, q), the conjecture was confirmed in [16]. In this paper, we continue the study
of the conjecture and establish the following result.

THEOREM 1.1. If H is isomorphic to a simple Ree group 2G2(32 f+1), f ≥ 1 and G is a
finite group such that cod(G) = cod(H), then G � H.

2. Preliminary results

First, we give a list of simple groups with few codegrees. The cases for finite groups
G with |cod(G)| ≤ 3 are studied in [2]. In particular, those groups are all solvable.

LEMMA 2.1. Let G be a nonabelian finite simple group. If |cod(G)| ≤ 11, then one of
the following holds:

(a) |cod(G)| = 4 and G = PSL(2, 2 f ) for f ≥ 2;
(b) |cod(G)| = 5 and G = PSL(2, pf ), p � 2, p f > 5;
(c) |cod(G)| = 6 and G = 2B2(22 f+1), f ≥ 1, or G = PSL(3, 4);
(d) |cod(G)| = 7 and G = PSL(3, 3), Alt7, M11 or J1;
(e) |cod(G)| = 8 and G = PSL(3, q), where 4 < q � 1 (mod 3), or G = PSU(3, q),

where 4 < q � −1 (mod 3), or G = G2(2)′;
(f) |cod(G)| = 9 and G = PSL(3, q), where 4 < q ≡ 1 (mod 3), or G = PSU(3, q),

where 4 < q ≡ −1 (mod 3);
(g) |cod(G)| = 10 and G = M22;
(h) |cod(G)| = 11 and G = PSL(4, 2), M12, M23 or 2G2(32 f+1), f ≥ 1.

PROOF. For a simple group G, each nontrivial irreducible character is faithful. Then
|cod(G)| = |cd(G)| and the result follows from [3, Theorem 1.1]. �

The character degree sets for the relevant simple groups have been worked out.
Using the definition of codegrees and the fact that the kernel of a nontrivial character
is trivial, it is easy to calculate the codegrees. We list the relevant codegree sets in
Table 1 for easy reference. Please see [1, 4, 7, 19–21] for the details.

LEMMA 2.2. If a simple group G is isomorphic to PSL(2, k), 2B2(q2), PSL(3, 4), Alt7,
J1, M11, PSL(3, 3), G2(2)′, M22, PSL(4, 2), M12, M23, PSL(3, q), PSU(3, q) or 2G2(q),
then cod(G) can be found in Table 1.

To end this section, we state a result about the maximal subgroups of 2G2(32 f+1),
f ≥ 1. This is obtained from [13, Theorem C].

LEMMA 2.3. Let K be a maximal subgroup of 2G2(q), where q = 32 f+1, f ≥ 1. Then K
is isomorphic to one of the groups in Table 2.
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TABLE 1. Codegree sets for some simple groups.

Group G cod(G)

PSL(2, k) (k = 2 f ≥ 4) {1, k(k − 1), k(k + 1), k2 − 1}
PSL(2, k) (k > 5) {1, k(k − 1)/2, k(k + 1)/2, (k2 − 1)/2, k(k − ε(k))}, ε(k) = (−1)(k−1)/2

2B2(q), q = 2r2 = 22 f+1 {1, (q − 1)(q2 + 1), q2(q − 1), 23 f+2(q2 + 1), q2(q − 2r + 1), q2(q + 2r + 1)}
PSL(3, 4) {1, 24·32·7, 26·32, 26·5, 26·7, 32·5·7}
Alt7 {1, 22·3·5·7, 22·32·7, 22·32·5, 23·3·7, 23·3·5, 23·32}
J1 {1, 3·5·11·19, 2·3·5·7·11, 23·3·5·19, 7·11·19, 23·3·5·11, 23·3·5·7}
M11 {1, 23·32·11, 24·32·5, 32·5·11, 22·32·5, 24·11, 24·32}
PSL(3, 3) {1, 22·32·13, 24·33, 33·13, 23·33, 24·13, 24·32}
G2(2)′ {1, 24·32·7, 25·33, 24·33, 25·32, 25·7, 23·33, 33·7}
M22 {1, 27·3·5·11, 27·7·11, 27·32·7, 27·5·7, 26·32·5, 26·3·11, 27·3·5, 24·32·11, 27·32}
PSL(4, 2) {1, 26·32·5, 25·32·5, 24·32·7, 26·3·5, 24·32·5, 26·32, 26·7, 23·32·5, 32·5·7, 25·32}
M12 {1, 26·33·5, 22·33·5·11, 26·3·11, 25·5·11, 26·33, 25·32·5, 26·3·5, 23·32·11, 22·3·5·11, 22·33·5}
M23 {1, 26·32·5·7·23, 27·7·11·23, 26·32·7·11, 27·3·5·23, 27·32·5·7, 26·32·23,

