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WHAT GROUPS WERE: A STUDY OF THE DEVELOPMENT
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PETER M. NEUMANN

For my father for his ninetieth birthday: 15 October 1999

This paper is devoted to a historical study of axioms for group theory. It begins
with the emergence of groups in the work of Galois and Cauchy, treats two lines of
development discernible in the latter half of the nineteenth century, and concludes
with a note about some twentieth century ideas. One of those nineteenth century
lines involved Cayley, Dyck and Burnside; the other involved Kronecker, Weber
(very strongly), Holder and Probenius.

INTRODUCTION

As is well known, my father has long had an interest in axiomatics, especially
the axiomatics of group theory (see, for example, [21, 34, 35]). My purpose in this
essay is to trace the origins and development of currently familiar axiom systems for
groups. A far more general study of the origins of the concept of abstract group has
been undertaken by Wussing (see [42, Chapter 3, Section 4]) who, however, treats the
axiomatics rather differently. George Abram Miller has also written on the subject but
perhaps a little erratically. Statements like

It should perhaps be noted in this connection that an abstract goup is
a set of distinct elements which obey the associative law when they are com-
bined and is closed with respect to the unique solutions of linear equations
in the special form ax = b. This special form appears already in the Rhind
Mathematical Papyrus. [31, p.97 (1935).]

are not easy to make sense of. On the other hand, his observations:

During recent years accurate definitions of an abstract group have been
formulated. These are principally due to Probenius and Weber. Such defini-
tions are stated at the beginning of the second volume of Weber's Algebra.
It is to be hoped that practical uniformity in regard to the definition of an

Received 27th May, 1999

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/99 SA2.00+0.00.

285

https://doi.org/10.1017/S0004972700036406 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036406


286 Peter M. Neumann [2]

abstract group may be attained [ . . . ] the term abstract group is frequently
defined very inadequately, even in recent works, [ . . . ]. [31, p.339 (1899).]

and

Men like S. Lie (1842-1899) and F. Klein (1849-1925) continued to use
the term group without defining it except that they assumed that the product
of two elements of a given group is contained therein and sometimes they
assumed also the existence of the inverse of every element within the group.
[31, p.96 (1935).]

and

H. Weber (1842-1913) published a set of postulates for abstract groups
of finite order in the Mathematische Annalen, volume 20 (1882), page 302,
which were extensively adopted by later writers in various countries. [31,
p.453 (1935).]

can be substantially justified.

Teachers and students are often heard to refer to 'the four axioms of group theory'.
The conventional reference is to Closure, Associativity, existence of an Identity element,
and existence of Inverses. And the capitalised nouns in this last sentence are sometimes
used as labels for them. Thus, for example, a well-known (and very successful) presen-
tation of the theory defines a binary operation as 'a means of combining two elements'
and defines (G, o), where G is a set and o is a binary operation defined on G, to be a
group if the following four conditions hold.

CLOSURE For all gi, g2 € G, g\ o g2 € G.

IDENTITY There exists e € G such that for all 5 € G, goe = e o g — g.

INVERSES For each g eG there exists y " 1 € G such that

g°g~x -g~l og-e.

ASSOCIATIVITY For all gi,g2,g3 € G, gi o (g2 o g3) = (gr o g2) og3.

Although this definition is tried and tested and is successful pedagogically (as are many
others like it), I myself do not feel comfortable with it. If a means of combining two
elements of the set G, or a binary operation on the set G, is not a function G xG -> G
then what is it? And if it is, then what is the point of the axiom of Closure? In the
Inverses axiom, what is the element e? Of course it should be the same e as was
postulated in the Identity axiom. But in that statement e is, technically, a bound
variable and has no value outside the sentence. By analogy, if I use G to stand for a
group in one paper, I can still use it to stand for something quite different, such as the
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[3] What groups were 287

gravitational constant, in another. If we were to change e to / in the Identity axiom it
would still be perfectly acceptable—indeed, its meaning would be quite unchanged—and
yet the Inverse axiom would no longer make sense. Thus in fact Identity and Inverse
need to be combined in such a way that the scope of the existentional quantifier 3e
covers both. Well, this exemplifies the fact that the needs of pedagogy are not always
easy to accommodate to the precision of mathematics—or vice-versa. That, however,
is the subject of a different essay. For the purposes of this one we may take Closure
to be the definition of a binary operation or to be a conventional textbook version of
it, and we will take the scope of the quantifier 3e in the Identity axiom to include the
Inverses axiom.

