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The shear Alfvén wave (SAW) continuum plays a critical role in the stability of energetic
particle-driven Alfvén eigenmodes. We develop a theoretical framework to analyze the
SAW continuum in three-dimensional (3-D) quasisymmetric magnetic fields, focusing on
its implications for stellarator design. By employing a near-axis model and degenerate
perturbation theory, the continuum equation is solved, highlighting unique features in
3-D configurations, such as the interactions between spectral gaps. Numerical examples
validate the theory, demonstrating the impact of flux-surface shaping and quasisymmet-
ric field properties on continuum structure. The results provide insights into optimizing
stellarator configurations to minimize resonance-driven losses of energetic particles. This
work establishes a basis for incorporating Alfvénic stability considerations into the stel-
larator design process, demonstrated through optimization of a quasihelical configuration
to avoid high-frequency spectral gaps.
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1. Introduction

Shear Alfvén waves (SAWs) are low-frequency, incompressible, magnetohydrody-
namic (MHD) oscillations associated with field-line bending (Chen & Zonca 1995).
Given typical values of the phase velocity vA = B/

√
μ0ρ; where B is the magnetic

field strength, ρ is the density, and μ0 is the permeability of free space; SAWs have
the potential for resonant interactions with energetic particle (EP) populations in
fusion plasmas (Chen & Zonca 1995). In an inhomogeneous plasma, a so-called con-
tinuous spectrum of frequencies exists, consisting of radially singular solutions in the
SAW eigenvalue equation. Wave packets excited in the continuum are often strongly
damped due to phase mixing; therefore, the most easily excited modes reside in the
continuum frequency gaps. For this reason, the calculation of the SAW continuum
is often the first step in predicting the discrete frequency spectrum and stability of
EP-driven Alfvén eigenmodes (AEs). These gaps exist because counter-propagating
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SAW waves are coupled through the poloidal and toroidal variation of the mag-
netic geometry, analogous to the existence of electron band gaps due to periodic
modulations of the potential (Heidbrink 2008).

In axisymmetric geometry, the toroidal Alfvén eigenmode (TAE) and the
ellipticity-induced Alfvén eigenmode (EAE) exist because of m = 1 and m = 2 depen-
dences of the magnetic geometry, respectively, where m is the poloidal mode
number. These modes are widely observed in both tokamak and stellarator experi-
ments (Van Zeeland et al. 2006; Toi et al. 2011; Gorelenkov, Pinches & Toi 2014). In
three-dimensional (3-D) systems, additional gaps arise due to the dependence of the
geometry on the toroidal angle, giving rise to the helical Alfvén eigenmode (HAE) –
corresponding to m �= 0 and n �= 0 – and the mirror Alfvén eigenmode (MAE) –
corresponding to n �= 0 and m = 0 (Kolesnichenko et al. 2001; Spong, Sanchez &
Weller 2003), where n is the toroidal mode number.

Stellarators can be designed to be quasisymmetric, with a Noether symmetry of
the guiding center Lagrangian implying excellent neoclassical confinement (Boozer
1983; Nührenberg & Zille 1988; Landreman & Paul 2022). However, the flux-surface
shaping does not inherit the same symmetry as the field strength. Therefore, even
if the level of quasisymmetry is very precise, the gap structure of a quasisymmet-
ric stellarator can differ substantially from that of a tokamak. Furthermore, 3-D
geometry yields distinct features of continuum eigenfunctions, leading to modes that
can become localized within the magnetic surface (Yakovenko et al. 2007) or the
formation of gaps that overlap and interact with one another (Kolesnichenko et al.
2011).

Energetic particles have historically been challenging to confine in stellarator con-
figurations due to the possibility of unconfined orbits and resonances exposed at low
collisionality (Kolesnichenko et al. 1992; Redi et al. 1999). These difficulties must be
overcome to develop a stellarator reactor concept, as excessive alpha losses before
thermalization can impact power balance and impart damage to plasma-facing com-
ponents. When 3-D fields are introduced, such as in a stellarator or rippled tokamak,
the collisionless guiding center orbits are no longer automatically well confined. This
leads to increased collisionless losses – due to ripple trapping, collisionless diffusion
and drift-convective orbits (Beidler et al. 2001b; Mynick 2006; Paul et al. 2022) –
and weakly collisional transport is generally enhanced. If a stellarator magnetic
field is sufficiently close to quasisymmetry, the conservation of the corresponding
canonical momentum (Rodriguez, Helander & Bhattacharjee 2020) provides guid-
ing center confinement if the orbit width is sufficiently small. Recent optimization
studies have revealed stellarator configurations with precise levels of quasisymmetry,
yielding confinement of alpha particle trajectories of similar levels to that in toka-
maks (Landreman, Buller & Drevlak 2022; Landreman & Paul 2022; Nies et al.
2024). With the possibility that guiding center orbits can be confined, there is, how-
ever, the potential for enhanced alpha losses due to interactions with SAWs. While
interaction between EPs and other MHD modes, e.g. kink and sawtooth, is possible,
Alfvénic activity is considered the major limitation to alpha confinement in burning
toroidal plasma (Gorelenkov et al. 2014).

While the SAW continuum has been calculated numerically for several quasisym-
metric equilibria (Spong et al. 2003; Fesenyuk et al. 2004; Varela et al. 2021), the
goal of this work is to study the underlying features of the shear Alfvén continuum in
quasisymmetric configurations. With an improved understanding of the continuum,
we hope to better assess the potential impact of AE instabilities in quasisymmetric
devices and account for AE stability in the stellarator design process.
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In § 2 we outline the SAW model in 3-D magnetic fields. A near-axis model mag-
netic field (Garren & Boozer 1991; Landreman, Sengupta & Plunk 2019), discussed
in § 3, is applied to elucidate the impact of quasisymmetry on the flux-surface shap-
ing, and therefore the continuum structure. Given the common physics basis between
the shear Alfvén continuum and the formation of band gaps, degenerate perturba-
tion theory is used to solve the continuum equation in § 4. We highlight key features
of stellarator continuum solutions, such as higher-order crossings and the possibility
of co-propagating modes which appear to cross spectral gaps. Numerical examples
are shown in § 5 to validate the theory. In § 6, we discuss the impact of the SAW
gap location on the passing EP resonance condition. Finally, in § 7 we demonstrate
an optimization strategy to manipulate the SAW continuum to avoid passing EP
resonances.

2. Shear Alfvén continuum in 3-D geometry

An equation describing SAWs is obtained under the assumption of β � 1 and
the reduced MHD ordering ε = k‖/k⊥ ∼ 1/(k⊥a)� 1 (Salat & Tataronis 2001a;
Fesenyuk et al. 2002). Here, k‖ ∼ ∇‖ = b̂ · ∇ and k⊥ ∼ ∇⊥ = ∇ − b̂∇‖ represent
typical wavenumbers of perturbed quantities parallel and perpendicular to the equi-
librium magnetic field, and β = p/(B2/2μ0) is the ratio of the thermal pressure
to the magnetic pressure. The linearized quasineutrality condition yields a partial
differential equation (PDE) for the perturbed electrostatic potential Φ

B∇‖

(
∇2

⊥
(∇‖Φ

)
B

)
+ ω2

v2
A

∇2
⊥Φ = 0, (2.1)

where v2
A = B2/(μ0ρ) is the Alfvén velocity, ρ is the mass density and ω is the

frequency. Note that we have neglected the coupling to sound waves, which has
been shown to modify low-frequency gaps in stellarators (Könies & Eremin, 2010).
This is justified, since we will focus on high-frequency gaps for the following analysis.

The shear Alfvén equation has a continuous spectrum, corresponding to a set of
frequencies for which the corresponding eigenfunctions are radially singular. The
continuum solutions correspond to a localization of the eigenfunction on a corre-
sponding singular surface. The shear Alfvén continuum equation is obtained from
the terms in (2.1) with the highest-order radial derivative (Salat & Tataronis 2001b)

B∇‖

( |∇ψ |2
B

∇‖Φ
)

+ ω2|∇ψ |2
v2

A

Φ = 0. (2.2)

Solutions to (2.2) can be interpreted as solutions to (2.1) with delta-function-like
radial variation. To analyze the formation of continuum gaps, we write the
continuum equation in Boozer coordinates (Boozer 1981) (ψ, θ, ζ ), where 2πψ is
the toroidal flux and θ and ζ are the poloidal and toroidal angle, respectively, and
adopt appropriate normalizations(

∂

∂ζ
+ ι

∂

∂θ

) [ |∇ψ |2
〈|∇ψ |2〉

(
∂

∂ζ
+ ι

∂

∂θ

)
Φ

]
+ ω2

ω2
A

|∇ψ |2/B4

〈|∇ψ |2〉/〈B4〉Φ = 0. (2.3)

We have defined the effective Alfvén frequency as ωA = 〈B〉2/(G + ιI )
√
μ0ρ),

where 〈. . .〉 = (4π 2)−1
∫ 2π

0

∫ 2π
0 dζdθ . . . indicates an angle average of a geometric
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quantity. Here, G and I are the toroidal and poloidal covariant components of the
magnetic field, defined through

B = G(ψ)∇ζ + I (ψ)∇θ + K (ψ, θ, ζ )∇ψ. (2.4)

The perturbed potential can be expressed as a Fourier series in Boozer angles

Φ =
∑
m,n

Φm,nei(mθ−nζ+ωt). (2.5)

As seen in (2.3), the equilibrium quantities appearing in the continuum equation,
|∇ψ |2 and |∇ψ |2/B4, provide coupling between mode numbers of the potential. In
a 2-D magnetic field, the toroidal harmonics n are decoupled. Similarly, in a 3-D field
with field-period symmetry (all equilibrium quantities only depend on the toroidal
angle through NPζ where NP is the number of field periods), toroidal coupling is iso-
lated to mode families, the sets of mode numbers n separated by integer multiples of
NP . We will focus on the solutions of (2.3) in a quasisymmetric (QS) field, for which
the magnetic field strength only varies on a magnetic surface through the angle χ =
θ − Nζ , where N is the symmetry helicity (N = 0 for quasiaxisymmetry (QA) and
N = ±NP for quasihelical symmetry (QH)). We note that, even if the magnetic field
strength is QS, implying that B(ψ, χ), the other geometric quantities, such as |∇ψ |2,
do not necessarily respect the same symmetry. Thus the continuous spectrum in QS
stellarators will generally differ dramatically from that of axisymmetric devices. This
will be shown explicitly in the following section, using a near-axis model field.

