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Abstract

We begin a study of invariant isometric immersions into Riemannian manifolds (A/, g) equipped with
a Riemannian flow generated by a unit Killing vector field f. We focus our attention on those (M, g)
where f is complete and such that the reflections with respect to the flow lines are global isometries (that
is, (M, g) is a Killing-transversally symmetric space) and on the subclass of normal flow space forms.
General results are derived and several examples are provided.
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0. Introduction

Symmetric and Hermitian symmetric spaces play in important role in real and complex
geometry. The analogs of the last class for contact geometry are the ^-symmetric
spaces. They form a subclass of the Riemannian spaces equipped with a complete
unit Killing vector field such that the reflections with respect to its integral curves
are global isometries. These last spaces have been introduced and studied from the
global and local viewpoint in [5, 6, 8] and related papers, and are called globally
Killing-transversally symmetric spaces. For the different cases, the corresponding
space forms, that is, real, complex, Sasakian and normal flow space forms [7], provide
classes of particularly interesting examples.

Isometric immersions and embeddings in real, complex and Sasakian manifolds
and their associated space forms have been studied extensively. In this paper we
begin a study of isometric immersions into manifolds equipped with a Riemannian
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[2] Invariant submanifolds in flow geometry 291

flow generated by a unit Killing vector field, thereby concentrating mainly on Killing-
transversally symmetric spaces and normal flow space forms.

In Section 1 we give some preliminary definitions, formulas and results, and in
Section 2 we introduce and derive some results concerning invariant immersions of
manifolds with respect to flows such that the image is tangent to the flow lines. In
Section 3 we consider the case of Riemannian manifolds such that the flow gives rise
to a fibration and study the relation between the total space M and the base space M',
in particular with respect to congruence theorems for the immersions into M and the
corresponding transversal immersions into M'. Section 4 is devoted to the case of a
normal space form M. Several general results are derived and examples are provided
for the two cases of normal flow space forms considered in flow geometry [7].

1. Isometric flows

Let (M, g) be a n-dimensional, smooth Riemannian manifold with n > 2, which is
supposed to be connected where necessary. Furthermore, let V denote the Levi-Civita
connection of (M, g) and R the corresponding Riemannian curvature tensor with the
sign convention

Ruv = V[t/v] — [Vj/, Vv]

for U, V e i£~(M), the Lie algebra of smooth vector fields on M.
A tangentially oriented foliation of dimension one on (M, g) is called a. flow. The

leaves of this foliation are the integral curves of a non-singular vector field on M and
hence, after normalization, a flow is also given by a unit vector field. In particular, a
non-singular Killing vector field defines a Riemannian flow and such a flow is said to
be an isometric flow. See [25] for more information.

In this paper we consider and denote by &$ an isometric flow generated by a unit
Killing vector field £. The flow lines of ^ are geodesies and moreover, a geodesic
which is orthogonal to £ at one of its points, is orthogonal to it at all of its points.
Such geodesies are called transversal or horizontal geodesies.

^ determines locally a Riemannian submersion. For each m e (A/, g), let ^
be a small open neighborhood of m such that £ is regular on °M. Then the mapping
n: W —»• "&" = ^/£ is a submersion. Furthermore, let g' denote the induced metric
on <2r' given by g'(X', Y') = g{X'\ Y'*) for A", V e 3T(W) and where X'*, Y'*
denote the horizontal lifts of X', Y' with respect to the (n — 1)-dimensional horizontal
distribution on % determined by r\ = 0, r\ being the dual one-form of £ with respect
to g. Then n: (W, g\<%) —*• (*%', g') is a Riemannian submersion and we may use the
tensors A and T, introduced by O'Neill in [14] (see also [1, 23, 25]), in our treatment.
Since the leaves are geodesies, 7 = 0. Furthermore, for the integrability tensor A we
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have

AXY = (VXY)V = -AYX, g(AxY, f) = -g(Ax%, Y)

for U G SC{M), and for horizontal vector fields X, Y. Here v denotes the vertical
component.

Next, put

(1.1) HU = -Avt-

and define the (0, 2)-tensor field h by h(U, V) = g(HU, V), U, V e 3£(M). Then
h is skew-symmetric because £ is a Killing vector field. Moreover, we have at once

-

So we have

(1.2) h = -dr\.

Note that A = 0, or equivalently h = 0, if and only if the horizontal distribution
is integrable. In this case, since T = 0, (M, g) is locally a product of an (n — 1)-
dimensional manifold and a line. Furthermore, the Levi-Civita connection V of g' is
determined by

(1.3) VX,,Y'* = (Vx,Y'y + h{X'\ r*)£

for X', Y' e
By straightforward computations these formulas yield

LEMMA 1.1 ([5]). We have

(1.4)

(1.5)

(1.6) J?(X, £, F, §) = «(#X, HY) = -g(H2X, Y)

for horizontal X, Y, Z and where R(X, Y, Z, W) = g(RXYZ, W).

This lemma yields that the £-sectional curvature K(X, §) of the 2-plane spanned
by X and § is non-negative for all horizontal X and since H% = 0, K{X, £) = 0 for
all horizontal X if and only if the skew-symmetric endomorphism H is of maximal
rank n - 1. In this case, « is necessarily odd and from (1.2) we see that r] is then a
contact form on M. This leads to
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DEFINITION 1.1. J^ is said to be a contact flow if r\ is a contact form, that is, if H
is of maximal rank.

In the rest of the paper we will need extensively another special type of isometric
flow ^ introduced in a natural way in [5]. We recall its definition.

DEFINITION 1.2. &$ is said to be normal if R(X, Y, X, §) = 0 for all horizontal
vector fields X, Y.

Here we note that a Sasakian manifold is a Riemannian manifold with a normal
flow ^ such that K(X, £) = 1 for all horizontal X (see [2, 29] for more details).

From Lemma 1.1 we then get the following useful criterion.

PROPOSITION 1.1. ^ is normal if and only if

(1.7) (VuH)V = g(HU, HV)$ + r](V)H2U

forallU,V e 3£{M).

Furthermore, for a normal flow the curvature tensor satisfies the following identities:

(1.8) Ruvi; = r,(V)H2U - r)(U)H2V,

(1.9) RutV = g(HU, HV)!; + r){V)H2U,

and for the Ricci tensor p of type (0, 2) we have p(X, £) = 0 for each horizontal X.
Moreover, p(£, £) is a non-negative global constant on M.

Next, a Riemannian manifold (M, g) equipped with an isometric flow ^ is said
to be t)-Einstein if p is of the form

p(U, V) = ag(U, V) + bniUMV)

where a and b are constants. Then (A/, g) is an Einstein space iib = 0.
Using (1.3) we obtain the following relation between the curvature tensors associ-

ated to V and V:

(1.10) (R'X,Y,Z'T = Rx,.r.Z'* - g(HY'*, Z'*)HX'*

+ g(HX'*, Z'*)HY" + 2g(HX'*, Y'*)HZ'*

for all X', Y', Z' e SC{^/'). From this we obtain for the corresponding Ricci tensors

(1.11) (P'(X', Y')Y = p(X'\ Y'*) + 2g(HX'\ HY'*),
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and for the scalar curvatures r, x' we get

(1.12) r'* = t + p(£,£).

