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RINGS WITH AUTOMORPHISMS LEAVING NO
NONTRIVIAL PROPER IDEALS INVARIANT

BY
AHMAD SHAMSUDDIN

ABSTRACT. If an automorphism o on a ring R (with 1) leaves no
non-trivial proper ideals of R invariant then we say that R is
o-simple. We construct examples of o-simple rings and prove that
finitely generated o-simple algebras over fields are regular. A
geometric interpretation of these concepts is also discussed.

Let R be a commutative ring, always with 1, and let o be a ring endomorph-
ism on R. We say that a subset S of R is invariant under ¢ if S < S. Denote
by Aut(R) the group of all automorphisms on R. If G is a subgroup of Aut(R)
then S is said to be G-invariant in case oS < S for all o € G. We say that R is
G-simple in case R has no G-invariant non-trivial proper ideals of R, and
when G =(o) we say R is o-simple if it is G-simple. When R is a finitely
generated algebra over an algebraically closed field k and G is a group of
k-automorphisms on R then R is the coordinate ring of some affine closed
subset X of the affine space A"(k) and each o € G induces a homeomorphism
on X; the set of all such homeomorphisms forms a group G. If R is G-simple
then no non-empty proper affine closed subset of X is G-invariant.

In the first section of this paper we study the general properties of these rings
and prove that if R is a finitely generated algebra over a field such that R is a
G-simple domain then R, is regular for every prime ideal p of R. The second
section contains examples of o-simple rings.

1. General properties of G-simple rings. Throughout this section, G is a
subgroup of Aut(R).

1.1. If R is G-simple then R® ={a € R:0a = a for all o € G} is a subfield of
R.

1.2. If R is a domain and R is G-simple then R is also H-simple for every
subgroup H of G of finite index.

Idea of proof. Suppose that I is an H-invariant non-zero proper ideal of R.
If

G=HUo,HU---Uo,H
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is a coset decomposition of H in G then
J=INoIN---Nal

is a non-zero proper G-invariant ideal of R.

1.3. Let R be a noetherian ring. If no subgroup of G of finite index leaves
any non-zero prime ideal of R invariant then R is G-simple. To see this, note
first that an ideal I of R is G-invariant if and only if oI =1 for all o€ G.
Suppose that I is a G-invariant ideal and let p be a prime ideal of R minimal
over I so that op is also minimal over I for every o € G. But because R is
noetherian, there are only finitely many primes minimal over I, thus

{op:oceG}={p,op,...,op}

where p, op,...,o,p are all distinct. If H={re G:7p- p} then H is a
subgroup of G and

G=HUo,HU---UoH

is a coset decomposition of H in G.

1.4. If R is G-simple then it has zero Jacobson radical; in particular, R does
not have non-zero nilpotent elements.

1.5. If some maximal ideal m of a G-simple ring R has finite orbits under G
then R is a finite product of fields. For, let m, oym, . . ., o,m denote the distinct
members of the set {om:o0€ G}. Then mNomN ---Nom=0 and we have
an injective ring homomorphism

f:R— RmXR/oymX - -+ XR/o,m

given by
fla)=(a+m,a+om,...,a+om).

It follows from the Chinese Remainder Theorem that f is also onto. Hence f is
an isomorphism.
The above shows that if G is finite then R is a finite direct product of fields.
1.6. Let B a commutative integral domain and let A be a subring of B such
that B is integral over A. Let G be a subgroup of Aut(B) such that A is
G-invariant. Then A is G-simple if and only if B is G-simple.

Proof. Let I be a non-trivial proper G-invariant ideal of B. Then because B
is integral over A, IN A is non-trivial and clearly it is a G-invariant ideal of A.
Conversely, if I is non-zero proper G-invariant ideal of A then it follows from
the Going-Up theorem that BI is a non-trivial proper G-invariant ideal of B.