3. Near-axis quasisymmetry model

Further analysis of the continuum equation (2.3) requires a model for the geomet-
ric factors appearing, namely |∇ψ |2 and B. We will adopt the near-axis QS magnetic
field description (Garren & Boozer 1991; Landreman et al. 2019), an asymptotic
expansion in the distance from the magnetic axis r = √

2ψ/B0, where B0 is the field
strength on the magnetic axis. Although such a description is limited to some region
near the axis (not necessarily small), it has been shown to capture the nature of such
fields, and is thus highly insightful (Landreman 2019, 2022; Rodríguez et al. 2023a).
Furthermore, since the birth rate of alpha particles will be peaked in the core, this
model is appropriate for QS reactors. In such a model, the magnetic field strength,
covariant components of the magnetic field and rotational transform read⎧⎪⎪⎪⎨

⎪⎪⎪⎩
B = B0(1 − rη cos(χ))+O(r 2),

G = G0 +O(r 2),

I = r 2 I2 +O(r 4),

ι= ι0 +O(r 2),

(3.1)

where η, G0 and ι0 are constants that define the magnetic field in Boozer coordinates
through the above expressions. Furthermore, the geometric factor appearing in the
continuum equation (2.3) reads (Jorge & Landreman 2020)

|∇ψ |2 = r 2�2 + r 3�3 +O(r 4), (3.2)

with

�2 = B2
0

2κ2 [1 + κ4(1 + σ 2)+ cos(2χ)(−1 + κ4(1 − σ 2))+ sin(2χ)(−2σκ4)], (3.3)
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and �3 provided in Appendix C. Here, κ(ζ )= κ(ζ )/η is the normalized magnetic
axis curvature and σ(ζ ) satisfies the ordinary differential equation (ODE)

0 = σ ′ + (ι0 − N )

(
1

κ4 + 1 + σ 2

)
+ 2

(
τ − I2

B0

)
G0

B0κ
2 , (3.4)

where τ(ζ ) is the magnetic axis torsion and the prime denotes d/dζ . The function
σ(ζ ) controls the flux-surface ellipticity and rotation, as will be described in more
detail below.

In summary, with the parameters η, B0, G0 and I2 prescribed along with the shape
of the magnetic axis (which determines N (Rodríguez et al. 2023)), the ODE (3.4)
with appropriate boundary conditions (Landreman & Sengupta 2018) determines
the function σ(ζ ) as well as the on-axis rotational transform ι. With these quantities,
all geometric information needed for solving the near-axis continuum equation is
available. Under the near-axis assumptions, the continuum equation to lowest order
in r reads

1
�2

(
∂

∂ζ
+ ι0

∂

∂θ

) [
�2

(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ

]
+ω2Φ = 0. (3.5)

Here, we define the effective Alfvén frequency as ωA = B2
0/(G0

√
μ0ρ) and the nor-

malized frequency ω=ω/ωA. (Note that the geometric factor G0/B0 defines an
effective major radius through R−1

0 = |∇ζ | = B0/G0, using the lowest-order covari-
ant expression for the magnetic field.) We employ a perturbative approach to solving
(3.5) for the small parameter ε quantifying the geometric coupling

ε = �2

〈�2〉 − 1, (3.6)

such that the continuum equation reads

1
(1 + ε)

(
∂

∂ζ
+ ι0

∂

∂θ

) [
(1 + ε)

(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ

]
+ω2Φ = 0. (3.7)

Representing Φ as a Fourier series (2.5), (3.7) implies that coupling between mode
numbers (m, n) of the potential will be provided by the variation of ε on a magnetic
surface. We express ε as a Fourier series in the Boozer angles

ε =
∑
δm,δn

εδm,δnei(δmθ−δnNP ζ ) =
∑
δm,δn

εδm,δnei(δmχ−δnNP ζ ), (3.8)

where δm = δn = 0 terms are excluded according to the definition (3.6) and we
have assumed field-period symmetry. Here, we use the notation δm and δn to dis-
tinguish the equilibrium mode numbers from the mode numbers of the perturbed
potential defined by (2.3). Furthermore, this notation emphasizes that the equilib-
rium geometry will provide coupling between potential mode numbers (m, n) and
(m + δm, n + δn). Since θ only enters through the angle χ in (3.3), it will sometimes
be convenient to represent ε as a Fourier series in (χ, ζ ) as indicated in the above
expression. When expressing ε as a Fourier series with respect to χ , the distinction
δm will be made apparent. We see from the near-axis expression (3.6) that, to leading
order, only amplitudes εδm,δn with δm = ±2 or δm = 0 will be non-zero.
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3.1. Rotating ellipse interpretation
To gain further insight into the impact of shaping on the spectral content of ε, we

can relate averages of �2 to properties of the near-axis surfaces, which form ellipses
in the plane perpendicular to the axis. Denoting the semi-major axis by a and the
semi-minor axis as b, the quantity p = a2 + b2 = (1 + κ4(1 + σ 2))/κ2 controls the
elongation E = a/b through the expression

E = p +√
p2 − 4

2
. (3.9)

Defining a coordinate system oriented with the ellipse axes, x = a cos ϑ and y =
b sin ϑ for an ellipse parametrization angle ϑ , the quantity �2 takes a particularly
simple form

�2 = B2
0

p −√
p2 − 4 cos(2ϑ)

2
. (3.10)

We note that the flux surfaces become compressed around ϑ = π/2, 3π/2, corre-
sponding to the semi-minor axis of the ellipse. Overall, the in-surface variation of the
flux-surface compression increases with increasing elongation.

To more precisely evaluate the harmonic content of �2, we must express the ellipse
parametrization angle ϑ in terms of Boozer angles. It is the typical case with opti-
mized QS stellarators for their elliptical flux surfaces to make one half-rotation with
respect to the normal vector in one field period. While a solid theoretical justifica-
tion for this feature is lacking (and would merit further exploration), there exists
strong evidence for the persistence of this feature, as can be checked by analyzing
standard QS designs like those in this paper, or more thoroughly, looking through
the large database of near-axis configurations of Landreman (2022).

1
The direction

of ellipse rotation (positive being counter-clockwise) will match the sign of (ι0 − N ),
being oppositely oriented for QA and QH configurations. (This can, for example,
be seen from the Mercier formula, (67) in Jorge, Sengupta & Landreman 2020a).
For QH configurations, the normal vector makes one net rotation in the poloidal
plane per field period, which counteracts the direction of ellipse rotation. On the
other hand, for QA configurations, the normal vector does not make any net rota-
tions. Therefore, for both QA and QH configurations, the elliptical surfaces make
one half-rotation in the poloidal plane per field period. Given this half-rotation of
the ellipse with respect to the normal vector per field period, isocurves of constant
ϑ will be helical when expressed in Boozer angles. We will assume that the sign of
the toroidal angle is chosen so that the ellipse rotates in the positive direction in the
poloidal plane, such that when expressed in terms of Boozer coordinates, θ − NPζ .

Given (3.10), we therefore expect a strong helical δm = 2, δn = 1 component of ε,
driven by rotating ellipticity. Additional toroidal coupling will be introduced due to
the variation of the ellipticity parameter p and rotation of the ellipse parametrization
angle with respect to the Boozer angles, ω (which depends on p and κ). This could
not only contribute to (δm, δn)= (2, 1), but also lead to the appearance of further
couplings. These features are discussed further in Appendix A.

1In fact, of all 448 743 QH fields in said database, 98.6% exhibit half-rotation of their elliptical cross-section.
Of the 74 387 QA configurations, 99.97 % do. This indicates a strong tendency to have a half-rotation, which can
be interpreted in terms of a minimal amount of shaping that generates a sufficient amount of rotational transform
(Mercier 1964). However, there is no a priori reason why exceptions could not arise.
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3.2. Boozer coordinate interpretation
The spectral content of ε can now be explicitly evaluated through averages of

(3.3), and can be expressed in terms of ζ averages, 〈. . .〉ζ = (2π)−1
∫

dζ . . . , of the
geometric parameters p, κ and γ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εδm=0,n = 〈p cos(nNPζ )〉ζ
〈p〉ζ

,

εδm=2,0 = 〈κ2〉ζ
〈p〉ζ − 1

2
,

εδm=2,n = 〈(2κ2 − p) cos(nNPζ )− 2 tan(2γ )(2 − pκ2) sin(nNPζ )〉ζ
2〈p〉ζ .

(3.11)

Here, we have used the assumption of stellarator symmetry to deduce that �2 is even
in (mχ − nNPζ ). As will be discussed in § 4, each of these spectral components of
ε will drive a corresponding gap in the shear Alfvén continuum, which we will label
by the mode numbers (δm, δn). We will assume the standard language to describe
these gaps: the TAE corresponds with δm = 1, δn = 0, the EAE gap corresponds
with δm = 2, δn = 0, the HAE gaps corresponds with δm �= 0 and δn �= 0 and the
MAE gaps corresponds with δm = 0, δn �= 0.