32·5·11·23, 26·7·23, 27·7·11, 24·32·5·7}
PSL(3, q), {1, (q2 + q + 1)(q2 − 1)(q − 1), q2(q2 + q + 1)(q − 1)2, q3(q2 + q + 1),
4 < q � 1 (mod 3) q2(q2 − 1)(q − 1), q3(q2 − 1), q3(q2 − 1)(q − 1), q3(q − 1)2}
PSL(3, q), {1, 1

3 (q2 + q + 1)(q + 1)(q − 1)2, 1
3 q2(q2 + q + 1)(q − 1)2, 1

3 q3(q2 + q + 1),
4 < q ≡ 1 (mod 3) 1

3 q2(q + 1)(q − 1)2, 1
3 q3(q − 1)(q + 1), 1

3 q3(q + 1)(q − 1)2, 1
3 q3(q − 1)2, q3(q − 1)2}

PSU(3, q), {1, (q2 − q + 1)(q + 1)2(q − 1), q3(q2 − q + 1), q2(q2 − q + 1)(q + 1)2,
4 < q � −1 (mod 3) q3(q + 1)2(q − 1), q3(q + 1)2, q2(q + 1)2(q − 1), q3(q − 1)(q + 1)}
PSU(3, q), {1, 1

3 (q2 − q + 1)(q + 1)2(q − 1), 1
3 q3(q2 − q + 1), 1

3 q2(q2 − q + 1)(q + 1)2,
4 < q ≡ −1 (mod 3) 1

3 q3(q + 1)2(q − 1), 1
3 q3(q + 1)2, 1

3 q2(q + 1)2(q − 1), 1
3 q3(q − 1)(q + 1), q3(q + 1)2}

2G2(q), q = 32 f+1 {1, q3(q2 − 1), (q2 − 1)(q2 − q + 1), q2(q2 − 1), q3(q − 1),
m = 3 f , f ≥ 1 2·35 f+3(q + 1)(q + 1 − 3m), 2·35 f+3(q + 1)(q + 1 + 3m), 35 f+3(q2 − q + 1),

q3(q + 1), q3(q + 1 − 3m), q3(q + 1 + 3m)}
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TABLE 2. Maximal subgroups of 2G2(q), q ≥ 27.

Maximal subgroup Structure Remark

P [q3] : Zq−1
CR0(i) 2 × L2(q)
NR0〈i,j〉 (22 × D(1/2)(q+1)) : 3
M+W+ Z

q+
√

3q+1
: Z6

M−W− Z
q−
√

3q+1
: Z6

CR0(Ψα)
2G2(q0) q = qα0 , α is a prime

3. Main result for 2G2(32 f+1)

Sometimes it is convenient to consider the ratio of a set. Let A be a set of nonzero
integers. We define ratio(A) = {a/b | a, b ∈ A, a � b and b � 1}.

LEMMA 3.1. Let G be a finite group with cod(G) = cod(2G2(32 f+1)), where f ≥ 1. If N
is a maximal normal subgroup of G, then G/N � 2G2(32 f+1).

PROOF. Let N be a maximal normal subgroup of G. We set q = 32 f+1. Since cod(G) =
cod(2G2(q)), we see that G is perfect. Then G/N is a nonabelian simple group. Since
cod(G/N) ⊆ cod(G), we see that |cod(G/N)| is either 4, 5, 6, 7, 8, 9, 10 or 11.