Group theory as we have it nowadays took a long time to evolve. It emerged around
the middle of the nineteenth century from work of Galois published in 1846 (but written
between 1829 and 1832) and work of Cauchy published the previous year. Cauchy's line
of thinking can be traced still further back, to work of Ruffini published between 1799
and 1814. Ruffini's ideas have been analysed by various authors (for example [3, 4, 7]).
Since he seems not to have had much direct influence on his successors, except a little
tangentially through inspiring Cauchy to study substitutions in 1812 (this work was
published in 1815), the present paper begins with Galois and Cauchy.

GALOIS AND CAUCHY

Although there is plenty about groups in the writings of Galois, particularly in the
so-called Second Memoire [20, pp.129-147], the reader is given little direct guidance as
to what a group is supposed to be. The context gives the information indirectly but
the only explicit help that Galois gives his reader is in the Premier Memoire [20, p.47]:

Les substitutions sont le passage d'une permutation a l'autre.

Cependant comme on ne peut guere se former l'idee d'une substitution
sans celle d'une permutation, nous ferons dans le langage un emploi frequent
des permutations, et nous ne considererons les substitutions que comme le
passage d'une permutation a une autre.

Comme il s'agit toujours de questions ou la disposition primitive des let-
tres n'influe en rien, dans les groupes que nous considererons, on devra avoir
les memes substitutions quelle que soit la permutation d'ou Ton sera parti.
Done si dans un pareil groupe on a les substitutions 5 et T , on est sur d'avoir
la substitution ST.

This passage was added to the manuscript on the night of the 29th of May 1832, the
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night that Galois edited his papers and wrote his testamentary letter to Chevalier
before going out to duel in the morning. It was not there in 1831, and when Poisson
read the work for the Academy he had to work out for himself what Galois intended
when he used the word 'groupe'. Its last sentence contains the crucial fact that a
group of substitutions has to be closed under composition, a requirement which is,
of course, an adequate definition in this context (given the presupposition that the
collection of substitutions is non-empty and finite). Note that Galois distinguished
carefully between permutations and substitutions. As it happens, he used the word
'groupe' with two different connotations. First, it is a collection of permutations (in the
sense of arrangements). Secondly, it is, as is indicated in the quoted passage, the group
of substitutions by which one passes from one permutation of the collection to another.
For an account of this point the reader is referred to [16, Appendix 3].

Cauchy's definition and terminology are somewhat different. He came to the con-
cept from a different direction and it is almost certain that he came to it independently
of Galois. Unfortunately, we cannot be completely sure since he had some of Galois'
work in his hands in 1829 (see [39]; see also Proces-Verbaux de I'Acad. ScL, Vol 9
(1828-31), pp.253, 257). In 1845 he wrote [8, p.290 in the (Euvres]:

Considerons maintenant plusieurs substitutions

CD- © • ©• -
relatives aux n lettres x, y, z, ... . J'appellerai substitutions derivees toutes
celles que l'on pourra deduire des substitutions donnees, multipliers une ou
plusieurs fois les unes par les autres ou par elles-memes dans un ordre quel-
conque, et les substitutions donnees, jointes aux substitutions derivees, for-
meront ce que j'appellerai un systeme de substitutions conjuguees.

This same passage appears in [9, p. 206 in the (Euvres] except that the first two sen-
tences are merged to form a single sentence beginning 'Etant donnees une ou plusieurs
substitutions qui renferme les n lettres x, y, z, ..., ou du moins plusieurs d'entre elles,
je nommerai substitutions derivees [...] ' .

Although this is less efficient than simply postulating a (non-empty) collection of
substitutions closed under composition, it comes to the same thing. And Cauchy went
on to point out a few paragraphs later that a 'systeme de substitutions conjuguees' has
the property that if its members are composed on either side by a given member then
the system is reproduced (perhaps in a different order). And when, in 1866, Cauchy's
ideas on substitutions made it into the third edition of Serret's textbook [38, Vol.2,
p.251], the definition became, modulo verbosity, the same as that of Galois.
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[5] What groups were 289

The ideas of Galois were re-worked and transmitted by several mathematicians
until they received remarkably thorough treatment at the hand of Jordan, whose Traite
is modestly described by its author as being hardly more than a commentary on Ga-
lois [25, Preface, p.viii]. Jordan had learned the theory of 'systemes de substitutions
conjuguees' from Bertrand, and used Cauchy's language in his early work (1861), but
by 1864 (see the first few papers in [26, Vol.1]) he was using Galois' word 'groupe',
and in spite of the influence of Serret's book, Cauchy's phrase soon died out. In this
line of work, however, groups remained groups of substitutions for many more years.
Jordan, for example, never seems to have become comfortable with abstract groups at
all. And when Klein spoke and wrote about groups in his Erlanger Programm, which
was published privately in 1872 and re-published in Mathematische Annalen in 1893,
they were concretely described as groups of transformations of space [27].