We can now interpret the geometric origins of these spectral components and
their corresponding gaps:

(i) According to the discussion around (3.10), the εδm=2,δn=1 spectral component
is typically substantial in stellarators, driven by the rotating ellipse geometry,
assuming that the sign of the toroidal angle is chosen to coincide with the
direction of ellipse rotation. This component increases with increasing elonga-
tion through the parameter p. Thus rotating ellipticity drives the HAE (2,1)
gap observed in many stellarators (Kolesnichenko et al. 2001, 2011).

(ii) The mirror component, εδm=0,n, is produced by the toroidal variation of the
elongation through the parameter p. Therefore, the toroidal variation of the
elongation gives rise to the MAE gap.

(iii) The parameter εδm=2,0, which drives the elliptical component (δm = 2, δn = 0)
of ε in QA configurations and the helical (δm = 2, δn = 2) component in QH
configurations, can be enhanced in the limit of either small or large 〈2κ2〉ζ /〈p〉ζ
in comparison with 1. In the limit of small and large κ , the dominant balance
ordering σ ∼ κ−2 from (3.4) (Rodríguez et al. 2023) can be used to obtain
p → 2/κ2 and κ2, respectively. Thus both limits of small or large 〈2κ2〉ζ /〈p〉ζ
correspond to enhanced elongation. Therefore, elongation drives the EAE gap
in QA configurations and the HAE (2,2) gap in QH configurations.

(iv) The parameter εδm=2,n, which drives the helical component (δm = 2, δn = n) in
QA configurations and the helical (δm = 2, δn = n + 2) and elliptical compo-
nents (for n = −2) in QH configurations, is produced by the toroidal variation
of the curvature, elongation and rotation angle. Thus the toroidal variation of
the curvature and elongation drive other HAEs in QA and QH configurations
and the EAE in QH configurations.

In figure 1, the spectral contents of the coupling parameters appearing in the con-
tinuum equation (2.3), |∇ψ |2 and |∇ψ |2/B4, are shown for two QH and two QA
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Configuration N Mean E Var E Mean κ Var κ |ε2,1| |ε2,0| |ε0,1|
Precise QH 4 2.9 0.33 1.2 1.1 0.80 0.11 0.15
HSX 4 2.8 0.26 1.1 0.94 0.77 0.15 0.08
Precise QA 0 3.2 0.87 1.42 1.0 0.78 0.38 0.36
Garabedian 0 2.4 0.81 2.9 0.8 0.65 0.38 0.29

TABLE 1. Configuration characteristics are shown for the equilibria in figure 1 at s = 0, includ-
ing the symmetry helicity N , mean and variance ((max(E)− min(E))/mean(E) of elongation,

mean and variation of κ and the magnitudes of the dominant Fourier harmonics of εδm,δn .

configurations (Anderson et al. 1995; Zarnstorff et al. 2001; Landreman & Paul
2022). Each equilibrium is fit to the near-axis representation (Landreman 2019),
and the corresponding expression for |∇ψ |2 (3.3) is Fourier transformed, as shown
in the first row. In the second and third rows, the Fourier transform is performed
on the s =ψ/ψ0 = 0 and 0.5 surfaces of the equilibrium, where ψ0 is the toroidal
flux on the boundary. The spectral content of |∇ψ |2/B4 on the s = 0.5 surface is
shown on the bottom row. For ease of interpretation, the sign of the toroidal angle
is chosen such that the direction of ellipse rotation coincides for all equilibria. Note
that the spectral content of |∇ψ |2/B4 is equivalent to that of |∇ψ |2 in the lowest-
order near-axis expansion, so near-axis results are only shown for |∇ψ |2. We see
that the near-axis expression provides quantitative agreement with the equilibrium
on axis, and qualitative agreement away from the axis. For all equilibria, the Fourier
transform reveals that the dominant spectral component is the δm = 2, δn = 1 ampli-
tude, as predicted by the rotating ellipse geometry. Only for the QA equilibria do the
elliptical and mirror components become comparable in magnitude, as these configu-
rations have considerable toroidal variation of the elongation and curvature, see table
1. The mirror and elliptical components are slightly larger in the precise QA equilib-
rium than in the Garabedian equilibrium due to its enhanced elongation magnitude
and variation. Away from the axis, the toroidal (δm = 1) and triangularity-induced
(δm = 3) components are driven, which are not captured by the lowest-order
near-axis theory.

To summarize, we note that the spectral content of |∇ψ |2 is generally distinct from
that of B. As discussed in previous work (Kolesnichenko et al. 2001, 2011), due to
the rotating ellipticity inherent to stellarator configurations near the magnetic axis,
a strong helical δm = 2, δn = ±1 component is driven, with a sign corresponding to
the direction of ellipse rotation. Due to coupling through the toroidal variation of the
curvature and elongation, additional mirror, helical and elliptical components arise.
This effect appears to be stronger in the QA configurations studied. While further
study is required to determine if this trend holds over a wider database of configura-
tions, a plausible explanation can be obtained from the fact that the normal vector of
QH configurations must make N rotations; thus the axis rotation naturally generates
significant rotational transform. However, for QA configurations, more substantial
elongation and shaping are required to generate substantial rotational transform.

4. Perturbative solution to the continuum equation

Given the common physics basis for the formation of spectral gaps in the shear
Alfvén continuum in a torus and the band gaps in the electron energy spectrum
in a periodic lattice (Heidbrink 2008), it is natural to apply quantum mechanical
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(a) (b) (c) (d)

FIGURE 1. The Fourier transforms of the normalized coupling parameters, |∇ψ |2/〈|∇ψ |2〉 and
|∇ψ |2/B4/〈|∇ψ |2/B4〉, are shown for two QH configurations, (a) and (b), and two QA config-
urations, (c) and (d). The near-axis expression �2, defined through (3.2), (first row) shows good
quantitative comparison with the on-axis equilibrium values (second row) and good qualitative
comparison with the mid-flux value from the equilibrium (bottom row).

techniques to analytically study the continuum structure in a near-axis QS field.
Here, we use degenerate perturbation theory, treating the coupling parameter ε as
a small perturbation, to identify the frequency splitting. Similar techniques have
been applied to study the shear Alfvén continuum of a large-aspect-ratio tokamak
(Kieras & Tataronis 1982; Riyopoulos & Mahajan 1986). This analysis will provide
expressions for the spectral gaps in near-axis QS configurations, similar to previ-
ous studies of the continuum of model Helias configurations (Kolesnichenko et al.
2001). The formalism will also enable extensions beyond previous work, such as
quantification of secondary gaps due to the interaction of multiple harmonics of ε
and higher-order crossings, which have been observed in previous numerical studies
(Kolesnichenko et al. 2001; Spong et al. 2003; Yakovenko et al. 2007).

4.1. Near-axis perturbation theory
Given the continuum equation under the near-axis quasisymmetry model (3.7), we

now seek expressions for the continuum gap locations and width. Under the assump-
tion that the coupling is small, |ε| � 1, perturbation theory can be used to evaluate
the eigenvalue shift associated with the coupling. To simplify the notation, we define
the eigenvalue λ j =ω2

j . To lowest order in the coupling (denoted by superscript (0)),
the continuum equation reads(

∂

∂ζ
+ ι0

∂

∂θ

) [(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ
(0)
j

]
+ λ

(0)
j Φ

(0)
j = 0. (4.1)

The eigenfunctions are Φ(0)
j = ei(m j θ−n j ζ+ωt) with eigenvalues

λ
(0)
j = (ι0m j − n j)

2. (4.2)
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We continue to the linear order in the coupling parameter ε(
∂

∂ζ
+ ι0

∂

∂θ

)2

Φ(1) +
[(

∂

∂ζ
+ ι0

∂

∂θ

)
ε

] [(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ(0)

]
+λ(0)Φ(1) + λ(1)Φ(0) = 0. (4.3)

We first consider non-degenerate perturbation theory, which assumes that all
unperturbed frequencies are unique, before approaching the degenerate case. Non-
degeneracy precludes the possibility of continuum frequency crossings, e.g. points
where

ι0m j − n j = ±(ι0mk − nk), (4.4)

for some (m j , n j) �= (mk, nk). In this case, we assume (4.3) with Φ(0) =Φ
(0)
j and

λ(0) = λ
(0)
j . By integrating against (Φ(0)

j )
∗ (star indicating the complex conjugate),

noting that the operator (∂/∂ζ + ι0∂/∂θ)
2 is self-adjoint, the constraint λ(1)j = 0 is

obtained. Therefore, no shift to the continuum frequency is obtained in the absence
of degeneracy, i.e. continuum crossings.

We next consider the case of two degenerate frequencies, λ(0) = λ
(0)
j = λ

(0)
k , or

equivalently (4.4). We define the mode number separations as �m = m j − mk and
�n = n j − nk . The two states are said to be co-propagating if they satisfy (4.4) with
a positive sign, indicating the same sign of the parallel wavenumber k‖ for both
eigenfunctions. Otherwise, they are said to be counter-propagating. Here, we adopt
the notation ω(0) = √

λ(0), with ω(0)j = ι0m j − n j . As will be shown below, only the
counter-propagation case enables a frequency shift. In the counter-propagation case,
the condition (4.4) implies

|ω(0)| =
∣∣∣∣ ι0�m −�n

2

∣∣∣∣ , (4.5)

while in the co-propagation case, it implies ι0 =�n/�m. Therefore, the co-
propagation case is only possible when multiple toroidal harmonics are considered,
�n �= 0, as in the case of 3-D configurations such as stellarators.

