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RINGS WITH AUTOMORPHISMS LEAVING NO 
NONTRIVIAL PROPER IDEALS INVARIANT 

BY 

AHMAD SHAMSUDDIN 

ABSTRACT. If an automorphism a on a ring R (with 1) leaves no 
non-trivial proper ideals of R invariant then we say that R is 
cr-simple. We construct examples of cr-simple rings and prove that 
finitely generated cr-simple algebras over fields are regular. A 
geometric interpretation of these concepts is also discussed. 

Let K b e a commutative ring, always with 1, and let or be a ring endomorph-
ism on R. We say that a subset S of JR is invariant under a if crS ç S. Denote 
by Aut(R) the group of all automorphisms on R. If G is a subgroup of Aut(K) 
then S is said to be G-invariant in case aS^S for all creG. We say that R is 
G-simple in case JR has no G-invariant non-trivial proper ideals of JR, and 
when G = {or) we say R is cr-simple if it is G-simple. When R is a finitely 
generated algebra over an algebraically closed field k and G is a group of 
k -automorphisms on JR then R is the coordinate ring of some affine closed 
subset X of the affine space An(k) and each ere G induces a homeomorphism 
on X; the set of all such homeomorphisms forms a group G. If R is G-simple 
then no non-empty proper affine closed subset of X is G-invariant. 

In the first section of this paper we study the general properties of these rings 
and prove that if R is a finitely generated algebra over a field such that JR is a 
G-simple domain then R¥ is regular for every prime ideal p of JR. The second 
section contains examples of cr-simple rings. 

1. General properties of G-simple rings. Throughout this section, G is a 
subgroup of Aut(K). 

1.1. If R is G-simple then RG = {a e R : era = a for all a e G} is a subfield of 
R. 

1.2. If R is a domain and JR is G-simple then R is also H-simple for every 
subgroup H of G of finite index. 

Idea of proof. Suppose that I is an H-invariant non-zero proper ideal of R. 
If 

G=HUa1HU • • • UoyH 
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is a coset decomposition of H in G then 

j=inor1m • • • no-rJ 

is a non-zero proper G-invariant ideal of R. 
1.3. Let R be a noetherian ring. If no subgroup of G of finite index leaves 

any non-zero prime ideal of R invariant then R is G-simple. To see this, note 
first that an ideal I of R is G-invariant if and only if crl = I for all aeG. 
Suppose that J is a G-invariant ideal and let p be a prime ideal of R minimal 
over I so that crp is also minimal over I for every a e G. But because R is 
noetherian, there are only finitely many primes minimal over I, thus 

{crp:o-eG} = {p, o-ip, . . . ,cr rp} 

where p, o ^ p , . . . , crrp are all distinct. If H = {T£G:T\>= p} then H is a 
subgroup of G and 

G = HUa1HU • • • UarH 

is a coset decomposition of H in G. 
1.4. If JR is G-simple then it has zero Jacobson radical; in particular, R does 

not have non-zero nilpotent elements. 
1.5. If some maximal ideal m of a G-simple ring R has finite orbits under G 

then R is a finite product of fields. For, let m, o^m, . . . , crrm denote the distinct 
members of the set {am. : a e G}. Then m Pi o^m fl • • • fl arm = 0 and we have 
an injective ring homomorphism 

/ : JR -> R/m x j^/o^m x • • • x R/arm 

given by 

f(a) = (a+m, a + o^m, . . . , a + arm). 

It follows from the Chinese Remainder Theorem that / is also onto. Hence / is 
an isomorphism. 

The above shows that if G is finite then R is a finite direct product of fields. 
1.6. Let B a commutative integral domain and let A be a subring of B such 

that B is integral over A. Let G be a subgroup of Aut (JB) such that A is 
G-invariant. Then A is G-simple if and only if B is G-simple. 

Proof. Let J be a non-trivial proper G-invariant ideal of B. Then because B 
is integral over A, JH A is non-trivial and clearly it is a G-invariant ideal of A. 
Conversely, if I is non-zero proper G-invariant ideal of A then it follows from 
the Going-Up theorem that BI is a non-trivial proper G-invariant ideal of B. 

1.7. If F is any field then any F-automorphism on F[x, y] leaves a non-
trivial proper ideal invariant. 

Proof. Let k denote the algebraic closure of F. Lane in [3] proved that 
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every k-automorphism leaves a non-trivial proper ideal of fc[x, y] invariant. 
Now k[x, y] is integral over F[x, y], so the result follows from 1.6. 