CAYLEY, DYCK AND BURNSIDE

An early and famous attempt at axiomatisation of group theory was made by
Cayley in 1854. His paper [10] opens

Let 0 be a symbol of operation, which may, if we please, have for its
operand, not a single quantity x, but a system (x, y,...), so that

where x ' , y', . . . are any functions whatever of x, y, . . . , it is not
even necessary that x', y', . . . should be the same in number with x,
y,.... [ . . . ] the symbol 1 will naturally denote an operation which
[ . . . ] leaves the operand unaltered [ . . . ]. A symbol 6<j> denotes the com-
pound operation, the performance of which is equivalent to the performance,
first of the operation <j>, and then of the operation 6; 6(f> is of course in gen-
eral different from <j>6. But the symbols 6, <f>, . . . are in general such that
9.(j>X = &<I>-X> &c., so that 0<f>x, O&XV, &c. have a definite signification inde-
pendent of the particular mode of compounding the symbols; [ . . . ].

A set of symbols,

1, a, 0, ...

all of them different, and such that the product of any two of them (no matter
in what order), or the product of any one of them into itself, belongs to the
set, is said to be a group.

There is a footnote marker attached to the italicised word group: 'The idea of a group
as applied to permutations or substitutions is due to Galois, and the introduction of
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290 Peter M. Neumann [6]

it may be considered as marking an epoch in the progress of the theory of algebraical
equations'.

What should we make of Cayley's definition? On the one hand it can easily be
criticised. If the 'symbols of operation' really are operations, as they appear to be since
Cayley speaks of 'the compound operation' and 'performance' of an operation, then
this is hardly more general than what Galois and Cauchy had in mind. It is true that
the system of operands could be infinite, but in that case inverses cannot be inferred
and have to be postulated; besides, from the context it seems that Cayley had a finite
set in mind. Even if the system of operands is finite it is not clear how 'the compound
operation' is to be defined nor how inverses can exist if there is freedom to permit x' ,
y', . . . to be different in number from the original operands. Again, if the 'symbols of
operation' really are operations then associativity is automatic and does not need to
be postulated. And indeed, when he reproduced his definition with surprisingly little
change twice in 1878, he wrote in [11] (which is datelined Cambridge, 26th November,
1877) though not in [12] (which was 'read' by the London Mathematical Society May
9, 1878):

The associativeness of such symbols arises from the circumstance that the
definitions of a, /?, 7, . . . determine the meanings of a/3, cry, &c.

On the other hand, Cayley's text focusses attention on the importance of the associative
law. Moreover, the assertion [11, 12] 'A group is defined by means of the laws of combi-
nation of its symbols' seems to have caught the imagination of several mathematicians
in the next few decades.

One of the mathematicians whose eye was caught by Cayley's phrase was Dyck
who quoted it as a sort of motto at the head of his paper [14]. This work begins as
follows (the italics are Dyck's):

Die folgenden Untersuchungen beschaftigen sich mit dem Probleme, erne
Gruppe von discreten Operationen, welche auf ein gewisses Object angewandt

werden, zu definiren, wenn man dabei von einer speciellen Darstellungsform

der einzelnen Operationen absieht, diese vielmehr nur nach den zur Gruppen-

bildung wesentlichen Eigenschaften als gegeben voraussetzt.

Wir gehen zur Bildung der Gruppe von gewissen erzeugenden Operationen

Ai, Ai, A3, ... aus, iiber deren speciellen Charakter keinerlei Annahmen
gemacht werden.

Dann kann man jede Gruppe, welche durch Iteration und Combination

dieser Operationen sich bilden Idsst, individualisiren, durch die Kenntniss

gewisser Relationen, die bei der Zusammensetzung dieser urspriinglichen Op-

erationen auftreten.
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This definition is amplified and completed in the main part of the paper immediately
following the four-page introduction. Existence of identity and existence of inverses
are explicitly stated. Associativity is not mentioned but is implicit in the state-
ment that elements of the group can be expressed as formal or symbolic products
A^A^2 • • • A\XA^ • • • . A very similar definition is rehearsed in the sequel [15].

There are several interesting points about Dyck's description of what a group is.
One is that for Dyck a group is described by generators and relations. Another is that
(unlike several later writers) he is quite clear that a group could be infinite:

Dabei kann die so bestimmte Gruppe eine endliche, oder auch eine unendlich
hohe Zahl von Operationen umfassen. [15, p.74.]