In the case of two-way degeneracy of either sign, the unperturbed eigenfunction is
a linear combination of two unperturbed states

Φ(0) = α jΦ
(0)
j + αkΦ

(0)
k , (4.6)

for unknown amplitudes α j and αk with λ(0)j = λ
(0)
k = λ(0). The perturbed continuum

equation (4.3) is then integrated against (Φ(0)
j )

∗ and (Φ(0)
k )

∗ to yield a set of coupled
equations for the amplitudes α j and αk[

λ(1) ε�m,�nω
(0)
j (ι0�m −�n)

ε∗
�m,�nω

(0)
j (ι0�m −�n) λ(1)

] [
α j

αk

]
=
[
0
0

]
. (4.7)

Setting the determinant of the above matrix to zero provides the frequency shift,

(λ(1))2 = |ε�m,�n/NP |2(ι0�m −�n)2λ(0), (4.8)
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FIGURE 2. A schematic diagram of a spectral gap formed due to a counter-propagating pair
(dashed lines) that cross at ω(0). Here, red indicates ω(0) > 0 and black indicates ω(0) < 0. In the
presence of the coupling parameter ε, a gap forms of width �ω, given by (4.16).

noting that (ω(0)j )
2 = λ(0). Here, we have assumed NP -symmetry, with the convention

that the toroidal mode number of ε is multiplied by NP in the definition (3.8). In the
case of co-propagation, there is evidently no frequency shift, and the two modes will
continue to cross each other unless a higher-order degeneracy is present, as described
in § 4.2. For the counter-propagating case, the frequency shift is evaluated from the

displacement of the positive and negative solutions, �ω=
√
λ(0) + λ

(1)
+ −

√
λ(0) + λ

(1)
− ,

approximated as

�ω= 2ω(0)|ε�m,�n/NP |. (4.9)

Therefore, while in the absence of coupling, the frequencies would cross at the
point indicated by (4.5), the crossing is avoided in the presence of coupling. The
phenomena of avoided crossings is often referred to as a spectral gap associated
with mode numbers �m and �n/NP . See figure 2 for a schematic diagram. We will
refer to such locations as the (�m, �n/NP) gap. As described in § 4.4, the avoided
crossings persist away from the axis, with the central gap frequency ω(0) being a
continuous function of ι.

In an axisymmetric system, all toroidal mode numbers are decoupled, since the
geometric factor ε is independent of ζ . Thus one can analyze the continuum inde-
pendently for each toroidal mode number n, and �n = 0 for all crossings. In this
way, all crossings are avoided if coupling is present, since co-propagation is not pos-
sible. However, in a 3-D system, not all crossings are avoided due to co-propagation
described above and gap crossings, as described in § 4.3. This additional complexity
generally obscures spectral gaps in 3-D systems, although one may still gain basic
intuition from this perturbative analysis.

The following sections will further extend this theory. Section 4.2 will consider the
case when the degeneracy is not lifted at the linear order, but at quadratic order.
Section 4.3 will consider the case of higher-order crossings, which are permitted
in 3-D systems. Finally, § 4.4 will extend the perturbation analysis away from the
magnetic axis.
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4.2. Higher-order degeneracy
We now consider the case when the degeneracy is not lifted at first order in ε,

implying ε�m,�n/NP = λ(1) = 0. Even in the absence of a frequency shift at first order,
there may still be a shift to the eigenfunction, Φ(1), which enters at O(ε2). Since the
lowest-order eigenfunctions are a complete basis, the correction to the eigenfunction
can be expressed as

Φ(1) =
∑
i �= j,k

μiΦ
(0)
i , (4.10)

where we are free to assume that Φ(1) has no projection onto the degenerate
subspace, Φ(0)

j and Φ
(0)
k . The coefficients μi are determined by integrating (4.3)

against (Φ(0)
i )

∗

μi = �i jεi jα jω j +�ikεikαkωk

λ(0) − λ
(0)
i

, (4.11)

where �i j = ι0�mi j −�ni j and εi j = ε�mi j ,�ni j /NP . We now continue to second order
in ε (

∂

∂ζ
+ ι0

∂

∂θ

)2

Φ(2) +
[(

∂

∂ζ
+ ι0

∂

∂θ

)
ε

] [(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ(1)

]

−ε
[(

∂

∂ζ
+ ι0

∂

∂θ

)
ε

] [(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ(0)

]
+λ(0)Φ(2) + λ(2)Φ(0) = 0. (4.12)

Integrating against
(
Φ
(0)
j

)∗
and (Φ(0)

k )
∗, using (4.10) and (4.11) again results in a

set of coupled equations for α j and αk . The zero-determinant condition, assuming
counter-propagation, then reads(

λ(2)

λ(0)
+ F

)2

− |E |2 = 0, (4.13)

with

E =
∑
δm,δn

εδm,δnε�m−δm,�n/NP −δn, (4.14)

F =
∑
δm,δn

|εδm,δn|2 �(δm, δn)

�(δm, δn)+ 2ω(0)j

, (4.15)

where �(δm, δn)= ι0δm − δn. The gap width due to two-harmonic coupling then
reads

�ω=ω(0)|E |. (4.16)

In addition to the frequency splitting, the gap central frequency is modified to
ω
(0)
j

√
1 − F . See Appendix B for details.

Because the frequency shift is second order in the coupling parameters, such
gaps will typically be narrower. This behavior has been observed in numerical

https://doi.org/10.1017/S0022377825100524 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100524


Journal of Plasma Physics 13

continuum calculations, sometimes referred to as secondary or higher-order gaps
(Kolesnichenko et al. 2001). As an example, according to near-axis theory, ε can
only provide harmonics with δm = 2 or 0. However, a gap with �m = 4 can nonethe-
less arise due to higher-order degeneracy, as will be demonstrated numerically in § 5.
More generally, n-order degeneracies may also arise, whose width scales with εn.

4.3. Higher-order crossings
While spectral gaps remain well separated in 2-D configurations, they may gen-

erally cross when �n �= 0. The phenomena of gap crossing results in higher-order
crossing of unperturbed frequencies, which can reduce the gap width and modify the
gap structure. We first remark on the interpretation of such higher-order crossings
before embarking on the analysis.

If multiple pairs of modes are counter-propagating, this implies the intersection
of spectral gaps with different mode numbers, (�m1, �n1) and (�m2, �n2). Since
the frequency center of the gap is given by (4.5), the crossing of these spectral gaps
implies

ι0 = �n1 −�n2

�m1 −�m2
. (4.17)

Thus, the gap crossing necessarily occurs on a rational surface. If one gap crossing
exists, satisfying the above condition, then there are an infinite number of gap cross-
ings at the same location since the numerator and denominator can be scaled by the
same factor. For example, gaps labeled by mode numbers (�m1, �n1) and (�m3,
�n3) with �n3 = k�n2 − (k − 1)�n1 and �m3 = k�m2 − (k − 1)�m1 will cross at
the same location for any integer k. Thus gap crossing implies many-way crossings at
the intersection point. As we will see in § 5.3, with increasing numerical resolution,
the number of crossings increases. As illustrative cases, we discuss three-way and
four-way crossings below.

As discussed in (Yakovenko et al. 2007), at the gap crossing point, the continuum
equation (4.12) then becomes decoupled across field lines since only parallel deriva-
tives appear. When the two gaps cross, the parallel wavenumber associated with the
two corresponding coupling parameters, ε�m1,�n1/NP and ε�m2,�n2/NP , then coincide,
since ι0�m1 −�n1 = ±(ι0�m2 −�n2). In this way, ε�m1,�n1/NP and ε�m2,�n2/NP can
enable coupling between both pairs of counter-propagating modes. The variation
across field lines of the coupling can act to reduce the gap width, with the resulting
width being approximately the difference in the widths of the crossing gaps. This
behavior will be demonstrated in § 5.3.

Now we consider the situation of multiple of pairs of modes co-propagating with
each other, implying that

ι0 = �n1

�m1
= �n2

�m2
. (4.18)

Again, this condition can only be satisfied on a rational surface, and co-propagation
can only occur for helical gaps (�m1, �n1, �m2, �n2 are all non-zero), Evidently,
the two pairs of modes must have a common factor. Thus this behavior occurs due
to intersection with a higher harmonic of a helical gap (e.g. (�m, �n) = (2,1) and
(4,2)). As with the counter-propagating case, an infinite number of gap crossings is
possible by rescaling the numerator and denominator by the same integer.
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We now analyze the case of higher-order crossings at linear order. Since the behav-
ior will differ for odd- and even-numbered crossings, we will discuss the examples of
three-way and four-way crossings.

As an illustrative case, we first consider three degenerate frequencies, Φ(0) =
αiΦ

(0)
i + α jΦ

(0)
j + αkΦ

(0)
k . We define the mode number separations as �mi, j =

mi − m j and�ni, j = ni − n j . Following a similar argument to § 4.1, the linear system
determining the frequency shift is⎡

⎢⎣
λ(1) −εi j�i jω

(0)
j −εik�ikω

(0)
k

ε∗
i j�i jω

(0)
i λ(1) −ε jk� jkω

(0)
k

ε∗
ik�ikω

(0)
i ε∗

jk� jkω
(0)
j λ(1)

⎤
⎥⎦
⎡
⎣αi

α j

αk

⎤
⎦=

⎡
⎣0

0
0

⎤
⎦ , (4.19)

where �i j = ι0�mi j −�ni j and εi j = ε�mi j ,�ni j /NP . Without loss of generality, we can
assume that either all three unperturbed eigenfunctions are co-propagating, ω(0)i =
ω
(0)
j =ω

(0)
k , or two are co-propagating and the third is counter-propagating ω(0)i =

−ω(0)j =ω
(0)
k . In the purely co-propagation case, the zero-determinant condition then

reads

(λ(1))3 = 0, (4.20)

while in the case with counter-propagation

λ(1)[(λ(1))2 − 4(λ(0))2(|ε jk|2 + |εi j |2)] = 0. (4.21)

In either case, there remains at least one solution with no frequency shift, λ(1) = 0.
In the case with counter-propagation, there remains two solutions with a shifted
frequency depending on the two harmonics of ε which couple a pair of counter-
propagating modes

�ω= 2ω(0)
√

|ε jk|2 + |εi j |2. (4.22)

However, at least one continuum eigenfunction will not be shifted in frequency and
will appear to ‘cross the gap.’ A similar structure persists for higher-order crossings
of an odd number. Since co-propagation cannot be avoided for odd crossings, not
all crossings will be avoided.