The sectional curvatures are related by

(1.13) K'm,(u', w') = Km(u'*, w») + 3(hm(u", w'*))2

where (u', w') is an orthonormal pair of r m ^ ' , m' = n{m). These equations should
be compared with those of O'Neill [14].

Next, we recall the definitions of locally and globally Killing-tranversally symmet-
ric spaces. Therefore, consider an (M, g) equipped with a flow J^ and let m e M.
By a we denote the flow line through m. A local diffeomorphism sm of M defined in
a neighborhood ^ of m is said to be a (local) reflection with respect to a if for every
transversal geodesic y(s), where y(0) lies in the intersection of ^ and a, we have
(*m ° y)CO = Y(~s) f°r aH 5 with y(±5) ^ ^ and where s denotes the arc length.
ThenSm = sm,(m) defines a linear isometry on TmM given by Sm = (-/+2)?(g>£)(m).
Furthermore, since £ is a Killing vector field, sm satisfies sm = expm oSm o

DEFINITION 1.3. A locally Killing-transversally symmetric space (briefly, a locally
KTS-space) is a Riemannian manifold equipped with an isometric flow ^ such that
the local reflection sm with respect to the flow line through m is an isometry for all
m e M.

The two following propositions provide useful characterizations for locally KTS-
spaces.

PROPOSITION 1.2 ([5]). (M, g, &%) is a locally KTS-space if and only if ^ is
normal, and moreover we have (Vxi?)(X, Y, X, Y) — 0 for all horizontal X, Y.

PROPOSITION 1.3 ([5]). Let ^ be a normal flow on (M, g). Then (M, g, ^ ) is a
locally KTS-space if and only if each base space W of a local Riemannian submersion
n-.ty/ —> %' — 'W1% is a locally symmetric space.

So, according to the terminology used in [26], (M, g, &$) is a locally KTS-space if
and only if j ^ is a normal transversally symmetric foliation.

Now, we return to the global case.

DEFINITION 1.4. Let (M, g) be a Riemannian manifold and § a non-vanishing
complete Killing vector field on it. Then (M, g, «^) is said to be a (globally) Killing-
transversally symmetric space (briefly, a KTS-space) if and only if for each m € M
there exists a (unique) global isometry sm: M -*• M such that smt(m) = (—l+2r)®%)m

on TmM.
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The isometry sm is called the reflection of M at m with respect to the flow line of
f through m. Since it reverses the transversal geodesies through m, sm is the unique
extension of the local reflection at m to the whole of M. Hence, it follows that a
KTS-space is a locally KTS-space. In [6] it is proved that, conversely, a complete
simply connected locally KTS-space is a KTS-space.

Furthermore, consider an (M, g, J^) and let A{M) denote the group of all iso-
metries of (Af, g) which leave f invariant. Then ^ is called a homogeneous flow if
A(M) acts transitively on M. In [6, 8] it is proved that the flow ^ on a KTS-space
is always homogeneous and moreover, in the simply connected case, the manifold
(M, g, &$) is a naturally reductive space.

Finally we give the following definition (see [22] for the details and terminology).

DEFINITION 1.5. An isometric flow ^H on (M, g) is said to be fibrable if the
following conditions are satisfied:

(i) £ is a complete, strictly regular vector field;
(ii) the quotient topology for the orbit space M' = M/% is Hausdorff;

(iii) if the flow lines are closed, then they have the same length.

Here 'strictly' means that all integral curves are homeomorphic and 'closed' means
periodic. Furthermore, note that when M is compact, then (i) and (ii) reduce to the
regularity off (see [22, p. 22, Corollary 5]).

It follows from (i) and (ii) that the orbit space M' = M/f admits a unique structure
of differentiable manifold such that the natural projection n: M —> M' is a submersion
[22, p. 19, Theorem VIII and p. 28, Theorem XIV]. Moreover, M is a principal G1-
bundle over M', where G1 denotes the one-parameter subgroup of global isometries \jf,
generated by f [15]. G1 is isomorphic to either the circle group S1 or to K depending
on whether the integral curves of f are closed or not. Here, we identify S1 with the
set {e2"", t e K}. If G1 is a circle (which occurs when M is compact), then the right
action of S1 on M is given by

(1.14) moe2nit = iM»O

for each m e M and where / denotes the length of the integral curves of f. When G1

is isomorphic to K, we identify the action of t € R on M with that of \jr, e G'. For
G1 % S1 the corresponding fundamental vector field g generated by d/dt is given by

(1-15) ff(m) = £• |,=o (m o e2*") = /|m
dt

and in that case /~'/j defines a connection form on M. For the case G1 % R, g = f
and then rj is a connection form. Moreover, in the first case, using (1.2) and the fact
that S1 is Abelian, the usual structure equation takes the form £2 = l~xdr\ = —l~lh,
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where £2 is the curvature form. Now, let h' be the (0, 2)-tensor field on M' defined
by h'(X', Y') = g'(H'X', Y') for all X', Y' e &(M') and where H' is the tensor
field determined by H'X' = nt(HX'*). Then we see that H' is skew-symmetric with
respect to g' and h = n*h'. The characteristic class eM,(M) e H2(M', Z) of M over
M' (see [10]) satisfies

(1.16) (M) \

In the next sections we shall consider (M, g, ^ ) where ^ is fibrable as a principal
bundle over M' = M/f with the description given above. Our main motivation for
this is the consideration of (globally) KTS-spaces (M, g, ^). Indeed, such spaces
are fibrable. To prove this we first recall that ^ is homogeneous. So, if £ is regular,
then it is strictly regular. Now, it is clear that £ is always regular on a KTS-space
because if not, it is impossible to extend the isometric local reflection sm to a globally
isometric one since every point on the flow line a through m has to be fixed for
the corresponding global isometric reflection. Furthermore, the regularity implies
that each flow line is a closed submanifold of (M, g) [22, Theorem VII]. Finally,
M' = M/£ is Hausdorff because otherwise there exist, since § is also a Killing vector
field, two 'different' flow lines on {M, g, j ^ ) such that the distance between them is
everywhere smaller than each e > 0 and this is impossible because the flow lines are
closed submanifolds.

Note that when ^ is a contact flow, then this result also follows from the well-
known Boothby-Wang theory for homogeneous contact manifolds [3]. In this context
it is worthwile to mention that it follows from [6] that a KTS-space (M, g, ^ ) has a
contact flow ^ if and only if it is locally irreducible. Moreover, a locally reducible
KTS-space is locally isometric to a product of a contact KTS-space and a symmetric
space.

We also recall that when (M, g, ^ ) is a KTS-space, then (A/', g') is a symmetric
space [6].