In particular, U[x, y] is never G-simple for any cyclic subgroup G of 
Aut(J?[x, y]). 

I am grateful to the referee for pointing out the following additional property 
of G-simple rings. 

1.8. Let R be a finitely generated algebra over a finite field k and suppose 
that R is an integral domain. If JR is G-simple for some G then it is a finite 
field. 

Proof. Let m be a maximal ideal of R then K = R/m is a finitely generated 
k-algebra which is a field. Hence K is algebraic over k and since k is finite, K 
is itself finite. Thus there exist finitely many maximal ideals m' of R such that 
R/m' = K as fields. Since Rlm = R/am (as fields) for each aeG, there are 
or1 ? . . . , ar e G such that m, o^m, . . . , arm are the distinct members of 
{am : a e G}. It follows that m = 0 and so JR = K is a finite field. 

The examples of cr-simple algebras constructed in §2 are all regular at each 
of their prime ideals. This leads one to conjecture that a noetherian G-simple 
domain is always regular. We shall now show that this is indeed the case for 
finitely generated algebras over fields. 

Let X = Spec R and recall that X is a topological space in which the closed 
sets are of the form V(I) = { p e X : / c p } , where I is an ideal of R. Note that 
each ere G induces a homeomorphism on X, denoted by â. Suppose that 
<?( V(I)) = V(I) for all a e G then V(al) = V(I) and hence Val = o- VJ = v / for 
all aeG. Thus 1 = 0 or J - R which shows that either V(J) = X or V(I) = 0. It 
follows that G = {(7 : a e G} leaves no non-empty closed subset of X invariant. 

Suppose now that JR is noetherian and 
Reg X = {p G X : Rp is a regular local ring} 

Sing X = X-Reg X. 

If p e X then for every ere G we have a ring isomorphism jRp = JR̂ p defined in 
the obvious way. Hence G leaves Reg X and Sing X invariant. 

Following Matsumura [1], p. 246, we say that the ring R is a J-l ring if 
Sing X is closed in X. 

THEOREM 1.9. If R is a J - l G-simple domain then R is regular at every prime 

P 

Proof. Since Sing X is G-invariant, either Sing X = 0 or Sing X = X. But 
clearly (0) £ Sing X, so Sing X = 0 and the result is now clear. 

COROLLARY 1.10. If R is a G-simple finitely generated algebra over a field 
then R is regular at every prime ideal p. 

Proof. A f.g. algebra over a field is a J-l ring, by Matsumura [1], p. 246. 
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We now mention briefly the geometric significance of the last Corollary. Let 
k be an algebraically closed field, let JR be a finitely generated k-algebra which 
is a domain, let G be a group of k-automorphisms on R, and let X = V(p) be 
the irreducible algebraic variety determined by JR. If a = (au ..., a J e X , let 
TXa denote the tangent space to X at a. Recall that TXa is the linear subspace 
of An defined as the set of zeros of the polynomials 

X-MaX^-a,), /ep. 
i = 1 d t i 

Then TXa is a k-vector space, with origin at a. If m is an integer then the set 

{a e X : dimk TXa > m} 

is closed in X (see Mumford [2], p. 3). We say that a point a G X is singular or 
regular according as dimk Tx a > dim X = Krull dimension of R or dim TXa = 
dim X. It follows that the singular locus, namely the set 

V = {a e X : d im k Tx, a > d im X} 

is closed in X. If a 6 V then the maximal ideal m determined by a is a singular 
maximal ideal (that is Rm is not regular) and conversely, if m is a maximal ideal 
of JR then the corresponding point of X determined by m is singular (see 
Shafarevich [4], pp. 81-84). The above Corollary then says that if R is 
G-simple then X has no singular points. In other words, X must be a smooth 
algebraic variety. 

2. Examples of a-simple rings. We begin this section with the following 

THEOREM 2.1. Let A be a commutative domain and let cr be an injective ring 
endomorphism on R = A[x], the ring of polynomials in the indeterminate x over 
A, such that a Ac: A, and assume that A is a-simple. Suppose that 

ax = ax + b, a, be A, a invertible in A. 