To consider higher-order crossings of an even number, we now consider the
case of a four-way degeneracy, Φ(0) = αiΦ

(0)
i + α jΦ

(0)
j + αkΦ

(0)
k + αlΦ

(0)
l . Without

loss of generality, we can consider three possibilities: all modes are co-propagating
(ω(0)i =ω

(0)
j =ω

(0)
k =ω

(0)
l ), three are co-propagating and one is counter-propagating

with the others (ω(0)i = −ω(0)j = −ω(0)k = −ω(0)l ) and two pairs are counter-propagating
(ω(0)i = −ω(0)j =ω

(0)
k = −ω(0)l ). In the first case, the zero-determinant condition reads

(λ(1))4 = 0, and again, no frequency shift results. In the case of three co-propagating
modes, the frequency shifts satisfy

(λ(1))2[(λ(1))2 − 4(λ(0))2(|εi j |2 + |εik|2 + |εil |2)] = 0. (4.23)

Here, two of the frequencies are shifted according to harmonics of ε which couple
two counter-propagating modes, analogous to (4.22)

�ω= 2ω(0)
√

|εi j |2 + |εik|2 + |εil |2, (4.24)
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FIGURE 3. Schematic diagrams of higher-order crossings. Here, red indicates ω(0) > 0 and black
indicates ω(0) < 0. In (a), there is a three-way crossing at ω(0). The counter-propagating pair
(dashed lines) is shifted by the perturbation, forming the gap indicated by the green shaded
region. The solid red line is unshifted by the perturbation and appears to cross the gap. In (b),
there is a four-way crossing at ω(0). The two counter-propagating pairs are both shifted by the
perturbation, forming gaps of different widths, indicated by the shaded regions. The effective
gap, where continuum damping is minimized, is the region of overlap between the two gaps.

while the other two frequencies are not shifted by the perturbation. Finally, we
consider the case of two pairs of counter-propagating modes

(λ(1))2 = 4(λ(0))2
( [|εi j |2 + |εil |2 + |ε jk|2 + |εkl |2

]
±
√(|εi j |2 + |εil |2 + |ε jk|2 + |εkl |2

)2 − 4|εilε
∗
jk − εi jεkl |2

)
, (4.25)

and all solutions enable frequency shift by harmonics of ε that couple counter-
propagating modes. Note that there are now two solutions for the gap width, and
each counter-propagating pair is shifted by a distinct width

(�ω)± = 2ω(0)
( [|εi j |2 + |εil |2 + |ε jk|2 + |εkl |2

]
±
√(|εi j |2 + |εil |2 + |ε jk|2 + |εkl |2

)2 − 4|εilε
∗
jk − εi jεkl |2

)1/2
. (4.26)

The effective gap width will be the smaller of these two solutions, since this is the
region in which continuum damping can be avoided. In the limit that only εi j and
εkl are non-zero, enabling coupling between these two counter-propagating pairs, the
gap width solutions reduce to �ω= 2ω(0)|εi j |, 2ω(0)|εkl |, as is consistent with (4.16).
See figure 3 for a schematic diagram.

To summarize, higher-order crossings are allowed in 3-D configurations due to
coupling between modes with �m �= 0 and �n �= 0. If all of the degenerate eigen-
functions are co-propagating, then no frequency shift is present. If some modes
are counter-propagating, then there will exist a frequency shift related to the har-
monics of ε which couple the counter-propagating modes. For an odd-numbered
crossing, at least one degenerate mode frequency will not be shifted, while for an
even-numbered crossing, it is possible for all frequencies to be shifted by the pertur-
bation if every eigenfunction is in a counter-propagating pair. This behavior will be
shown in numerical continuum solutions in § 5.3.
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4.4. Behavior away from magnetic axis
In this section, we relax the near-axis assumption to evaluate behavior away from

the axis. From (2.3), two coupling parameters now arise in the continuum equation

(
∂

∂ζ
+ ι

∂

∂θ

) [
(1 + ε1)

(
∂

∂ζ
+ ι

∂

∂θ

)
Φ

]
+ω2(1 + ε2)Φ = 0, (4.27)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε1 = |∇ψ |2

〈|∇ψ |2〉 − 1,

ε2 = |∇ψ |2/B4

〈|∇ψ |2/B4〉 − 1,

(4.28)

and ω=ω/ωA, defined by ωA = 〈B〉2/(G + ιI )
√
μ0ρ). A similar perturbative analy-

sis can be performed as described in § 4.1, where now the two coupling parameters
are assumed to be small, |ε1| � 1 and |ε2| � 1. The unperturbed frequencies are then
given by

∣∣ω(0)∣∣= ∣∣∣∣ ι�m −�n

2

∣∣∣∣ . (4.29)

Again, at linear order, a frequency shift only arises in the degenerate counter-
propagating case, given by

�ω=ω(0)
√

|ε�m,�n/NP
1 |2 + |ε�m,�n/NP

2 |2, (4.30)

where ε�m,�n/NP
1,2 are defined analogously to (3.8). In this way, the region of avoided

crossings persists away from the axis, with the central gap frequency depending on
the rotational transform through (4.29).

The coupling parameters can now be estimated by proceeding to next order in the
near-axis expansion{

|∇ψ |2/r 2 =�2 +�3r +O(r 2),

|∇ψ |2/(r 2 B4)=�2(1 − 4rη cos(χ))+ r�3 +O(r 2).
(4.31)

According to the discussion in Appendix C, the geometric parameter �3 is driven
by higher-order shaping components, such as triangularity and the Shafranov shift.
With the cos(θ) and cos(3θ) dependence of �3, the TAE (�m = 1) and non-circular-
triangularity-induced Alfvén eigenmode (NAE) (�m = 3) (Kramer et al. 1998) gaps
are driven. These same gaps are also driven through the beating of the cos(2χ)
dependence of �2 and the cos(χ) in the above expression. Through numerical exam-
ples in § 7, we will see the formation of the TAE and NAE in continuum solutions
away from the magnetic axis.

4.5. Summary
To summarize, through perturbative analysis under the assumption of smallness

of the coupling parameter in the continuum equation, frequency shifts of counter-
propagating continuum modes are computed. This enables the identification of the
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location (4.5) and width (4.16) of spectral gaps and their relation to the near-axis
QS geometry described in § 3. Even if counter-propagation enables the formation
of a continuum gap, co-propagation remains a possibility for helical gaps, for which
�m �= 0 and �n �= 0. This may result in continuum modes which appear to ‘cross the
gap.’ The theory has been extended to evaluate cases for which the degeneracy is not
lifted at first order in ε, resulting in the phenomena of gaps formed due to coupling
of different harmonics of ε. We also assess higher-order frequency crossings that
may exist in 3-D configurations. In the case of an odd-numbered crossing, there
remains at least one frequency that is unshifted and may appear to cross through
the gap. We find that several coupling parameters may contribute to the frequency
width in the case of such higher-order crossings. Finally, we extend the theory away
from the magnetic axis to account for higher-order contributions of the flux-surface
shaping and field strength variation.

5. Numerical continuum calculations

We now validate the predictions based on perturbation theory in § 4.1 through
numerical solutions of (3.7) for near-axis configurations of interest. The continuum
equation is solved using a Fourier Galerkin method, similar to the STELLGAP
code (Spong et al. 2003). The expression for the coupling parameter (3.6) is eval-
uated using pyQSC (Landreman 2024) for near-axis configurations fitted to known
equilibria. Since it is not possible to discern gap locations by computing the con-
tinuum at a single radial point (since an avoided crossing is likely not to occur at
that radial grid point), we evaluate the continuum for a uniform grid corresponding
to the range of ι of interest. The range of ι is chosen to be large enough that a
sufficient number of crossings and avoided crossings can be visualized. Given the
low magnetic shear of typical optimized stellarators, the range of ι will be relatively
small for the following calculations. The geometric parameter ε is computed from
the same leading-order coupling, �2, for the range of ι. Note that, for all of the fol-
lowing calculations, the normalized frequency, ω=ω/ωA, is shown, a quantity that
is independent of the choice of density profile.

5.1. Fourier mode number choice
For numerical efficiency, we choose our set of Fourier basis functions in order to

provide sufficient resolution of the low-frequency behavior of interest (Nührenberg
1999; Spong et al. 2003). Since (4.2) provides an approximate relation between the
mode numbers and frequency of a continuum eigenfunction, the set of poloidal and
toroidal mode numbers m and n included in the spectrum can be chosen strategically.
In order to resolve the frequency range ω0 ∈ [−|ω0|max,+|ω0|max], for a given range
of m, the set of n between −|ω0|max + ιminm and |ω0|max + ιmaxm is included, where
ιmin and ιmax are the minimum and maximum values of the rotational transform to be
studied. All toroidal mode numbers n are chosen to belong to the same mode family:
a set of toroidal mode numbers that differ by integer multiples of NP . (For example,
the n = 0 mode family contains the toroidal mode numbers 0,±NP,±2NP , etc.) The
resolution parameter |ω0|max is adjusted to ensure the frequency range of interest is
resolved. With this choice of Fourier modes, one can more efficiently resolve the
eigenmode structure than by using the same range of n for all m. Furthermore, by
reducing the range of frequencies resolved, the condition number of the discretized
problem is reduced.
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FIGURE 4. The continuum is computed for a near-axis Wistell-A configuration (Bader et al.
2020) using the Fourier spectral basis with mode numbers indicated in the figure, using the
mode choice scheme with mmax = 40. The yellow shaded region corresponds with the set of
modes include in the calculations labeled mmax = 30 in figure 5.