2. Invariant immersions with respect to a flow

Let / be an isometric immersion of a n-dimensional Riemannian manifold (M, g)
into an n-dimensional Riemannian manifold (M, g). In what follows, and if the
argument is local, we shall always identify M with its image under / to simplify the
notation. Next, let V and V denote the Levi-Civita connection of (M, g) and (M, g),
respectively, and let R, R be the corresponding curvature tensors. The Gauss and
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Weingarten formulas are, respectively:

(2.1) VXY = VXY + B(X,Y),

(2.2) VXU ^-CVX + VXU,

where X,Y & 5£{M), U € SC(M)L and V1- is the connection in the normal bundle
TLM. Here B and C denote the corresponding second fundamental tensors and are
related by g(B(X, Y), U) = g(CuX, Y).

Next, we recall the fundamental Gauss, Codazzi and Ricci equations:

(2.3)
R(X, Y, Z, W) = R(X, Y, Z, W) + g(B(X, W), B(Y, Z))

-g{B(X,Z),B(Y,W)),

(2.4) (RxvZ^ = -(VXB)(Y, Z) + (VrB)(X, Z),

(2.5)
R(X, Y, U, V) = RX(X, Y, U, V) - giCuX, CVY) + g(CvX, CVY)

for X, Y,Z,W e SC{M), U, V e 3C{MY and where RL denotes the curvature
tensor of V-1. VB is defined by

(2.6) (VXB)(Y, Z) = VX(B(Y, Z)) - B(VXY, Z) - B(Y, VXZ)

for all X, Y, Z e &(M). The immersion / is said to be totally geodesic if B = 0,
parallel if VB = 0 and minimal if tr B = 0 on M.

Now, let ̂  be an isometric flow on (M, g) and let H be the tensor field defined
in (1.1). Then / is said to be tangent if f is tangent to f(M). In this case we shall
denote by £ the vector field on M given by /»§ = | o / . In what follows we will
consider a special kind of tangent isometric immersions which we define now.

DEFINITION 2.1. An isometric immersion / of (A/, g) into (M, g, J^) is said to be
invariant (with respect to the flow J?|) if / is tangent and invariant with respect to H\
that is, Hf»TmM c f*TmM for all m e M.

For invariant immersions we have H(f*TmM)L c (ftTmM^ and the tensor field
H on M related to H by / , o H = H o / , coincides with the one defined via (1.1) for
the flow ^ on (M, g). Moreover, since / is tangent, we have HX = HX — B(X, §)
for any X tangent to M and so we get

(2.7) B(X, £) = 0, Q/S = 0

for all X e 3C(M) and all U e

https://doi.org/10.1017/S1446788700001026 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001026


298 J. C. Gonzilez-DaVila, M. C. GonzSlez-Divila, L. Vanhecke [9]

We note that if ^ is a contact flow on (M, g), then ^ is a contact flow too, and
hence M is also odd-dimensional.

The notion of an invariant immersion corresponds to a similar one in Sasakian
geometry and many properties about these immersions may be proved easily in our
case. We give some examples.

PROPOSITION 2.1. Let ^ be a contact flow on (Af, g) and f : (Af, g) -> (Af, g)
an isometric immersion. If HX is tangent to f(M)for all X tangent to M, then f is
tangent and hence invariant.

PROOF. First, suppose f o / is normal. Then h(X, Y) = {fj([X, Y]) = 0 for all
X,Y e 3£(M} and so H cannot be of maximal rank.

So, put f ° / = | r + £A' where | r and %N denote the tangential and normal part of
f along M, respectively. Since H%T = H%N = 0 and since ^ is contact, we obtain
that | is tangent to /(Af) along /(Af). This proves the required result.

Next, we obtain easily

LEMMA 2.1. Let / : (Af, g) —>• (A?, g) be an invariant immersion and let ^ be a
normal flow on (Af, g). Then &$ is also normal and moreover, we have

(2.8) (Vxtf)y = (VXH)Y,

(2.9) B(X, HY) = HB(X, Y) = B(HX, Y),

(2.10) HCVX = -CVHX = CjjuX.

From this we then get

PROPOSITION 2.2. Let ^ be a contact normal flow on (M, g) and f an invariant
immersion of(M, g) into (M, g). Then f is minimal.

PROOF. For each m € Af we can choose an orthonormal basis {M2,_I, u2i; | ; v2J-i,
v2j,; i = 1 , . . . , (n - l ) /2, y = 1 , . . . , ( « - n - l)/2} of TmM, where («, «„, | )
span TmAf and (v\,... , u^-n_i) span T^M, and positive numbers A.,-, /Xj such that

Hu2i = —

Hv2J = -

Then tr Bm = 0 follows at once by using (2.7) and (2.9).

Next, we focus on the sectional curvatures and prove
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PROPOSITION 2.3. Let f: (M, g) —»• (M, g, ^)) be an invariant immersion. Then
for each X € 3E{M) and orthogonal to £ we have

(ii) if &-% is normal, then K(X, HX) < K(X, HX). Moreover, if J^ is also
contact, then equality holds if and only if f is totally geodesic.

PROOF, (i) follows immediately from (2.3) and (2.7). To prove (ii) one just uses
the following consequence of (2.3) and (2.9):

R(X, HX, X, HX) = R(X, HX, X, HX) + 2g(HB{X, X), HB(X, X)).

Furthermore, we have

PROPOSITION 2.4. Let ^ be a normal contact flow on (M, g) and f an invariant
immersion. If f is parallel, then it is totally geodesic.

PROOF. From (2.6) and (2.9) we obtain

0 = (VXB)(Y, f) = B(Y, HX) = HB(X, Y).

Now the result follows at once since H has maximal rank.

This result shows that the notion of a parallel invariant immersion is very restrictive.
Therefore, we introduce the notion of an rj-parallel immersion. Let J^i be an isometric
flow on (M, g) and let / be a tangent isometric immersion of (M, g) into (M, g).
Then / is said to be r]-parallel if (VXB)(Y, Z) = 0 for all X, Y, Z e %(M) and
orthogonal to f. Then we have

PROPOSITION 2.5. Let f be an rj-parallel invariant immersion of (M, g) into
(M, g, &\). If(M, g, &i) is a lo-cally KTS-space, then (M, g, &$) is also a locally
KTS-space.

PROOF. From (2.3), (2.4) and (2.6) we get

(yxR)(X, Y, X, Y) =(VXR)(X, Y, X, Y) - g((VxB)(X, X), B{Y, Y))

+ g(4(VxB)(X, Y) - 2(VYB)(X, X), B(X, Y))

+ g(2(VYB)(X, Y) - 3(VXB)(Y, Y), B(X, X)).

Now the result follows from this relation by using Proposition 1.2 and Lemma 2.1.
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3. Fibrations and congruent immersions

Let / be a tangent isometric immersion of (M, g) into (M, g,&\) and suppose
that «^| and the induced flow ^ on M are fibrable. We denote by (M, M', n) and
(M, M', n) the corresponding fibre bundles. Then there exists an isometric immersion
/ ' : (A/', g') -+ (Af\ g') satisfying f on = n o f. Specifically, f'(m') = nf(m)
with m' = 7r(m), m' e M'. This / ' is called the tranverse mapping of / . Note that
when / is one-to-one, then also / ' is one-to-one. Moreover, since n is an open map
[22, Corallary 3], it follows that if / is an embedding , then also / ' is an embedding.