If char A = 0 then R is cr-simple if and only if the equation 

aÇ=aÇ+b 

has no solution Ç e A. 
If char A = p > 0 and the equations 

au = alu (i = 1, 2 , . . . ) 

have no solutions ueA, then R is a-simple if and only if the equations 

aÇ=apiÇ+bpi (i = 0 ,1 , 2 , . . . ) 

have no solutions in A. 

Proof. Let I be a non-zero proper ideal of R invariant under a and let C 
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denote the ideal of A consisting of all leading coefficients of all polynomials in 
I with minimum degree n together with 0. Because a is invertible in A, C is a 
(non-zero) ideal of A invariant under a. Since A is cr-simple, C = A. Hence 
there is 

M 

/ = )-« ai*1 <EJ> at£A, an = l. 
i = 0 

Note that g = af- anfel, yet if g^O then degg<rc, a contradiction. Hence 
af= anf and so 

n n ' / 7*\ 

°f = L (crai)(ax + b)1 = ^ aa^ ( . ja]bl~]x] 

; = n ; = n ; = n M / o / = o V ' 

n | J 1 . / ; 

= 1 ZaVûi)( . )b i " / U / =Za n a/^' 

from which we deduce that 

(1) £ (o-a^f !W~y = an"J'ay, 0 < / < n. 

If 1 /neA (which is certainly the case if char A = 0 in view of 1.1) then the 
substitution j = n — 1 in (1) gives 

c r£=a£+6 where £ = — a n _ ! 
n 

Conversely, if or^ = a^+b for some £ e A then JR( .X-£) is invariant under o\ 
If n is not invertible in A then write n = prm, p Jf m. Note that 

"Wo (modp) if 0</<p r 

n\ 
I = m (mod p) 

P / 

so by substituting j=n-l, n-2,..., n-pr successively in (1) and using the 
fact that the equations au = alu ( />1) have no solutions in A we find that 

an_y = 0 if l ^ / < p r 

and 
1 

of = aprÇ + bpr where f = an_pr. 

Conversely, if of = aprÇ+bpr for some £e A then xpr - £ is invariant under o\ 
The proof is complete. 

Suppose now that a = 1 and let's try to find a criterion for cr-simplicity of R 
in the characteristic p > 0 case. Put 

A(ff) = {ae A :aa = a) 
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and 

A' = {aa-a :aeA} 

so that A' is an A(cr)-module. We prove that R is cr-simple if and only if the 
sum 

A' + A((r)b + Ai(r)bp + A((r)bp2 + • • • 

is direct. 
Assume first that the above sum is direct; we show that the system of 

equations (1) has no solution. Indeed, write n = prrr\ with p X m. As above, 

we note that ( . j = 0 (mod p) if 1 < / < pr and ( r) = m (mod p). Then by sub­

stituting / = M - l , n-2,..., n-pr successively in (1) and using the assump­

tion that the above sum is direct, we find that an_}; = 0 if l < / < p r and 

an_pr = o~ an._pr+mbpr which contradicts our assumption. 

Conversely, if (e ra-a) + £-=0 a^P '=0 where ateA{<T) then the polynomial 
a+Zi=o a i* p is invariant under cr. 

THEOREM 2.2. Lef k be a field of characteristic 0 and /ef <J be the k-
automorphism on k[x] given by 

ax = x + b, b^Oek. 

Then k[x] is cr-simple. 

Proof. If there is cek with b + ac = c then b = 0, a contradiction, k is 
clearly cr-simple, so the above theorem yields the result. 

THEOREM 2.3. Let k be a field of characteristic zero and let k[t, x, y] denote the 
ring of polynomials in the indeterminates t, x, and y over k. Define a k-
monomorphism a on k[t, x, y] by putting 

(rt = t+l, crx = tx + l, cry = ty + x. 

Then a extends uniquely to an automorphism on k(t)[x, y] = R, also denoted by 
(j, such that R is cr-simple. 

Proof. We first show that there is no p(t)e k(t) such that 

(1) p(t+l)=tp(t)+l 

and this will prove that k(t)[x] is cr-simple, by Theorem 2.1. Thus suppose that 
p(t) = f(t)/g(t) where f(t), g(t)'ek[t] are relatively prime and g(t) is a monic 
polynomial. Then p(t) satisfies (1) if and only if 

(2) g(t)[f(t+l)-g(t+l)]=tf(t)g(t+l). 