On the other hand, the choice of mmax could impact the behavior of the continuum
within the frequency range of interest. While the qualitative features of the contin-
uum should remain with increasing mmax, true convergence cannot be expected.
When adding m modes, additional eigenfunctions are expected to be present in the
low-frequency region, enabling additional crossings and avoided crossings. While
avoided crossings of the same type are expected to persist within the same gap
region, there may arise continuum-crossing modes due to an odd-numbered cross-
ing, as described in § 4.3. Thus, when adjusting this parameter, we do not expect
the precise structure of the continuum to remain unchanged. However, the quali-
tative features, such as the characteristic width between avoided crossings, should
be retained with increasing resolution. Further discussion of numerical aspects of
solving the continuum equation will be provided in a follow-up paper.

5.2. Gap width validation
We now validate the gap width presented in § 4.1 using a near-axis QH configu-

ration fit to the Wistell-A equilibrium (Bader et al. 2020). The continuum equation
(3.7) is solved using the near-axis geometry, but with the full range of ι in the
equilibria in order to more clearly visualize the continuum structure. The modes,
visualized in figure 4 as blue dots, are selected using |ω0|max = 2NP , mmax = 30 and
40, and mode family 0. When mmax = 30, only modes within the yellow shaded box
are included, while all visualized modes are included when mmax = 40.

The computed continuum eigenmode frequencies are shown in figure 5. Here,
the color scale indicates the dominant poloidal mode number of the corresponding
eigenfunction while the shaded colored regions indicate the theoretically predicted
gaps. Since the theory was developed in the small ε limit, the continuum is shown
with ε scaled by constant factors of 0.25 and 0.5 in addition to the unscaled value.
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FIGURE 5. The continuum is computed for a near-axis Wistell-A configuration (Bader et al.
2020) using the Fourier spectral basis with mode numbers indicated in figure 4. In each of
the continuum figures, the color scale indicates the dominant poloidal mode number of the
eigenfunction while the colored shaded regions indicate the predicted spectral gaps.

There is good agreement between the continuum gaps and predicted gaps, espe-
cially for smaller ε. Note that the HAE (4,2) gap arises due to coupling between
the δm = 2, δn = 1 harmonics of ε according to § 4.2, since the near-axis spectral
content of ε does not contain δm = 4 harmonics. As ε is increased, the EAE and
HAE (2,1) gaps begin to cross each other, and the EAE gap is displaced away
from its predicted position. This is indicative of gap repulsion discussed in the liter-
ature (Kolesnichenko et al. 2001). While continuum gaps are apparent, we note the
presence of eigenmodes which cross the gaps. For example, there is an eigenmode
with dominant Fourier mode numbers n = 32, m = 20 mode that crosses the HAE
(2,1) gap near ι= 1.135. When the resolution is increased to mmax = 40, this eigen-
mode couples with an eigenmode dominated by n = 36, m = 31 to avoid crossing.
However, in its place an n = 44, m = 40 eigenmode crosses the gap. This behavior
highlights that such continuum-crossing modes are an artifact of resolution choice
and should not inhibit the identification of spectral gaps.
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5.3. Validation of higher-order crossings
In order to evaluate higher-order crossings, we compute the continuum for a near-

axis configuration with parameters obtained from the Nührenberg and Zille QH
configuration (Nührenberg & Zille 1988). The mode choice parameters mmax = 30
and 40, |ω0|max = 2NP , and mode family 0 are used. The continuum solution with-
out coupling (ε = 0, physically corresponding to the cylindrical limit) is shown in
figures 6(a) and 6(b). Here, the color scale indicates the direction of propaga-
tion: red indicates ω> 0 while black indicates ω< 0. A high-order crossing is
evident at ι= 1.5 and ω= 1.5. This is the location for the intersection of the
EAE and HAE (2,1) gaps. The continuum solutions for unscaled ε are shown in
figures 6(c) and 6(d), with predicted gap locations indicated by the colored shaded
regions. Due to the interaction between the two gaps, the EAE gap is repelled away
from the HAE gap, and the width of the HAE (2,1) gap is reduced at the gap
intersection point. Note that as the resolution parameter mmax is increased from
30 to 40, the crossing changes from odd numbered (15-way) to even numbered
(20-way). As expected based on the discussion in § 4.3, in the odd-numbered cross-
ing case, there remains one continuum-crossing eigenmode, while the remaining
eigenmodes couple in counter-propagating pairs to avoid crossing the gap. In the
even-numbered crossing case, all eigenmodes couple in counter-propagating pairs,
and no continuum-crossing mode remains at this location. In this case, the counter-
propagating pairs form nested gaps of different widths as anticipated. However,
another continuum-crossing eigenmode arises around ι= 1.43 due to the behavior
discussed in the previous section in relation to figure 5. Again, the presence of a
continuum-crossing mode can be considered an artifact of the choice of Fourier
mode numbers and should not inhibit the identification of a gap.

5.4. Analysis of selected configurations
We now numerically compute the shear Alfvén continuum for the four near-axis

configurations presented in § 3, shown in figure 7. The mode choice parameters
mmax = 60, |ω0|max = 2NP and mode family 0 are used. For the HSX and Garabedian
equilibria, the continuum is computed for the full range of rotational transforms. In
the case of the precise QA and precise QH equilibria, the range of ι is extended
beyond the values in the equilibria in order to more clearly visualize the gap
structure, given their low shear.

Although the four configurations have similar magnitudes of the ε2,1 component
(see table 1), we note that the width of the corresponding HAE (2,1) gap is signifi-
cantly larger in the QH configurations. This can be explained by the scaling of the
gap width (4.16) with the central frequency (4.5), which is increased for QH configu-
rations in comparison with QA configurations given their larger rotational transform
and number of field periods. In both configurations, higher harmonics of the HAE
(2,1) are also excited (e.g. HAE (4,2) and HAE (6,3)) due to the higher-order degen-
eracy effect discussed in § 4.2, given the large magnitude of ε2,1. This effect is more
prominent in the QH configurations, given the larger central frequency of these gaps.

The elliptical ε2,0 and mirror ε0,1 spectral components are more substantial in
the QA configurations than the QH configurations, given their toroidal variation of
the elongation and curvature. However, the EAE and MAE gaps are visible in all
configurations due to scaling of the gap width with the central frequency. The EAE
central gap frequency is magnified in the larger ι QH configurations. Similarly, the
central frequency of the MAE gap is magnified in the QH configurations given their
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FIGURE 6. The continuum is computed for a near-axis Nührenberg–Zille configuration
(Nührenberg & Zille 1988). In each of the continuum figures, the color scale indicates the
direction of eigenmode propagation: red indicates ω> 0 and black indicates ω< 0. The colored
shaded regions indicate the predicted spectral gaps.

larger values of NP . The implications of these general trends for resonance with
EPs will be discussed in § 6. In a follow-up paper, we will extend this comparison to
the SAW continuum computed from optimized stellarator equilibria rather than a
near-axis model.

6. Resonance condition for a gap Alfvén eigenmode

Given the formation of continuum gaps, there is potential for global Alfvén eigen-
modes described by (2.1) to be driven unstable by resonant interaction with EPs.
Such AE gap modes are typically dominated by the continuum mode numbers which
couple to produce the gap (Cheng & Chance 1986; Betti & Freidberg 1991). We
now evaluate the passing alpha particle resonance condition to assess the potential
for instability of gap modes in QS devices. To avoid strong alpha transport, one
might desire to suppress continuum gaps which could resonate with alphas from
birth to thermalization. Since this would be quite geometrically restrictive, and since
prompt losses are the most harmful, we first focus on the resonance condition at the
birth energy.
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FIGURE 7. The continuum is evaluated for the four near-axis configurations discussed in § 3.
Here, the color scale indicates the dominant poloidal mode number of the eigenfunction. The
dominant spectral gaps are labeled based on visual inspection of the frequency interactions.

The resonance condition for passing particles in the presence of a SAW with mode
numbers m and n and frequency ω reads (Paul, Mynick & Bhattacharjee 2023)

(m + l)ωθ − (n + l N )ωζ +ω= 0, (6.1)

where l is a parameter that denotes sideband coupling through the drifts. Typically
the resonance is strongest for l = 0 or ±1. Here, ωθ and ωζ are the averaged preces-
sion frequencies in the θ and ζ directions. For simplicity, we consider the case of
co- or counter-passing particles, for which ωθ/ωζ ≈ ±ι. Assuming that the dominant
modes numbers of the gap AE will correspond with the mode numbers of the degen-
erate continuum eigenfunctions, the counter-propagation condition (4.4) is used to
obtain ιm − n = ±(ι�m −�n)/2. The AE frequency is also approximated by the
central gap frequency, ω≈ ±ωA(ι�m −�n)/2 to obtain the resonance condition
for co-passing particles ∣∣∣∣ωA

ωζ

∣∣∣∣=
∣∣∣∣1 ± 2l(ι− N )

ι�m −�n

∣∣∣∣ , (6.2)
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and counter-passing particles∣∣∣∣ωA

ωζ

∣∣∣∣=
∣∣∣∣1 ± 4n + 2l(ι+ N )

ι�m −�n

∣∣∣∣ . (6.3)

Taking parameters of the ARIES-CS (Najmabadi et al. 2008) QA reactor study
(B = 5.86 T, ni = 4.8 × 1020 m−3) or the HSR418 Helias study (Beidler et al. 2001a)
(B = 5 T, ni = 2.6 × 1020 m−3), the Alfvén velocity is expected to be approximately
vA ≈ 3 × 106 m s−1 in a stellarator reactor, compared with the alpha birth velocity of
1.3 × 107 m s−1. Since ωA/ωζ will likely be smaller than 1, the resonance condition
will be easiest to satisfy for |l| = 1 co-passing particles. (It is more challenging to
satisfy the counter-passing condition, given the large mode numbers expected at
fusion pilot plant (FPP), n ∼ 30 (Gorelenkov et al. 2014).) The condition ωA/ωζ < 1
with |l| = 1 implies

|ι− N |< |ι�m −�n|. (6.4)

We now assess the potential for satisfying this condition in QS devices. First, we
consider the case of QA configurations, for which N = 0 and typically ι� 0.5
(Landreman 2019). It is plausible to satisfy the resonance condition for HAE modes
with �m ≥ 1 and �n ≥ NP , MAE modes with �n ≥ NP and EAE modes with
�m = 2 and �n = 0. The TAE modes with �m = 1 and �n = 0 are less likely to
satisfy the resonance condition. Overall, the passing resonance is challenging to
avoid in QA configurations.