Now, let V' and V be the Levi-Civita connections of M' and M', respectively, and
denote by B', C" and V'x the second fundamental tensors and the normal connection
of the transversal mapping / ' of / . Then, from (1.3), (2.1) and (2.2), we get

(3.1) (B'(Xr, Y'))* = B(X'*, y"),

(3.2) (C'v.X'y = Cu-X" - g(B(X'\ §), £/")£,

(3.3) (V^U'Y = V%.U'"

for X', Y' G %~(M') and U' e %{MY. Moreover, from (2.6), (1.3), (3.1) and (3.3)
we obtain

(3.4) (Vjr*, {Y'\ Z'*) =((yx,B')(X', Z'))' - g(HX'*, Yft)B^, Z")

- g(HX'\ Z'*)B(^, Y'*).

From this immediately follows

PROPOSITION 3.1. Let f be an invariant immersion. Then we have

(i) / is r\-parallel if and only if f is parallel;
(ii) / is totally geodesic if and only if f is totally geodesic.

In the rest of this section we focus on congruent isometric immersions.

DEFINITION 3.1. Let f,i = 1, 2, be tangent isometric immersions of {Mt, g,) into
(M, g, &0. Then f\ and f2 are said to be A{M)-congruent or briefly, congruent, if
there exists an element (p of A(M) and an isometry <p of Mi into M2 satisfying

(3.5) <p o / i = f2 o <p.

Note that in this case >̂»|i = £2 where |,, i = 1,2, denote the induced Killing vector
fields on M,. Moreover, it is easy to see that if one of these immersions is invariant,
then also the other one is invariant. In that case the isometry <p satifies (p*oHx = H2o(pt

where H,,, i — 1, 2, are defined as before. Furthermore we have: If each ft is an
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embedding, then they are congruent if and only if there exists a ip e A(M) verifying
VifiMJ = f2M_2.

Next, let A(M') denote the group of all //'-preserving isometries of M'. Since it
is a closed subgroup of the full isometry group of (M\ g), it is a Lie transformation
group of M'.

PROPOSITION 3.2. Let f and f2 be congruent immersions into (M, g, ^ ) and
suppose that J^|, ^ , and ^ 2 are fibrable. Then the transverse isometric immersions
f[ are A(M')-congruent.

PROOF. The definition of the congruence implies that ip and (p preserve the corre-
sponding flows. Therefore, we can define the mappings ip' and <p' as follows:

(p' o 1t\ = 7Z2 O (p, if) O TC = ft O <f)

where nt, i = 1,2 and n denote the projections of M, onto M- and M onto M',
respectively. These mappings are isometries and ip' preserves / / ' . Moreover, we have

<P' ° f[ = fi ° <P'-

THEOREM 3.1. Let (M, g,&\) be a simply connected KTS -space and f,i = 1,2,

tangent isometric embeddings of M, into M such that the induced flows J ^ . are

fibrable. Then f\ and f2 are congruent if and only if the transverse embeddings f.

are A(M')-congruent.

PROOF. The necessity follows from Proposition 3.2. So, suppose that /,' and /2'
are A(A/')-congruent. Then there exists a ip' e A(M') verifying <?'(/,'M[) = f^M^.
Using the proof of Proposition 2.7 of [6] with slight modifications, we can guarantee
the existence of an element ip of A(M) such that ip' o n = n o ip. Then, since
ffonj = n o fh i = 1, 2, we have n {ip{f\ Mx)) = n (f2M2). Taking now into account
the completeness of ^ and £2> it follows that ^(fMi) = f2M2 and so f\ and f2 are
congruent.

PROPOSITION 3.3. Let ^ be a fibrable flow on (M, g) and let / ' : (M\ g') -+
(M' = M / l , g') be an isometric immersion. Then there exists a Riemannian man-
ifold (M, g) equipped with an isometric flow ^ flbering over M' and an isometric
immersion f of M into M such that /„£ = \ o f with f as associated transverse
mapping.

PROOF. Let M be the regular submanifold o f M ' x M given by

M = {(p, q)GM'x M/f'(p) = n(q)}.
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Then M is a principal G1-bundle over M' where G1 denotes the one-parameter
subgroup generated by f. The projection n and the action of G1 are defined by

n(p,q) = p, (p,q)-s = {p,q • s).

Let / : M —> M be the mapping (p, q) —*• q. Then / is an immersion, f on =
n o f and f,g = g, where g and g denote the corresponding fundamental vector
fields generated by d/dt of the G'-bundles (Af, Af', n) and (Af, Af', n), respectively.
Moreover, if a is a connection form on Af, then a = f*a defines a connection form
on M. Put t) = f*rj. If G1 is isomorphic to K we put f = g and t] is a connection
form on M. If G1 is isomorphic to S1 and / is the length of the integral curves of f on
Af, we put f — l~lg and then /"' r) is a connection form on A/. In both cases r?(§) = 1
and f£ = | o / .

Now, on M we consider the unique Riemannian metric g such that g( | , §) = 1, £
is orthogonal to ker r) and TT : Af —>• M' becomes a Riemannian submersion. Then ^
is a unit Killing vector field on M and the length of its integral curves is precisely / if
they are closed. Since fjiflX") = 0 for all X' e X(M% we have f.X" = (f.X')\
Hence, taking into account that the G'-bundles are Riemannian submersions and / '
is an isometric immersion, it follows that / is also an isometric immersion.

REMARK 3.1. If (M, g, &%) in Proposition 3.3 is a simply connected KTS-space,
then it follows from Theorem 3.1 that (M, f) is unique up to congruence. Therefore
we shall denote such a manifold by ((M\ f'),ji).

Then we have

PROPOSITION 3.4. Let (M, g,&\) be a simply connected KTS-space with non-
vanishing constant £ -sectional curvature and let (A/', / ' ) be a Kdhler submanifold
embedded into {M' = M/f, g'). Then M — ((M', / ' ) , H) is an invariant submanifold
embedded into M.

PROOF. Theorem 3.2 of [6] implies that the orbit space (Af', g') is a Hermitian
symmetric space with J = c~xH' as a Hermitian structure, where c2 denotes the
|-sectional curvature of (Af, g). Now, let m e M, X e TmM and U e (ftTmM)x.
Since / ' is a Kahler immersion, we have

g(HftX, U) = g\H'**f.X, H,U) = g\H'fc,Xt *.U)
.X, Ti.U) = 0.

Hence, Af is invariant.

From this and from Theorem 3.1 in [6] we obtain
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COROLLARY 3.1. Let(M, g, «^|) be a simply connected contactKTS-spacefibering
over an irreducible Hermitian symmetric space (M' = A//f, g') and let (M1, / ' ) be
an embedded Kdhler submanifold of(M', g'). ThenM = ((A/', / ' ) , ft) is an invariant
submanifold embedded into M.