Suppose |cod(G/N)| = 4. Then G/N � PSL(2, k), where k = 2t ≥ 4, and cod(G/N) =
{1, k(k − 1), k(k + 1), k2 − 1}. Since k2 − 1 is the only nontrivial odd codegree, it must
be the same as either 35 f+3(q2 − q + 1) or q3(q + 1 − 3m) or q3(q + 1 + 3m). Note
that (k + 1, k − 1) = 1. Suppose that k2 − 1 = 35 f+3(q2 − q + 1). If 35 f+3|k − 1, then
k + 1|q2 − q + 1. Clearly q2 − q + 1 < 35 f+3, which implies that k + 1 < k − 1, which
is a contradiction. If 35 f+3|k + 1, then k − 1|q2 − q + 1. Clearly 35 f+3 − (q2 − q + 1) =
35 f+3 − 34 f+2 + 32 f+1 − 1 > 2, which implies that (k + 1) − (k − 1) > 2, which is a
contradiction. Suppose k2 − 1 = q3(q + 1 − 3m). If q3|k − 1, then k + 1|(q + 1 − 3m).
Obviously, we have q3 > q + 1 − 3m, which implies that k − 1 > k + 1, which is
a contradiction. If q3|k + 1, then k − 1|(q + 1 − 3m). Clearly q3 − (q + 1 − 3m) =
(36 f+3 − 32 f+1 − 1) + 3 f+1 > 2, which implies that k + 1 − (k − 1) > 2, which is a
contradiction. Suppose k2 − 1 = q3(q + 1 + 3m). If q3|k − 1, then k + 1|(q + 1 + 3m).
Since q3 > q + 1 + 3m, we have k − 1 > k + 1, which is a contradiction. If q3|k + 1,
then k − 1|(q + 1 + 3m). Clearly q3 − (q + 1 + 3m) = 36 f+3 − (32 f+1 + 1 + 3 f+1) > 2,
which implies that k + 1 − (k − 1) > 2, which is a contradiction.

Suppose |cod(G/N)| = 5. Then G/N � PSL(2, k), where k > 5 is an odd prime
power. We note that 2 ∈ ratio(cod(G/N)). This is a contradiction since the smallest
nontrivial integer in ratio(cod(G)) is q − 1, where q ≥ 27.

Suppose |cod(G/N)| = 6. Then G/N � 2B2(22t+1) or PSL(3, 4).
Suppose G/N � 2B2(s) with s = 22t+1 and r = 2t, t ≥ 1. The only nontrivial odd

codegree in cod(2B2(s)) is (s − 1)(s2 + 1). Thus, (s − 1)(s2 + 1) could be equal to either
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35 f+3(q2 − q + 1), q3(q + 1 − 3m) or q3(q + 1 + 3m). Note that (s − 1, s2 + 1) = 1.
Suppose (s − 1)(s2 + 1) = 35 f+3(q2 − q + 1). If 35 f+3|s − 1, then s2 + 1|q2 − q + 1.
Clearly 35 f+3 > q2 − q + 1, which implies that s − 1 > s2 + 1, which is a contradiction.
If 35 f+3|s2 + 1, we have a contradiction since s2 − 1 is divisible by 3. Suppose (s − 1)
(s2 + 1) = q3(q + 1 − 3m). If q3|s − 1, then s2 + 1|q + 1 − 3m. Clearly q3 > q + 1 − 3m,
which implies that s − 1 > s2 + 1, which is a contradiction. If q3|s2 + 1, then
s − 1|q + 1 − 3m. This implies that q3 ≤ (q + 2 − 3m)2 + 1, which is a contradiction.
Suppose (s − 1)(s2 + 1) = q3(q + 1 + 3m). If q3|s − 1, then s2 + 1|q + 1 + 3m. Clearly
q3 > q + 1 + 3m, which implies that s − 1 > s2 + 1, which is a contradiction. If
q3|s2 + 1, then s − 1|q + 1 + 3m. This implies that q3 ≤ (q + 2 + 3m)2 + 1, which is
a contradiction.

Suppose G/N � PSL(3, 4). Note that 32·5·7 is the only nontrivial odd codegree in
cod(G/N). Thus, 32·5·7 could be equal to either 35 f+3(q2 − q + 1), q3(q + 1 − 3m) or
q3(q + 1 + 3m). By considering the power of 3 in those numbers, we see that each is
impossible.

Suppose |cod(G/N)| = 7. Then G/N � PSL(3, 3), Alt7, M11 or J1.
Suppose G/N � PSL(3, 3). Note that 3 ∈ ratio(cod(G/N)). This is a contra-

diction since the smallest nontrivial integer in ratio(cod(G)) is q − 1, where
q ≥ 27.

Suppose G/N � Alt7. Then 23·32 ∈ cod(G/N). Since the powers of 3 of all the terms
that are divisible by 3 in cod(G) are greater than 2, this is a contradiction.

Suppose G/N � M11. Note that 5 ∈ ratio(cod(G/N)). This is a contradiction since
the smallest nontrivial integer in ratio(cod(G)) is q − 1, where q ≥ 27.

Suppose G/N � J1. Note that cod(J1) has two nontrivial odd codegrees 7·11·19
and 3·5·11·19. The odd codegrees in cod(G) are 35 f+3(q2 − q + 1), q3(q + 1 − 3m) and
q3(q + 1 + 3m). By considering the power of 3 in those numbers, we see that each is
impossible.