Next, we consider the case of QH configurations, for which N ≈ 4 − 5 and
ι≈ 1 − 1.5 (Landreman 2019). Satisfying the resonance condition would requires
a gap mode with �m ≥ 3 and �n = 0, an MAE mode with �n ≥ NP or some HAE
modes with �m > 0, �n > 2NP . However, it is challenging to satisfy this resonance
condition for EAE or the (2, 1) HAE mode.

In summary, there are several avenues to avoiding passing resonances. First, high-
density operation reduces ωA, making the passing resonance condition more chal-
lenging to achieve. Furthermore, it appears more challenging to satisfy the gap res-
onance condition in QH configurations, since resonance with modes residing in the
wide EAE or HAE (2,1) gaps are weaker. Finally, as discussed in the next section,
the flux-surface geometry can be manipulated to avoid strong resonances associated
with high-frequency gaps. We remark that as the gaps are moved to lower frequency,
there may be modification to the shear Alfvén continuum due to the sound wave
coupling, since vA/cs ≈ 0.3, where cs is the sound speed, using the above mentioned
reactor parameters with T = 10 keV. Furthermore, there may be resonances with
alphas as they slow down, but such induced transport will be less deleterious.

7. A pathway toward continuum optimization

Given the immense freedom in the stellarator design space, we now discuss a
potential design criterion to reduce resonance with gap AE modes. Because of the
close connection between AE gaps and flux-surface geometry, this is a promising
pathway toward optimization of stellarators for improved AE stability. While it
is likely impossible to eliminate all spectral gaps, since this would require |∇ψ |2
to be a constant function on magnetic surfaces, the spectral gaps can be strategi-
cally manipulated to avoid strong resonances that would drive prompt losses near
the birth energy. Since the passing resonance condition with ωA/ωζ < 1 requires
sufficiently large values of the normalized frequency at the center of the gap,
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ω/ωA ≈ (ι�m −�n)/2, one can attempt to close the gaps associated with high-
frequency modes. A further motivation to promote low-frequency continuum gaps
arises because the gap width is proportional to the gap frequency, as can be seen in
(4.5).

We perform fixed-boundary optimization of the vacuum QH Wistell-A equilibrium
(Bader et al. 2020) with the following objective function depending on the plasma
boundary SP :

f (SP)= (A(SP)− A∗)2 + fQS(SP)+ fι(SP)+ fcont(SP). (7.1)

Here, A(SP) is the aspect ratio and A∗ = 6.7 is the target aspect ratio (same as the
initial equilibrium). The function fQS is the quasisymmetry error (Landreman & Paul
2022; Rodriguez, Paul & Bhattacharjee 2022)

fQS =
∑

s

〈(
1
B3

[(N − ι)B × ∇B · ∇ψ − (G + N I )B · ∇B]
)2
〉
, (7.2)

where N = 4 is the quasisymmetry helicity. The function fι prevents the rotational
transform from getting too close to the ι= 1 resonance (Landreman et al. 2022)

fι =
∑

s

| min(|ι| − 1.03, 0)|2. (7.3)

The function fcont prevents the formation of high-frequency gaps that can satisfy the
resonance condition (6.4)

fcont =
∑

s

∑
|ιδm−NP δn|>|ι−4|

|εδm,δn1 |2 (ιδm − NPδn)
2 . (7.4)

The gap width (4.16) associated with mode numbers (δm,δn) is proportional to
ω(0)|εδm,δn1 |2, where the central gap frequency is ω(0) = |ιδm − NPδn|/2. Thus the
objective function quantifies the squared gap width for each (δm,δn) that could
satisfy the resonance condition.

At each function evaluation, a fixed-boundary VMEC is computed with the pre-
scribed plasma boundary (Hirshman & Whitson 1983). A Boozer transformation is
performed with booz_xform (Sanchez et al. 2000), and a Fourier transform of ε1

(4.28) is computed analogously to (3.8). The optimized configuration obtained with
SIMSOPT (Landreman et al. 2021) is compared with the Wistell-A configuration in
figure 8. We note that the level of quasisymmetry error is roughly maintained, while
the shear in the rotational transform is significantly reduced. The spectral content
of |∇ψ |2 indicates significant contributions of large mode number components to
the gap width, due to the scaling with the frequency factor, |ιδm − NPδn|. In the
Wistell-A configuration, significant mirror and elliptical modes are present in addi-
tion to many helical modes. In the optimized configuration, the spectral content is
markedly reduced, primarily represented by helical (3,2), (2,1) and (1,1) components.
The boundary shape becomes visually more elliptical.

The continuum of the Wistell-A and optimized configurations are computed with
STELLGAP (Spong et al. 2003), as shown in figure 9. The configurations are
scaled to ARIES-CS volume and field strength (Najmabadi et al. 2008), with density
profiles roughly consistent with ARIES-CS (Bader et al. 2020). Given the density
profile shear, the eigenmode frequencies are normalized by the Alfvén frequency
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FIGURE 8. The rotational transform profiles (a), quasisymmetry error (b), boundary shapes (c)
and (d) and spectral content of |∇ψ |2 (e) and (f ) are compared for the Wistell-A and continuum
optimized configurations.

on the magnetic axis, ω0
A. We see a significant reduction in the high-frequency gap

widths, especially the HAE (3,2). Here, the objective function is penalizing gaps
above ω/ω0

A = |ι− N |/2 ≈ 1.5. A few higher-frequency gaps remain, such as the
HAE (4,2) and (2,2), which are formed due to the nonlinear interaction of the (1,1)
and (2,1) harmonics of |∇ψ |2 not accounted for by our optimization metric. Future
work will further refine this optimization strategy to account for non-perturbative
impact of the geometry on gap formation, such as through direction calculation of
the shear Alfvén continuum with spectral density methods (Weiße et al. 2006).
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(a) (b)

FIGURE 9. The shear Alfvén continuum is computed for the Wistell-A (left) and continuum
optimized configuration (right) showing a significant reduction in high-frequency gap widths
(above ω/ω0

A = |ι− N |/2, indicated by horizontal dashed line).

8. Conclusions

The structure of the shear Alfvén continuum is driven by the flux-surface com-
pression factor |∇ψ |2 and can play a critical role in the determination of stability
to EP-driven modes. We have analyzed the impact of QS geometry on the contin-
uum. A near-axis model is used to determine the dominant spectral components
of |∇ψ |2. The rotating elliptical flux-surface shapes near the axis provide a helical
m = 2, n = NP structure, which is associated with a HAE gap. The toroidal varia-
tion of the ellipticity and axis curvature is shown to give rise to MAE gaps, while
elongation is shown to drive EAE gaps in QA configurations and m = 2, n = 2NP

gaps in QH configurations. These observations are shown to be consistent with a
set of numerically optimized QS configurations. Through perturbative analysis, we
highlight features of continuum solutions in QS geometry, such as the presence of
co-propagating continuum modes and high-order crossings. Both of these features
are unique to 3-D systems and lead to continuum modes which appear to cross
the spectral gaps. In a follow-up paper, we will analyze the continuum of several
optimized QS configurations and compare with the predictions from this theory.

Because of the connection between continuum gaps and flux-surface shaping, we
describe one strategy to manipulate the geometry to favorably modify the gap struc-
ture for EP stability of QS stellarator reactors. Namely, by promoting wide gaps
at low frequency at which passing resonant interactions are less likely to occur,
higher-frequency gaps will be narrowed. This will, in turn, increase continuum
damping of AEs which can strongly resonate with alpha particles near the birth
energy in stellarator reactors. We demonstrate our optimization technique, produc-
ing a QH configuration with reduced high-frequency gap widths. In this case, the
remaining low-frequency HAE gap did not increase substantially in width. Thus,
overall, we anticipate enhanced continuum damping in the optimized configuration.
Further analysis of this configuration is necessary to demonstrate an impact on the
growth rates of gap AEs. Future work will refine this criterion to also account for
trapped particle resonances and other passing resonances that may arise as alphas
slow down. We furthermore remark that the simplified metric presented assumes
an analytic model for gap width. This assumption could be relaxed by directly
computing the continuum within the optimization loop, using the spectral density
(Weiße et al. 2006) as an optimization target. Beyond stellarator design, 3-D
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tokamak control coils could be optimized to favorably modify the continuum
structure for control of EP instabilities (Garcia-Munoz et al. 2019).