Finally we prove

PROPOSITION 3.5. Let (M, g, ^) be a simply connected contact KTS-spacefiber-
ing over a Hermitian symmetric space (M' = M[ x • • • x M'r, g', J) where each M\,
i = 1 , . . . , r is an irreducible Hermitian symmetric space. Let / / , i = 1 , . . . , r be
Kdhler embeddings of Kdhler manifolds M[ into M. and let / ' = /,' x ••• x f'r be the
product embedding of M' = M[ x • • • x M'r into M'. Then M = ((M'; / ' ) , ft) is an
invariant submanifold embedded into M.

PROOF. Let X € TmM, m e M. Then f^n^X can be decomposed as flntX =
Y^i=\ fi'*Xt> where n*X = YM=I ^ I» %• e Tn{m)At'r From [6, Theorem 3.2] we may
conclude that there exist real numbers d , . . . , cr such that H' f'jx+X = YM=\ ciJfU^i-
Since / ' is a Kahler embedding, this relation implies that / is invariant.

4. Invariant submanifolds in normal flow space forms

A Riemannian manifold (M, g) equipped with a contact flow ^ is said to be aflow
space form if the //-sectional curvature is pointwise constant, that is, the sectional
curvature of a two-plane {X, HX] for horizontal X e TmM is independent of X for
each m e M. Normal flow space forms have been studied in [7], where two cases are
considered, according to whether the ^-sectional curvature is constant or not. Now
we shall treat invariant submanifolds in normal flow space forms for both cases.

I. Normal flow space forms with constant £ -sectional curvature c2 In this case
it has been shown in [7] that for dim M > 5 the H- sectional curvature is a globally
constant k. In what follows we also suppose k to be globally constant for dim M = 3.
Then the normal flow space form is a (locally) KTS-space.

In what follows we shall denote such a space by M2"*1^2, k). Note that c2 = 1
corresponds to the Sasakian space forms M^+'Cfc). For each (c2, k) the normal flow
space form is locally isomorphic to one of the following model spaces: (S2n+l =
SU(n + \)/SU{n))(<?, k) for k + 3c2 > 0, H(n, 1)(*) for k + 3c2 = 0, where
H{n, 1) is the (2n + 1)-dimensional Heisenberg group, and (f/(l,/i)/f/(n))~ =
(SU(l, n)~/5t/(«))(c2, k) for k + 3c2 < 0, where ~ denotes the universal covering.
See [7] for more details.

We firstly consider the case k + 3c2 < 0.
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PROPOSITION 4.1. Let (M, g) be a (2n + 1)-dimensional locally KTS-space invari-
antly immersed in Af 2<n+r)+1 (c2, k). Ifk + 3c2 < 0, then f is totally geodesic.

PROOF. For each m e M we choose sufficiently small open neigborhoods % and 9/
oim and f{m), respectively (where / denotes the immersion), such that £ is regular
on % and f on % and let / ' denote the transverse mapping of fa. On %' = %l\,
J = c~xH' defines a complex structure, and (*&", g', J) is a Kahler manifold of
constant holomorphic sectional curvature k + 3c2 [7]. It follows from Proposition 2.3
that the £-sectional curvature of M is constant and equals c2. Then &', equipped with
the complex structure J = c~xH', is a locally Hermitian symmetric space (Lemma
2.1, Proposition 1.3 and [5, Theorem 3.2]) and / ' is a Kahler immersion. Using [13,
Theorem 3.2] it then follows that / ' is totally geodesic. Finally, this and Proposition
3.1 yields that fa and hence / is totally geodesic.

Using Proposition 2.5 we then get

COROLLARY 4.1. Let M be an (2n + I)-dimensional invariantly immersed sub-
manifold of M2(n+r)+l (c2, k) with rj-parallel second fundamental form. It k + 3c2 is
non-positive, then M is totally geodesic in M.

COROLLARY 4.2. IfM2n+1 (c2, k) is invariantly immersed in A/2("+r)+1 (c2, k) and if
k + 3c2 < 0, then M is totally geodesic in M and k = k.

The argument used in Proposition 4.1 indicates that there is a (local) correspondence
between the theory of invariant submanifolds in (M, g) equipped with a normal flow of
non-vanishing constant §-sectional curvature and the theory of Kahler submanifolds.
This yields that several results about Kahler submanifolds may be translated directly
to similar results about invariant submanifolds. We illustrate this by giving a series of
examples. Their proofs, which we omit, are based on results for Kahler submanifolds
given in [18-21, 24] and a similar reasoning as for Proposition 4.1.

PROPOSITION 4.2. Let M2n+l (c2, k) be invariantly immersed in M2(n+r)+1 (c
2, k)for

r < n(n + l)/2. Then the immersion is totally geodesic.

PROPOSITION 4.3. Let M2"+1 (c2, k) be invariantly immersed in M2(n+r>+1 (c2, k). If
k + 3c2 > 0, then either k = k and the immersion is totally geodesic, ork >2k + 3c2.

PROPOSITION 4.4. Let M2n+1(c2, k) be invariantly immersed in M2("+r)+1(c\ k). If
the second fundamental form is r]- parallel, then either k = k and the immersion is
totally geodesic, ork = 2k + 3c2. This latter case arises only when k + 3c2 > 0.

https://doi.org/10.1017/S1446788700001026 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001026


[16] Invariant submanifolds in flow geometry 305

PROPOSITION 4.5. Let M2n+\c2,k) be invariantly immersed in M2("+r)+1(c2, &).
If r = n(n + l ) /2, then either k = k and the immersion is totally geodesic, or
k = 2k + 3c2. The latter case arises only when k + 3c2 > 0.

PROPOSITION 4.6. Let M3(c2, k) be invariantly immersed in M2n+X(c2, k). If M
cannot be immersed in any proper totally geodesic submanifold of M, then k =
3c2(n - 1) + kn.

Further, by using (1.11), (1.12) and (1.13) and the papers cited above, we also get

PROPOSITION 4.7. Let M2n+1 be invariantly immersed in M2""1"3^, &). Ifn>2
and if M is r)-Einstein, then either the immersion is totally geodesic or p(X, Y) =
2-[{n(k + 3c2) - Ac2}g{X, Y) for all horizontal X, Y on M. The latter case arises
only when k + 3c2 > 0.

PROPOSITION 4.8. Let M2n+I be a complete invariantly immersed submanifold of
M2(n+r)+1(c2, k) where k + 3c2 > 0. If the H-sectional curvature K of M satisfies
K > (k — 3c2)/2 and if the scalar curvature of M is constant, then the immersion is
totally geodesic.

Note that some of these results have been proved in a different way for the Sasakian
case (that is, c2 = 1). See, for example, [11, 12]. Moreover, the above list of results
is not exhaustive. More results may be obtained using other papers as, for example,
[16, 17].