1.7. If F is any field then any F-automorphism on F[x, y] leaves a non-
trivial proper ideal invariant.

Proof. Let k denote the algebraic closure of F. Lane in [3] proved that
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every k-automorphism leaves a non-trivial proper ideal of k[x, y] invariant.
Now k[x, y]is integral over F[x, y], so the result follows from 1.6.

In particular, R[x, y] is never G-simple for any cyclic subgroup G of
Aut(R[x, y]).

I am grateful to the referee for pointing out the following additional property
of G-simple rings.

1.8. Let R be a finitely generated algebra over a finite field k and suppose
that R is an integral domain. If R is G-simple for some G then it is a finite
field.

Proof. Let m be a maximal ideal of R then K = R/m is a finitely generated
k-algebra which is a field. Hence K is algebraic over k and since k is finite, K
is itself finite. Thus there exist finitely many maximal ideals m’ of R such that
Rm’'=K as fields. Since R/m=R/o,, (as fields) for each o€ G, there are
01,...,0,€G such that m, oym,...,o,m are the distinct members of
{om: o€ G}. It follows that m=0 and so R=K is a finite field.

The examples of o-simple algebras constructed in §2 are all regular at each
of their prime ideals. This leads one to conjecture that a noetherian G-simple
domain is always regular. We shall now show that this is indeed the case for
finitely generated algebras over fields.

Let X =Spec R and recall that X is a topological space in which the closed
sets are of the form V(I)={pe X : Icp}, where I is an ideal of R. Note that
each o€ G induces a homeomorphism on X, denoted by &. Suppose that
G(V(I))= V() for all o€ G then V(aI)= V(I) and hence VoI = o VI=VI for
all o€ G. Thus I=0 or I = R which shows that either V(I)= X or V(I)=0. It
follows that G = {7 : o € G} leaves no non-empty closed subset of X invariant.

Suppose now that R is noetherian and

Reg X ={pe X: R, is a regular local ring}

Sing X =X —Reg X.

If pe X then for every o€ G we have a ring isomorphism R,=R,, defined in
the obvious way. Hence G leaves Reg X and Sing X invariant.

Following Matsumura [1], p.246, we say that the ring R is a J-1 ring if
Sing X is closed in X.

TueoreM 1.9. If R is a J-1 G-simple domain then R is regular at every prime
P

Proof. Since Sing X is G-invariant, either Sing X = & or Sing X = X. But
clearly (0) ¢ Sing X, so Sing X = and the result is now clear.

CororLArY 1.10. If R is a G-simple finitely generated algebra over a field
then R is regular at every prime ideal p.

Proof. A f.g. algebra over a field is a J-1 ring, by Matsumura [1], p. 246.
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We now mention briefly the geometric significance of the last Corollary. Let
k be an algebraically closed field, let R be a finitely generated k-algebra which
is a domain, let G be a group of k-automorphisms on R, and let X = V(p) be
the irreducible algebraic variety determined by R. If a=(a,,..., a,)€ X, let
Ty, denote the tangent space to X at a. Recall that Ty, is the linear subspace
of A" defined as the set of zeros of the polynomials

i;;—tfi(a)oi—a», fep.

Then Ty, is a k-vector space, with origin at a. If m is an integer then the set
{ae X :dim, Tx,=m}

is closed in X (see Mumford [2], p. 3). We say that a point a € X is singular or
regular according as dim, Tx ,>dim X = Krull dimension of R or dim Tx,=
dim X. It follows that the singular locus, namely the set

V={aeX:dim, Tx,>dim X}

is closed in X. If a € V then the maximal ideal m determined by a is a singular
maximal ideal (that is R,, is not regular) and conversely, if m is a maximal ideal
of R then the corresponding point of X determined by m is singular (see
Shafarevich [4], pp.81-84). The above Corollary then says that if R is
G-simple then X has no singular points. In other words, X must be a smooth
algebraic variety.