There may be other applications for modification of the in-surface variation of
|∇ψ |2. For example, modulation of this quantity can provide flow-shear stabiliza-
tion (Spong et al. 2007), modify the drive for microinstabilities (Roberg-Clark,
Xanthopoulos & Plunk 2024) and affect the zonal flow residual (Rodriguez & Plunk
2024; Zhu, Lin & Bhattacharjee 2025).
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Appendix A. Near-axis ellipse properties
The position vector in the near-axis quasisymmetry model reads (Landreman &

Sengupta 2018)

r(r, χ, ζ )= r0(ζ )+ r

κ

[
cos χ n̂ + κ2 (sin χ + σ cos χ) b̂

]
. (A.1)

We define the coordinates X = cos χ/κ and Y = κ(sin χ + σ cos χ) which span the
perpendicular plane and the coordinates u and v that span the semi-major and minor
axes of the elliptical flux surfaces. The angle ϑ parameterizes the ellipse such that
u = a cos ϑ and v = b sin ϑ , where a is the semi-major axis and b is the semi-minor
axis. Following Rodríguez (2023), a quadratic equation for X and Y can obtained
from the condition cos2 χ + sin2 χ = 1

X 2κ2(1 + σ 2)+ Y

κ2 − 2σ XY = 1. (A.2)

This is in the form of a general ellipse, which can be solved for the semi-major and
semi-minor axes as

a2, b2 = p ±√
p2 − 4

2
, (A.3)

where p = (κ4(1 + σ 2)+ 1)/κ2. The elongation E is the ratio of the axes, as shown
in (3.9). The general form of the ellipse (A.2) also provides the rotation angle γ
between the ellipse major axis and the normal vector, as shown in (A.7).
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The position vector can now be written in the ellipse coordinate system (r, ϑ, ζ )
as

r(r, ϑ, ζ )= r0(ζ )+ r
[
a(ζ ) cos(ϑ)x̂(ζ )+ b(ζ ) sin(ϑ) ŷ(ζ )

]
. (A.4)

The quantity ∇ψ = (∂ r/∂ϑ × ∂ r/∂ζ ) / (∂ r/∂ψ × ∂ r/∂ϑ · ∂ r/∂ζ ) can then be eval-
uated from derivatives of the position vector, resulting in the expression (3.10).

The rotation between the normal vector and the χ contours is also determined
from (A.1). Following Landreman & Sengupta (2018), we can consider, for exam-
ple, the rotation between n̂ and the χ = 0 contour. The vector pointing from the
magnetic axis to the position at (r, χ = 0, ζ ) is

∂ r(r, χ = 0, ζ )
∂r

= 1
κ(ζ )

[n̂(ζ )+ κ(ζ )2σ(ζ )b̂(ζ )]. (A.5)

The angle δ(ζ ) between ∂ r/∂r |χ=0 and n̂ then satisfies

cos(δ)= 1

κ
√

p − κ2
. (A.6)

Furthermore, quasisymmetry constrains the angle between the ellipse semi-major
axis and the normal vector, γ (ζ ) (Rodríguez 2023)

tan(2γ )= 2
√

pκ2 − 1 − κ4

2 − pκ2 . (A.7)

We conclude that the rotation between the ellipse parameterization angle ϑ and
the Boozer angles arises due to δ and γ (which depend on p and κ).

Appendix B. Second-order degenerate perturbation theory
This appendix reviews details of the second-order degenerate perturbation theory

presented in § 4.2. We integrate the second-order equation (4.12), repeated here for
convenience(

∂

∂ζ
+ ι0

∂

∂θ

)2

Φ(2) +
[(

∂

∂ζ
+ ι0

∂

∂θ

)
ε

] [(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ(1)

]

−ε
[(

∂

∂ζ
+ ι0

∂

∂θ

)
ε

] [(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ(0)

]
+λ(0)Φ(2) + λ(2)Φ(0) = 0, (B.1)

against (Φ(0)
j )

∗ and (Φ(0)
k )

∗. In doing so, integrating against the first term will cancel
with the integral against the fourth term. Integration of the second term against
(Φ

(0)
j )

∗ can be expressed in the following form:

1
4π 2

∫ 2π

0
dθ
∫ 2π

0
dζ

(
Φ
(0)
j

)∗ [( ∂

∂ζ
+ ι0

∂

∂θ

)
ε

] [(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ(1)

]
= A j jα j + A jkαk,

(B.2)
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with

A j j =
∑

i

�2
i j |εi j |2

ω
(0)
i ω

(0)
j

λ(0) − λ
(0)
i

,

A jk =
∑

i

ε∗
i jεik

ω
(0)
i λ

(0)

λ(0) − λ
(0)
i

, (B.3)

with �i j =ω
(0)
i −ω

(0)
j , εi j = εmi −m j ,ni −n j and λ(0)i = (ω

(0)
i )

2.
We now simplify using the assumption of counter-propagation. We define the

index variables δm = mi − m j and δn = (ni − n j)/NP such that εδm,δn = εi j . We also
define the notation �(δm, δn)=�i j = ι0δm − NPδn, resulting in the expressions
The parameter

A j j = λ(0)
∑
δm,δn

|εδm,δn|2 �(δm, δn)

�(δm, δn)+ 2ω(0)j

, (B.4)

A jk =ω
(0)
j

∑
δm,δn

εδm,δnε�m−δm, �n
NP

−δn
(
ω
(0)
j −�(δm, δn)

)
. (B.5)

A jk can be shown to vanish by manipulating the following sum using Parseval’s
theorem and integration by parts:

∑
δm,δn

εδm,δnε�m−δm, �n
NP

−δn�(δm, δn)=
1
2i

1
4π2

∫ 2π

0

∫ 2π

0
dθdζ e−i(�mθ−�nζ )

(
∂

∂ζ
+ ι0

∂

∂θ

)
|ε|2

=ω
(0)
j

1
4π2

∫ 2π

0

∫ 2π

0
|ε|2e−i(�mθ−�nζ )

=ω
(0)
j

∑
δm,δn

εδm,δnε�m−δm, �n
NP

−δn . (B.6)

Here, Akk and Ak j are similarly defined by integrating against (Φ(0)
k )

∗, obtaining
Akk = A j j and Ak j = A jk = 0.

The integral of (Φ(0)
j )

∗ against the third term can be written in the form

− 1
4π 2

∫ 2π

0
dθ

∫ 2π

0
dζ

(
Φ
(0)
j

)∗
ε

[(
∂

∂ζ
+ ι0

∂

∂θ

)
ε

] [(
∂

∂ζ
+ ι0

∂

∂θ

)
Φ(0)

]
= Bjkαk,

(B.7)

with

Bjk = −λ(0)
∑
δm,δn

εδm,δnε�m−δm,�n/NP −δn. (B.8)

Here, Bk j is defined similarly by integrating against (Φ(0)
k )

∗, yielding Bk j = B∗
jk . The

zero-determinant condition then reads(
λ(2) + A j j

)2 − |Bjk|2 = 0. (B.9)
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Evidently, both the central frequency and gap width are modified at this order, with
expressions given by

√
λ(0) − A j j and

�ω= |Bjk|
ω(0)

, (B.10)

respectively.

Appendix C. Third-order near-axis geometric factor |∇ψ|2
In this appendix, we derive the expression for the third-order �3 geometric fac-

tor of |∇ψ |2 from (3.2). Due to the additional geometric effects such as Shafranov
shift and triangularity, at this order, the near-axis expansion yields a total of nine
new functions of ζ , namely X20, X2c, X2s, Y20, Y2c, Y2s, Z20, Z2c and Z2s . Their corre-
sponding equations can be found in Landreman & Sengupta (2019). Also, three new
input scalars (p2, B2c, B2s) appear, where p2 describes the pressure gradient and B2c,
B2s describe the magnetic field strength B at second order. The parameter B20 is
then determined from the provided inputs. While B20 is a constant scalar in perfect
QS, it is more generally a function of ζ .

We use the dual relations to write the geometric factor as

∇r = 1√
g

∂ r
∂χ

× ∂ r
∂ζ
, (C.1)

where
√

g = (∂ r/∂r × ∂ r/∂χ) · ∂ r/∂ζ is the Jacobian, r is the position vector
described using the near-axis decomposition r = r0 + X n̂ + Y b̂ + Z t̂ , and (n̂, b̂, t̂)
is the Frenet–Serret frame (Jorge et al. 2020b).

This leads to the following expression for the third-order geometric factor:

�3 =�31c cos χ +�31s sin χ +�33c cos 3χ +�33s sin 3χ, (C.2)

where

�31c = B2
0

κ3

(
− Y22s + κ2(−X20 + X22c + σ X22s)

− κ4
((
σ 2 + 1

)
Y22s − 2σY20

)
+ κ6

(−3
(
σ 2 + 1

)
X20 + (

σ 2 − 3
)

X22c + σ
(
σ 2 + 5

)
X22s

) )
, (C.3)

�31s = B2
0

κ3

(
3(Y22c − Y20)− κ2(3σ(X22c − X20)+ X22s)

− κ4
(
Y20 + 3σ 2(Y20 − Y22c)+ Y22c − 4σY22s

)
+ κ6

(
σ
(
3X20 + 3σ 2(X20 − X22c)+ X22c

)− (
5σ 2 + 1

)
X22s

) )
, (C.4)

�33c = B2
0

κ3

(
Y22s + κ2(X20 − X22c − σ X22s)

+ κ4
((
σ 2 + 1

)
Y22s − 2σY20

)
+ κ6

((
3σ(Φ)2 − 1

)
X20 − (

σ 2 + 1
)
(X22c + σ X22s)

) )
, (C.5)
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�33s = B2
0

κ3

(
(Y20 − Y22c)− κ2(σ (X20 − X22c)+ X22s)

+ κ4
((
σ 2 − 1

)
Y20 − (

σ 2 + 1
)

Y22c

)
− κ6

(
σ 3(X20 − X22c)− σ(3X20 + X22c)+

(
σ 2 + 1

)
X22s

) )
. (C.6)
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