Now we return to the case k + 3c2 > 0 and give some results based on [13] and [4].
Examples of Einstein-Kahler submanifolds embedded in complex projective space

€PN are described in [13]. These manifolds are compact irreducible C-spaces with
dim H2(M, R) = 1. C-spaces are closed, simply connected complex homogeneous
spaces and are studied in [27]. All compact irreducible Hermitian symmetric spaces
are C-spaces. Following the same notation as in [13], for every arbitrary complex
simple Lie algebra g with rank / and with fundamental root system {c^ , . . . a,} there
are constructed compact C-spaces of the form M[ = Gu/HuJ, i = \,... ,1, where the
Lie algebra of the connected Lie group Gu is a compact real form gu of g and the center
of the Lie algebra fju>, of //„,, is one-dimensional. Moreover, dim H2(M't, R) = 1.
Furthermore, each compact irreducible C-space M with dim H2(M, R) = 1 can be
given in this way; and for each positive integer p, M. admits a full holomorphic
embedding pf into a <CPN(P) for some N(p) such that the induced KShler metric
gf is Einsteinian. (Here, a full embedding is an embedding such that the embedded
submanifold cannot be embedded in a proper totally geodesic submanifold of <CPN(p).)
We refer to [13] for more details.

Now, using Corollary 3.1, we can obtain an invariant embedding xf of Af,p =
/, pf), n) into S2NW+l(c2, jfc), it + 3c2 > 0, by using the Hopf fibration n. We
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shall call xf the p-canonical embedding of Mf into s2N(p)+l. For p = 1 we call it the
canonical embedding. It follows from [13, Theorem 4.3] (see also the local rigidity
theorem [4, Theorem 9]) and Theorem 3.1 that all invariant embeddings of every Mf
into S2N(p)+l are congruent to the p-canonical embedding xf'.

Furthemore, let Huj be the connected subgroup of Gu, the universal covering of
Gu, associated to the Lie algebra 6U,,. Then M\ may also be written as Gu/Hui, where
Gu is again compact. Since Hu, is compact, Hui is locally the direct product of S1 and
a connected semisimple closed subgroup Kui. Hence, M, = Gu/KUii is a principal
fiber bundle over M[ with structural group S1 = HUii/KuJ. From [10, Theorem 11] it
follows that there exists an integer q such that Mf = qMt = Mi/Gq where Gq is the
cyclic subgroup of S1 of order q.

Now, suppose that M\ = Gu/Hui is a compact irreducible Hermitian symmetric
space. From Proposition 2.3 it follows that the f-sectional curvature on Mf is constant,
say c2, and from [6, 9] we may conclude that Mf is a KTS-space. In particular, it is
a homogeneous space. Denote by (gf, %f) the structure tensor fields on Mf obtained
from Proposition 3.3 for each pf. Since the tensor field H' on M[ is given by H' = cJ
and since (M't,gf) is Einsteinian, it follows that (Mf,gf,%f) is an ^-Einsteinian
manifold. We thus have

PROPOSITION 4.9. Let M[ = Gu/HUii be a compact irreducible Hermitian symmet-
ric space. Then (Mf, zf) is an r\-Einstein invariant submanifold.

Furthermore, let gu = f)ui © tn~ be the canonical decomposition of gu. Since all
Gu -invariant Riemannian metrics on M[ coincide up to a constant factor, we have that
the Riemannian metric gf on M\ under the identification of m" with ToM[,o being the
coset Huj, is given by fifBm- where B is the Killing form of gu and /3,p < 0. Moreover,
there exists a Zo e Z((jUI) such that Jo = adm- (Zo) defines the corresponding complex
structure J on M\. (Here Z denotes the center.)

Let Pf < 0 be the scalar such that the Kahler form 4>f for #°fim- on M[ satisfies
eM;(Mj) = [ - ( 2 ^ ) - ' ^ ] (see [6]). Then the length If of the integral curves of the
induced vector field $f under xf on (Mf, gf) satisfies If = \2ncPf/qP°\. Ontheother
hand, considering 52JV(P)+1 = SU(N(p) + l)/SU(N(p)) and CPNip) = SU(N(p) +
l)/S(U(N(p)) x [/(I)), thescalars/l and/3° forn: S2NW+l(c2, k) -+ CPN(p\k~+3c2)
are

(* + 3c2)N(p) r 4N(p)

Hence the length / of the integral curves of £ in s2Nip)+l (c2, it) satisfies

8TTC
/ =

B° 3c2
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Taking into account all this information and the fact that / and If have to be equal, we
have proved

THEOREM 4.1. All invariantly embedded submanifolds in spheres, fibering over a
compact irreducible Hermitian symmetric space M\ = Gu/Huj are, up to a congru-
ence, of the form (M/\ if) for some positive integer p. Moreover, M? is isomorphic
to the S1 -bundle Mj/Gq over M- where M, = Gu/kuj, Kuj being the commutator
subgroup of Huj. Furthermore, q is given by

(4.2) q = (k + 3c2)tf/4/S°

where gf = $Bm- is the Gu-invariant Kahler metric on M\ induced from the Fubini-
Study metric on CPN(p)(k + 3c2) and $° is the negative scalar such that the corres-
ponding Kahler form O° on M[ verifies eM;(M,) = [-<I>°/27r].

COROLLARY 4.3. Let M^+'fc2, it) and M2(n+r)+\{c2, k) be complete, simply con-
nected normal flow space forms. If M is invariantly immersed into M, then k = k
and so, the immersion is totally geodesic.

PROOF. For k + 3c2 < 0 the result follows from Corollary 4.2. So we suppose
k + 3c2 > 0. Then M2(n+r)+1(c2, it) is isomorphic to the sphere S2(n+r)+1 (c2, k)
which fibers over €.Pn+r(k + 3c2). Af^+'Cc2, k) fibers over a complete and simply
connected Kahler manifold of constant holomorphic sectional curvature k + 3c2, say
Ml2n (k+3c2). Then A/'2" (it+3c2) is a Kahler submanifold immersed in CPn+r ()t+3c2)
and moreover, using [4, Theorem 11], Ml2n is isometrically embedded. Now, it follows
from [4, Theorem 13] that it + 3c2 = p(Jk + 3c2) for a positive integer p, and so, taking
into account (4.1) and (4.2), we have q = p — 1. Then the total geodesic property
follows from Proposition 2.3.

In [4] Calabi proved that for each p e N, CP"(h) can be isometrically embedded
in €PNip)(ph) where N(p) = (n+P) — 1- The totally geodesic case corresponds to
p = 1. Hence, using also Theorem 4.1 and [13], we have

PROPOSITION 4.10. Let M2"^ be an invariantly but non-totally geodesically em-
bedded submanifold ofS2N+l (c2, it) which fibers over CPn. Then M is a normal flow
space form M(c2, k) where k = 3c2 (p - 1) + pk and N = N(p) = ("+') - 1 for
some p > 1. Moreover, M is isomorphic to the quotient manifold S2""1"1 /Gp and the
embedding a": S^^/Gp -+ S2N+l is induced by the mapping of€n+1 into CN+l given
by

(4.3) | £VP4 ,/ / . S i < • • • • > c n I
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where £ " = 0 a, = p.

REMARK 4.1. Using the local rigidity theorem of [4] and Theorem 3.1, it follows
that ap coincides with the p-canonical embedding T,P for M\ = CP", i = n.