2. Examples of o-simple rings. We begin this section with the following

THEOREM 2.1. Let A be a commutative domain and let o be an injective ring
endomorphism on R = A[x], the ring of polynomials in the indeterminate x over
A, such that o A < A, and assume that A is o-simple. Suppose that

ox=ax+b,a, be A, ainvertible in A.
If char A =0 then R is o-simple if and only if the equation
ot=at+b

has no solution &€ A.
If char A =p>0 and the equations

ou=a'u (i=1,2,..))
have no solutions ue€ A, then R is a-simple if and only if the equations
gé=a"té+b" (i=0,1,2,...)
have no solutions in A.

Proof. Let I be a non-zero proper ideal of R invariant under ¢ and let C
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denote the ideal of A consisting of all leading coefficients of all polynomials in
I with minimum degree n together with 0. Because a is invertible in A, C is a
(non-zero) ideal of A invariant under o. Since A is o-simple, C = A. Hence
there is

f=Y ax'el, aecA, a,=1.
i=0

Note that g=of—a"fel, yet if g#0 then deg g<n, a contradiction. Hence
of =a"f and so

n

of = Y, (¢a;)(ax + b)’ Zn: ‘;) (;)a"bi*fx"

i=0
= Z [Z a’(aa,-)(f)b"’]x" = Z a“ax’
j=0 Li=j ] i=0
from which we deduce that
(1) Z(oai)<;>b""'=a"”aj, 0=j=n.

i=j

If 1/ne A (which is certainly the case if char A =0 in view of 1.1) then the
substitution j=n—1 in (1) gives

1
cé=aé+b where &= - a,

Conversely, if 0é=a¢+b for some £€ A then R(x —¢£) is invariant under o.
If n-is not invertible in A then write n = p'm, p ¥ m. Note that

(?);0 (mod p) if 0=j<p’

(;) =m (mod p)

so by substituting j=n—1, n—2,..., n—p" successively in (1) and using the
fact that the equations ou =a'u (i>1) have no solutions in A we find that
a,;=0 if 1=j<p’
and
. . 1
oé=a"&+b” where &= -Ea

n—pre

Conversely, if &= aP ¢+ b? for some £€ A then xP — £ is invariant under o.
The proof is complete.

Suppose now that a =1 and let’s try to find a criterion for o-simplicity of R
in the characteristic p>0 case. Put

A@={lageA:0a=a)
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and
A'={ca—a:ac A}

so that A’ is an A’-module. We prove that R is o-simple if and only if the
sum

A'+A(")b+A(°’)b”+A(”)bp2+' .

is direct.
Assume first that the above sum is direct; we show that the system of
equations (1) has no solution. Indeed, write n=p'm with p ¥ m. As above,

we note that (?) =0 (mod p) if 1=j<p" and (pn,> =m (mod p). Then by sub-

stituting j=n-1, n—2,...,n—p" successively in (1) and using the assump-
tion that the above sum is direct, we find that a, ;=0 if 1<j<p" and
a,_,r =0 a,_,r+mb? which contradicts our assumption.

Conversely, if (ca—a)+Y/_,a;b” =0 where a;€ A then the polynomial
a+Y!_,axP is invariant under o.

THEOREM 2.2. Let k be a field of characteristic 0 and let o be the k-
automorphism on k[x] given by

ox=x+b, b#0¢ck.
Then k[x] is o-simple.

Proof. If there is ce k with b+oc=c then b=0, a contradiction. k is
clearly o-simple, so the above theorem yields the result.

THEOREM 2.3. Let k be a field of characteristic zero and let k[t, x, y] denote the
ring of polynomials in the indeterminates t, x, and y over k. Define a k-
monomorphism o on k[t, x, y] by putting

ot=t+1, ox=tx+1, oy=ty+x
Then o extends uniquely to an automorphism on k(t)[x, y]= R, also denoted by
o, such that R is a-simple.
Proof. We first show that there is no p(t) € k(t) such that
(1) p(t+1)=tp()+1

and this will prove that k(t)[x] is o-simple, by Theorem 2.1. Thus suppose that
p(t) = f(t)/g(t) where f(t), g(t)€ k[t] are relatively prime and g(t) is a monic
polynomial. Then p(t) satisfies (1) if and only if

() glf(t+1)—g(t+ 1] =tf(t)g(t+1).
Hence g(t) | tg(r+1). If t ¥ g(t) then g(1) | g(¢+1) and so g(t) € k. If g(t) = tg,(1)
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then gl(t)[(t+l)g1(t+1), hence if (¢t+1) 4t g,(t) then g,(t) is a constant.
Continue in this fashion to conclude that

g(t)y=t(t+1)---(t+n).