Suppose |cod(G/N)| = 8. Then G/N � PSL(3, s), where 4 < s � 1 (mod 3),
PSU(3, s), where 4 < s � −1 (mod 3), or G2(2)′.

Suppose cod(G/N) = cod(PSU(3, s)) with 4 < s � −1 (mod 3). Note that 3 ∈
ratio(cod(G/N)). This is a contradiction since the smallest nontrivial integer in
ratio(cod(G)) is q − 1, where q ≥ 27.

Suppose G/N � G2(2)′. Note that 3 ∈ ratio(cod(G/N)). This is a contradiction since
the smallest nontrivial integer in ratio(cod(G)) is q − 1, where q ≥ 27.

Suppose G/N � PSL(3, s) for some 4 < s � 1 (mod 3). Note that s − 1, s + 1 ∈
ratio(cod(G/N)), and the only nontrivial integers in ratio(cod(G)) are q − 1, q, q + 1,
where q is a power of 3 and q ≥ 27. This will force s = q, which is a contradiction
since q3(q − 1)2 � cod(G).

Suppose |cod(G/N)| = 9. Then G/N � PSL(3, s), where 4 < s ≡ 1 (mod 3), or
PSU(3, s), where 4 < s ≡ −1 (mod 3).

Suppose G/N � PSL(3, s) with 4 < s ≡ 1 (mod 3). Note that 3 ∈ ratio(cod(G/N)).
This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q − 1,
where q ≥ 27.
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Suppose G/N � PSU(3, s) with 4 < s ≡ −1 (mod 3). Note that s − 1, s + 1 ∈
ratio(cod(G/N)), and the only nontrivial integers in ratio(cod(G)) are q − 1, q, q + 1,
where q is a power of 3 and q ≥ 27. This will force s = q, which is a contradiction
since q3(q + 1)2 � cod(G).

Suppose |cod(G/N)| = 10. Then G/N � M22. Note that 11 ∈ ratio(cod(G/N)). This
is a contradiction since the only nontrivial integer in ratio(cod(G)) is q, where
q ≥ 27.

Suppose |cod(G/N)| = 11. Then G/N � PSL(4, 2), M12, M23 or 2G2(32s+1), where
s ≥ 1.

Suppose G/N � PSL(4, 2). Note that 2 ∈ ratio(cod(G/N)). This is a contradiction
since the smallest nontrivial integer in ratio(cod(G)) is q − 1, where q ≥ 27.

Suppose G/N � M12. Note that 5 ∈ ratio(cod(G/N)). This is a contradiction since
the smallest nontrivial integer in ratio(cod(G)) is q − 1, where q ≥ 27.

Suppose G/N � M23. Note that 8 ∈ ratio(cod(G/N)). This is a contradiction since
the smallest nontrivial integer in ratio(cod(G)) is q − 1, where q ≥ 27.

Suppose G/N � 2G2(32s+1), s ≥ 1. Comparing the smallest nontrival odd codegree
of each set, we see that q = 32s+1. Thus, G/N � 2G2(32 f+1). �

We now prove the main result of this paper.

THEOREM 3.2. Let G be a group such that cod(G) = cod(2G2(q)), where q = 32 f+1,
f ≥ 1. Then G � 2G2(q).

PROOF. Let G be a group with cod(G) = cod(2G2(q)). Let N be a maximal normal
subgroup of G. Then, G/N � 2G2(q) by Lemma 3.1. Assume to the contrary that G is
a minimal counterexample. By the choice of G, N is a minimal normal subgroup of G.
Otherwise there exists a nontrivial normal subgroup L of G such that L is included
in N. Then cod(G/L) = cod(G) for cod(G) = cod(G/N) ⊆ cod(G/L) ⊆ cod(G) and
G/L � 2G2(q) because G is a minimal counterexample, which is a contradiction.

Step 1: N is the unique minimal normal subgroup of G. Otherwise, assume M is another
minimal normal subgroup of G. Then G = N ×M because G/N is simple and N �
M � 2G2(q) because M is also a maximal normal subgroup of G. Choose ψ1 ∈ Irr(N)
and ψ2 ∈ Irr(M) such that cod(ψ1) = cod(ψ2) = max(cod(2G2(q))). Set χ = ψ1 · ψ2 ∈
Irr(G). Then cod( χ) = (max(cod(2G2(q))))2 � cod(G), which is a contradiction.

Set Irr(G|N) = { χ ∈ Irr(G)|N is not contained in the kernel of χ}.