In f 13] another example of an embedded Kahler submanifold in <LPN is given.
Namely, l e t / ' b e the mapping of CP"1 x • • • x CP"' in toCP", N = (n, + 1) • • • (nr +
1) — 1, given by

(4.4)

(zj, • • • , < , • • • , z£, • • • , O ^(zl
0 •• -zr

0,..., zl • • • < , . . . , zl • • < ) ,

ia = 0 , 1 , . . . , n a , a = I,... , r ,

where (z£ , . . . ,z"a) are homogeneous coordinates of CP"". Then / ' is a Kahler
e m b e d d i n g o f < C P " l ( h i ) x - • - x C / " ' ( / i r ) i n t o £ P N ( h ) i f a n d o n l y i f h = h x = --- = h r .

Hence we can consider the Riemannian manifold ((CP"'(/i)x- • xCP" ' ( / i ) , / ' ) , n)
as an invariant submanifold embedded into S2N+i(c2, k) for h = k + 3c2. Then
((CP"1 (h) x • • • x CP"'(/i), / ' ) , n) equipped with the induced flow ^ is a KTS-
space with constant § -sectional curvature equal to c2. From [10, Theorem 11] it
follows that there exist non-vanishing integers qx,... ,qr such that the above space is
isomorphic to the quotient manifold

M = ((S2"+1/G,l) x • • • x (S2"'+1/G,r)) / r - 1

where Tr~l denotes the (r —l)-dimensional torus and the action of Tr~x on (52"I+1/G9l)

x . . . x (S^ '+ ' /G, , ) is defined by

( m , , . . . , m r ) ( s 2 . . . , s r ) = ( m i Y \ r
i = 2 s i , m 2 S 2 i , ••• , m r s ; ] ) .

From [6, Theorem 4.2] and taking into account that the lengths of the flow lines on M
and S2N+1 (c2, k) coincide, we have

Pi Pr P

where fr, fi°, i = I,... , r, ji, ft0 are the scalars given in (4.1) for the fiber bundles

S2ni+\ _^ c p n , and52Af+1 ->• C P ^ , respectively. Hence, this implies qx = • •• = qr =
1. So, the KTS-space (S2"'+1 x • • • x 52"'+1) IT~X over CP"'(/i) x • • • x CP"'(h)
is an invariant submanifold in S2N+1(c2, k) with h = k + 3c2. Furthermore, since
CP"'(h) x • • • x CP"r(h) isEinsteinianforn, = • • • = nr and using (1.11) we have

PROPOSITION 4.11. The quotient manifold M = (52"1+1 x •• • x 52"'+1) / Tr~x is an
invariant submanifold embedded into S2N+l(c2, k), where N = (n{ + 1) • • • (nr + 1)
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— 1. Moreover, M is a KTS-space with its induced structure (g, J^) fibering over
CPn'(h) x • • • x £Pn'{h) for h = k + 3c2 and M is r)-Einsteinian if and only if
m = • • • = nr.

REMARK 4.2. The embedding in Proposition 4.11 of M into S2N+l is induced by / '
given in (4.4) considered as a mapping of C" into €N+X, where n = r + nt + - • - + nr.

Finally, using Propositions 3.1,4.10,4.11, Theorem 4.1 and [13, Theorem 7.4] we
have the following classification theorem.

THEOREM 4.2. Let (M, / ) be a non-totally geodesic complete invariant submani-
fold embedded into S2N+l (c2, k) where f is full and r\-parallel. Then (M, f) is, up to
congruence, one of the following submanifolds:

(i) the normal flow space form M = (S2n+l/G2) (c2, k), where k = 3c2 + 2k and
N — N(2) = ("+2) - 1. The embedding of M into S2N+X is induced by the mapping
o/Cn+1 into C+{ given in (4.3) for p = 2.

(ii) the KTS-space M = (S2"^1 x S2"2+l)/Sl over CP"'(h) x <LP"2(h), where
h = k + 3c2 and N = (n\ + \)(n2 + 1) — 1. The embedding f is induced by the
mapping ofC"'+"2+2 into CN+l given in (4.4).

(iii) M = Ml = ((M', p1), n) where M' is a compact irreducible Hermitian
symmetric space of rank 2, that is, a complex quadric Qn(C), a complex Grassmann
manifold G2r(C) = SU(2 + r)/S(U(2) x U{r)) with r > 3, SO(10)/U(5) or
E6/ Spin(10) x S1. In this case f is the first canonical embedding and N = n + 1,
(r^2) — 1, 15 or 26, respectively.

II. Normal flow space forms with non-constant £-sectional curvature and globally
constant //-sectional curvature This second class of normal flow space forms
has been treated in detail in [7]. We recall here some useful facts. Such a space is a
(locally) KTS-space. Furthermore, in the complete case, (M, g, «^|) admits smooth
distributions M[ and Sf2 such that for each m e M, Ji?(m) = M\(m) © Jif2(m) is
an //-invariant decomposition of the horizontal subspace Ji?(m) and each sectional
curvature K(J%,%), i = 1,2, is a positive constant c2 (c2 > c\). Furthermore,
such spaces are precisely the Riemannian manifolds (M2N+l, g) equipped with a
normal contact flow J£| which is transversally modelled on the Riemannian product
CPN' (hi) x <CHN2(h2) where \h2\ < hu Nx+N2 = N and the |-sectional curvatures
cf,i = 1,2, are given by

(4-5)
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In what follows we denote this flow space form by M(NU N2\ h\, h2). The//-sectional
curvature k is a strictly negative constant given by

(4.6) * = ~ Hih2

hx+h2

Now we have

PROPOSITION 4.12. Let f be an invariant immersion of a Riemannian manifold
(M2n+l, g) into a complete normal flow space form M(NU N2; h\, h2). If the £-
sectional curvature on M is a constant c2, then c2 is either c2 or c\ and then for all
m € M, f*TmM C Jf\(f(m)) or C J&ifim)), respectively. Hence M is locally
transversally immersed into <CPNl(hi) or into <CHN2(h2), and so n < max(Nt, N2).

PROOF. For a horizontal vector field X e TmM, m e M, we put f,X = X, + X2

where X, € j%{f{m)) for i = 1, 2. Since H2X = -c2X and H2ftX = -c]Xx -
c\X2 it follows, taking into account the invariance of / , that c2 = c] for i = 1 or 2.
So f,TmM C J%(f(m)) for some i e {1, 2}.

Now, we can choose small neighborhoods °tt and % of m and /(m), respectively,
such that £ on <ft and f on % are regular and the transverse mapping / ' : <$/' =
9/' 1% -+<%' = <%/| is well defined. Then ^ " can be written as # ' = &\ x # ' 2 ,
where ^",, i = 1,2, are connected open subsets of CPN' and €HN2, respectively.
Finally, it follows easily that f'{&') C ^", for some i.

From this, by using Proposition 4.1, we have

COROLLARY 4.4. Let M2"+1 be a locally KTS-space with constant ̂ -sectional
curvature c2 invariantly immersed in a complete normal flow space form M(N\, N2;
h\,h2).Ifc

2 = c\, then M is totally geodesic.