It follows from (2) that (t+n+1)|f(t+1) or (t+n)| f(t) which contradicts the
assumption that f(t) and g(t) are coprime. This shows that k(t)[x]is o-simple.

Next suppose that there is a polynomial f(t, x)e k(#)[x] that satisfies the
equation

3) of (t, x) = tf(t, x) + x;

write

n

f(t )= 2 a0, a()ek()

i=0
where a,(t)#0. If n>1 then by comparing the leading coefficients of the
polynomials in (3) we get

a,(t+1)t" =ta, (1)
which is impossible in k(t). Since n# 0 we must have n =1, in which case
4) ta,(t+1)=ta,(t)+1

and an argument similar to that used in the first paragraph shows that equation
(4) is impossible. It follows now from Theorem 2.1 that k()[x, y] is o-simple.
The above example must probably be contrasted with a result in [3], referred
to previously, stating that if k is algebraically closed then every k-
automorphism on k[x, y] leaves a proper non-trivial ideal of k[x, y] invariant.

TueoreM 2.4. Let k be a field and let R=k[x,,x7",...,x,, x,,'] where
X1, ..., X, are indeterminates over k. Let a,, ..., a, be elements of k such that
atr---am=1my, ..., m,€Z)> m;=---=m, =0.

Define a k-automorphism o on R by

oX; = ax;.

1

Then R is o-simple.

Proof. We show this by induction on n, the case n =0 being trivial. Assume
that n=1 and that A =k[x,, x7',..., x,_y, x,;2,] is o-simple. Let I be a
non-zero proper ideal of R = A[x,, x,,'] invariant under o. Then by the proof
of Theorem 2.1, I'N R[x,] contains a monic polynomial of degree m such that
of =aTf Write f=Y",gx\, g €A and g, =1. Then og, =a™ g for each i,
so either g; =0 or g is invertible in A. In the second case, g must have the
form bx{ - .- xy=y where t;,...,t,_,€Z and bek, b#0. Thus

ay---apyapm=1
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and this gives i—m=t,=---=1t,_,=0. Thus I = R, a contradiction. The proof
is complete by induction.

THeEOREM 2.5. Let A =R[x,, X5, ..., X»,,] be the R-algebra generated by the

indeterminates x, . .., X,, subject to the conditions
=i =gtk
Let ay, ..., a, be real numbers such that 1, «y, ..., a, are linearly independent

in R over Z. Define the R-automorphism o on A by
OX; = X, COS 27a; — X, SIn 27y, OX,= X, Sin 27, + X, cOS 27,
OXppo1 = Xon_q1 COS 2@, — X5, SIN 27 x,, OX,, = X,,_; 8in 27a,, + X, Tx,,.
Then A is o-simple.

Proof. Note that (ox,)*+(ox,)>=0c(x2+x2)=1, etc. so o is indeed an
automorphism on A. Extend o to a C-automorphism on B=

Clxy, Xpy - -« 5 X215 X5,,] In the obvious way. It is sufficient to show that B is
o-simple.
Note that
(X1 +ix) (X = ix5) =+ = (X F X2, (X0 — iX5,) = 1
S0 with y; =x;+iX,, ..., ¥, = Xp,_1 + iX,, it is easy to see that

B =C[Y1’ y;la et ym Y;ll

Note that
oy =€y, ., 0y, = €2y,
Put a,=e*™, ..., a, =e*™*. The condition that 1, a,, ..., a, are Z-linearly
independent is equivalent to the condition that
ati---apm=1my,...,mel)>m=---=m,=0.

Theorem 2.4 now finishes the proof.
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