Step 2: χ is faithful for each χ ∈ Irr(G|N). Since N is not contained in the kernel of χ
for each χ ∈ Irr(G|N), the kernel of χ is trivial by Step 1.

Step 3: N is elementary abelian. Assume to the contrary that N is not abelian. Then
N = Sn, where S is a nonabelian simple group and n ∈ N. By Theorems 2, 3 and
4 and Lemma 5 in [5], we see that there exists a nonprincipal character ψ ∈ Irr(N)
that extends to some χ ∈ Irr(G). Then ker( χ) = 1 by Step 2 and cod( χ) = |G|/χ(1) =
|G/N | · |N |/ψ(1). This is a contradiction since |G/N | is divisible by cod( χ).
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Step 4: It is enough to assume that CG(N) = N. We note that CG(N) � G. As N is
abelian by Step 3, either CG(N) = G or CG(N) = N.

We now prove the result in the case CG(N) = G. Assume so. Then N is contained in
the centre Z(G) of G. Since G is perfect, Z(G) = N and N is isomorphic to a subgroup
of the Schur multiplier of G/N [10, Corollary 11.20]. This forces N to be trivial as
2G2(q) has trivial Schur multiplier, and we are done.

Step 5: Let λ be a nonprincipal character in Irr(N) and θ ∈ Irr(IG(λ)|λ). We show
that |IG(λ)|/θ(1) ∈ cod(G). Also, θ(1) divides |IG(λ)/N | and |N | divides |G/N |. Let λ
be a nonprincipal character in Irr(N). Given θ ∈ Irr(IG(λ)|λ). Note that χ = θG ∈ Irr(G)
and χ(1) = |G : IG(λ)| · θ(1) by Clifford theory (see [10, Ch. 6]). Then ker( χ) = 1 by
Step 2 and cod( χ) = |IG(λ)|/θ(1). In particular, θ(1) divides |IG(λ)/N |, and then |N |
divides |IG(λ)|/θ(1). Since cod(G) = cod(G/N) and |G/N | is divisible by every element
in cod(G/N), we have |N | | |G/N |.

Step 6: Final contradiction. By Step 3, N is an elementary abelian r-subgroup for some
prime r and we assume |N | = rn, n ∈ N. By the normaliser–centraliser theorem, n > 1.

Let λ ∈ Irr(N) be a nonprincipal character and T := IG(λ). By Step 5, |T |/θ(1) ∈
cod(G) for all θ ∈ Irr(T |λ).

Since N is abelian by Step 1, |Irr(N)| = |N |. Therefore, |N | = |Irr(N)| > |G : T | since
|G : T | is the number of conjugates of λ in G which are all contained in Irr(N).

We now show that q3 is the largest power of a prime that divides the order of 2G2(q).
Note that the order of 2G2(q) is q3(q3 + 1)(q − 1). We first observe that q3 + 1 = 2k has
no integer solution, and thus q3 + 1 is divisible by a prime greater than or equal to 5.
We also note that either q3 + 1 or q − 1 is divisible by 4 but not both, and thus the
largest power of 2 that divides (q3 + 1)(q − 1) is less than q3. Suppose that r is an odd
prime that divides (q3 + 1)(q − 1). Since gcd(q + 1, q − 1) = 2, the largest power of r
that divides (q3 + 1)(q − 1) is also less than q3. Thus, q3 is the largest power of a prime
that divides the order of 2G2(q). Thus, |N | ≤ q3.

Let K be a maximal subgroup of 2G2(q) such that T/N ≤ K. If K is of type
P in Lemma 2.3, then |G : T | ≥ q3 + 1, and it is clear that q3 + 1 > q3, which is a
contradiction. If K is of type CR0(i), then |G : T | ≥ q2(q2 − q + 1) > q3, which is a
contradiction. If K is of type NR0〈i,j〉, then |G : T | ≥ q3(q2 − q + 1)(q − 1)/12(q + 1),
thus |G : T | > q3, which is a contradiction. If K is of type M+W+, then |G : T | ≥
q3(q2 − q + 1)(q − 1)/6(q +

√
3q + 1), and thus |G : T | > q3, which is a contradiction.

If K is of type M−W−, then |G : T | ≥ q3(q2 − q + 1)(q − 1)/6(q −
√

3q + 1), and thus
|G : T | > q3, which is a contradiction. If K is of type CR0 (Ψα), then |G : T | ≥
q3(q3 + 1)(q − 1)/q3

0(q3
0 + 1)(q0 − 1), where q = qα0 , α a prime. Thus, |G : T | > q3,

which is a contradiction. �
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