COROLLARY 4.5. / / M2n+l(c2,k) is invariantly immersed in M(NuN2;hu

h2) and c2 = c\, then the immersion is totally geodesic.

Note that for an invariant submanifold M of M(N\, N2\ hu h2) with constant £-
sectional curvature c\ we may formulate a list of results similar to the ones given in
Propositions 4.2^.8 making only slight modifications. We omit the details.

Now, let M be a complete normal flow space form fibering over CPN'(h{) x
CHN2(h2). Then M is isomorphic to

(4.7)
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for some q € Z and where / = \%nc\/qh\ \ denotes the length of the flow lines. For 
each point m' € <CPNx{h{) x €HNl(h2) the inclusion mappings i[,i'2 of the totally 
geodesic submanifolds €PN,(hi) and <CH"2(h2) through in! into the product define, 
using Proposition 3 . 3 , totally geodesic submanifolds M\ and M2 of M(N\, N2; huh2) 
fibering over €PN,(h]) and <LHNl{h2), respectively. Comparing lengths of the flow 
lines, such submanifolds are precisely 

These considerations lead to the following global version of Proposition 4 . 1 2 . 

T H E O R E M 4 . 3 . Let Mbea complete normal flow space form fibering overCPN> (h () 
x CHNl (h2) and let f be an invariant embedding of an (M, g) into M. If the induced 

flow is fibrable and the £ -sectional curvature on M is a constant c1, then c2 equals 
c\ or c\. Moreover f is an invariant embedding of M into Mi or M2, respectively. 

R E M A R K 4 . 3 . From the given theorem it follows that the invariant submanifolds 
with constant f -sectional curvature which are non-totally geodesically embedded in a 
complete normal flow space form fibering over C P W | (h,) x €HN2 (h2) are essentially 
the non-totally geodesic invariant submanifolds of M\ — (S2Ni+x / Gg)(c2, k), for some 
q € Z, which have been treated in I. 

It has been proved in [6] that each complete contact locally KTS-space (M, g,&%) 
is locally transversally modelled on a simply connected Hermitian symmetric space 
M'. Let Af' = M'Q x M[ x • • • x M'r be its de Rham decomposition with Euclidean 
part M'0 = E2p(xi,... ,x2p). Then we can consider each local submersion n: % -> 

= <Was a mapping into an open subset W = x ^ x • • • x where 
j = 0 , 1 , . . . , r, is a connected open subset of M J . There exist r + p real numbers 
C i , . . . ,cr, M i . • • • . Mp and smooth distributions , % on ^.obtained by 
taking the horizontal lifts of the tangent vectors of A / ' , such that, for each m € W, 
Jf(m) = %{m)®^(m)®- • ©$fr(m) is an //-invariant orthogonal decomposition of 
the horizontal subspaceJ^C/n) and each sectional curvature K (%, £ ) , / = 1 , . . . , r , i s 
a positive constant cj. Moreover, {(d/dxi)*,... , (d/dx2p)*} is an orthonormal frame 
field of % which satisfies K((d/dxk)*, £) = K((d/dxp+k)*, | ) = p2, k = 1 , . . . , p. 

Now, let / be an invariant immersion of (M, g, into a complete normal flow 
space form M (TV,, 7V2; h\, h2). Using a similar argument as in the proof of Proposition 
4 . 1 2 we have that each cf and each p\, I = 1 , . . . , r, k = 1 , . . . , p, is either c\ or 
c\. We denote by Jt?!(m), i = 1 , 2 , the subspace of Jt(m), m e M, such that the 
sectional curvature K(J%, £) equals c2. Then it follows that ftJ%(m) C J%{f (m)). 
Moreover, it can be proved that Jtfi and determine global distributions (see the 
proof of [ 7 , Theorem 4 . 1 ] ) . Hence, we have 
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PROPOSITION 4.13. Let (M, / ) be a complete locally KTS-space and invariant
submanifold immersed in a complete normal flow space form M(N\, N2\ hx, h2).
Then there exist smooth distributions Ji?\ and Ji?2 on M such that for each m e M,
J4?(m) = J%(m) 0 J%m), (it may occur that J4? = Jif{ or Jff = J%) is an H-
invariant decomposition of the horizontal subspace Jf?(m), the sectional curvatures
K(J%, | ) = i] and f.J% C Jfifor each i = 1,2.

Hence, using [6, Theorem 3.2] and [13, Theorem 3.2] we obtain

THEOREM 4.4. Let Mbea complete normal flow space form fibering over <CPN'(hi)
x €HNi(h2) and let f be an invariant embedding of a KTS-space (Af2n+1, g, ^ )
with non-constant f -sectional curvature, into M. If the orbit space M' = Af/£ is
simply connected, then we have:

(i) M' is a Riemannian product M'"' x <CH"2(h2), nx + n2 = n, where M\ is
a Hermitian symmetric space and the (1, I)-tensor field J = c\~xH[ + c^H^ is a
Hermitian structure on (M', g') where HI = H'oph i = 1,2, and where pt: M' ->• M[
denotes the projection ofM' onto M\ (for M'2 = €H"2(h2)).

(ii) the transverse embedding f of f is a product embedding /,' x /2' where f[ is
a Kdhler embedding of M[ into CPN'(hi) and /2' is a totally geodesic embedding of
CHn>(h2)into<CHN2(h2).
The corresponding local version also holds.

Using Proposition 3.5 we can provide many examples of invariant submanifolds in
a complete simply connected normal flow space form M(NX, N2;h\,h2). In fact,
we obtain a full invariant embedding / of ((M/ x <CHNl(h2), pf x id), n) into
M(NU N2; hu h2), where M\ = Gu/Hui is a compact irreducible Hermitian sym-
metric space, pf is the p-canonical embedding of M\ into <CPN',TT is the fibration of
M(NU N2; hu h2) onto CPN< x CH"2 and id: C//"2 - • CHN> is the identity mapping.
In particular, for M given as in (4.7), we obtain the following families of invariant
submanifolds:

(i) For each positive integer p, the quotient manifold

where N{ = Nx(p) = ("l+p) - 1, is an invariant submanifold embedded into M and
fibering over CP"' (hip~x) x <CHNl(h2). The corresponding transverse embedding is
the product p/7 x id where the /7-canonical embedding pf of C/"" into CPN' coincides
with that one given in (4.3) in terms of homogeneous coordinates of CP"]. Note that
in this case, / is ^-parallel only when p — 2.

https://doi.org/10.1017/S1446788700001026 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001026


[24] Invariant submanifolds in flow geometry 313

(ii) The quotient manifold

is an invariant submanifold embedded into M which fibers over CP"l(h\) x • • • x
£Pn'{hx) x <CHNi(h2) where N{ = (n, + 1) • • • (n, + 1) - 1. Here the full transverse
mapping is the product embedding of the mapping given in (4.4) and the identity
mapping id: CHNl -> CHNl. For r = 2, f is 77-parallel.
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