Hence g(f) j rg(r-hl). If t X g(t) then g(t) j g(t + 1) and so g(t)ek. If g(t) = tg,(t) 
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then gi(f)|(f+l)gi(f + l), hence if (r+1) >K gi(0 then g^t) is a constant. 
Continue in this fashion to conclude that 

g(t)=t(t+l)--(t + n). 

It follows from (2) that (t + n + 1) | f(t+ 1) or (t+n)\ f(t) which contradicts the 
assumption that f(t) and g(t) are coprime. This shows that k( t )M is cr-simple. 

Next suppose that there is a polynomial /(f, x)e k(t)[x] that satisfies the 
equation 

(3) <rf(t,x)= tf(t,x) + x; 

write 
n 

f(t,x)= S ûiW**» ai(f)Gfc(f) 
i = 0 

where an(t)^0. If n > l then by comparing the leading coefficients of the 
polynomials in (3) we get 

an(t + l)tn = tan(t) 

which is impossible in k(t). Since n ^ O w e must have n = 1, in which case 

(4) toxCr + 1) = tox(0 + 1 

and an argument similar to that used in the first paragraph shows that equation 
(4) is impossible. It follows now from Theorem 2.1 that k(t)[x, y] is cr-simple. 

The above example must probably be contrasted with a result in [3], referred 
to previously, stating that if k is algebraically closed then every k-
automorphism on k[x, y] leaves a proper non-trivial ideal of k[x, y] invariant. 

THEOREM 2.4. Let k be a field and let R = k[x1,x^1,..., xn, x'1] where 
xl9..., xn are indeterminate s over k. Let a l 5 . . . , an be elements of k such that 

a™1 • • • a™n = lim^ . . . , mn e Z) =̂> ml = • • • = mn = 0. 

Define a k-automorphism or on R by 

axt = ajXj. 

Then R is a-simple. 

Proof. We show this by induction on n, the case n = 0 being trivial. Assume 
that n>\ and that A = k[xu xï1,..., xn_u x ~ i j is cr-simple. Let I be a 
non-zero proper ideal of JR = A[xn, x~x] invariant under cr. Then by the proof 
of Theorem 2.1, lDR[xn] contains a monic polynomial of degree m such that 
<rf=a™f. Write f = YT=o &*n, & e A and gm - 1. Then agt = a™~lg{ for each i, 
so either gt = 0 or gt is invertible in A. In the second case, gt must have the 
form bx\x • • • xjz\ where tly..., tn__1el and b e k, 6 ^ 0 . Thus 

a l an-\an -1 
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and this gives i — m = t1 = ' • • = tn_1 = 0. Thus 1= R, a contradiction. The proof 
is complete by induction. 

THEOREM 2.5. Let A = R[x1, x 2 , . . . , x2n] be the U-algebra generated by the 
indeterminates xl9..., x2n subject to the conditions 

X1 + X2
 = X3 + X4=- • ' — X2n-i + %2n= !• 

Let al9..., an be real numbers such that 1, au . . . , an are linearly independent 
in M over Z. Define the R-automorphism a on A by 

o~x1 = xx cos 2TT(X1 — x2 sin 27ra1? ax2 = xx sin 27ra1 + x2 cos lira-^ 

o-x2n_1 = x2n_! cos 2iran - x2n sin 27ran, crx2n = x2n^ sin 27ran + x2niran. 

Then A is cr-simple. 

Proof. Note that (axj2 + (ax2)
2 = a(xj + xj) = 1, etc. so cr is indeed an 

automorphism on A. Extend or to a C-automorphism on B = 
C[x1? x2,..., x2n_i, x2n] in the obvious way. It is sufficient to show that B is 
cr-simple. 

Note that 

(xa + fx2)(x! - ix2) = • • • = (x2n_! + ix2n)(x2n_1 - ix2n) = 1 

so with y1 = Xx -f i x 2 , . . . , yn = x2n_! + ix2n it is easy to see that 

B = C [ y 1 , y r 1 , . . . , y n , y ; 1 ] -

Note that 

c r y 1 - e 2 ^ y 1 , . . . , o r y n = e 2 ^ y n . 

Put ax = e27rio\ . . . , an = e27ria«. The condition that 1, al9..., an are Z-linearly 
independent is equivalent to the condition that 

a?1 ' ' * <C-= l ( m l 5 . . . , mnel)^> m1 = - " = mn = 0. 

Theorem 2.4 now finishes the proof. 
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