Presentation by generators and relations is particularly well-adapted to accommodate
this possibility, although from a modern point of view it has the disadvantage that it
does not naturally accommodate uncountable groups (unless notation like A\, A2, A3,
. . . is interpreted rather freely). A third notable point is that a footnote attached to the
third paragraph of the opening passage of [14] refers to the quotation from Cayley and
suggests that this is what he takes Cayley to mean. What an interesting interpretation
of Cayley's words!

In the preface to his monograph of 1897, Burnside also quoted those words, refer-
ring to them as 'Cayley's dictum'. Moreover, some of the language he used is similar
to Cayley's. Thus both editions of his book [6] begin Chapter II with the following
definition:

Definition. Let

A, B, C, . . .

represent a set of operations, which can be performed on the same object or
set of objects. Suppose this set of operations has the following characteristics.

(a) The operations of the set are all distinct, so that no two of them
produce the same change in every possible application.

(f3) The result of performing successively any number of operations of
the set, say A, B, ... , K, is another definite operation of the set, which de-
pends only on the component operations and the sequence in which they are
carried out, and not on the way in which they may be regarded as associated.
Thus A followed by B and B followed by C are operations of the set, say D

and E; and D followed by C is the same operation as A followed by E.

(7) A being any operation of the set, there is always another operation
A-i belonging to the set, such that A followed by A_\ produces no change
in any object. The operation A_\ is called the inverse of A.
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The set of operations is then said to form a Group.

As I have commented elsewhere [36], most of Burnside's writing is very taut: this
definition, by contrast, seems uncharacteristically flabby. Condition (/?) postulates
closure and the associative law, but if the associative law is not automatic, then what
can he mean by 'operations' and by 'performing successively'? In the presence of closure
(7) implies that 'no change' is an operation of the set, and of course 'no change' certainly
is a two-sided identity for operations if that word has its natural meaning. If, in an
attempt to discover whether Burnside's definition really is more general than it looks
at first sight, we seek to replace the word 'operation' by some noun that carries fewer
overtones, such as 'element', then (/J) would have to be interpreted as introducing a
binary operation ('performing successively') which is associative and (7) would have
to be interpreted as introducing a two-sided identity ('no change') and right inverses.
But what about (a) ? Its second half would have to be deleted, and the status of its
first half would remain just as unclear as before—its effect is perhaps no more than to
distinguish sets from multisets.

These points are similar to, if not quite the same as, some of the criticisms that
can be made of Cayley's definitions of 1854 and 1878. We can infer from Burnside's use
of language and his reference to 'Cayley's dictum' that he was strongly influenced by
Cayley. On the other hand, his explicit statement about inverses represents significant
progress. Possibly in this he was influenced by Dyck. If so then we might ask why
he was not also influenced by the German writers to be discussed in the next section.
By 1897 when he wrote his book he had certainly read Probenius's paper [17] (see
the acknowledgement in [5, p.192]); he was also in correspondence with Holder and
had read Holder's papers. Certainly, therefore, he had been exposed to the clean-cut
axiomatisation that was developing from Weber's ideas (see the next section). Moreover,
in his preface [6, p.vi] he acknowledged Weber's Lehrbuch in the following words:

Last but not least among the works which give a detailed account of the
subject must be mentioned Herr Weber's "Lehrbuch der Algebra," of which the
first volume appeared in 1895 and the second in 1896. In the last section of
the first volume some of the more important properties of substitution groups
are given. In the first section of the second volume, however, the subject is
approached from a more general point of view, and a theory of finite groups
is developed which is quite independent of any special mode of representing
them.

I find it surprising that he did not recognise the merits of Weber's (see below) over his
own choice of definition. Perhaps this is a sign that he was rather more comfortable
with transformation groups of one kind or another than with abstract groups. Perhaps
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also that he cared more about the deep theorems of his subject than about the precise
foundations. And the fact is that, well-expressed or (as I think) not, Burnside's defini-
tion does have the essential ingredients—an associative binary operation and inverses
explicitly stipulated.

KRONECKER, W E B E R , FROBENIUS, HOLDER

The value of abstract group theory had been emerging during the last two decades
of the nineteenth century. Partly it entered mathematics to accommodate the fact that
structures with analogous properties to finite groups of substitutions had been found
to be important in geometry, number theory and analysis. Partly it arose from the
need for quotient groups and the fact that they do not exist very comfortably in the
category of permutation groups. Although Burnside, like Jordan before him, does not
seem to have felt any need to replace his internal understanding of groups as being
composed of 'operations' (not always, but often, permutations) with anything more
genuinely abstract, in Germany much clearer formulations had already been developed
by the time he wrote his monograph.

The beginnings of modern-style axiomatics of group theory can be traced as far
back as a paper by Kronecker published in 1870. Kronecker's context is commutative
groups because he is setting up what we now call the class-group of an algebraic number
field [28]:

Es seien

e1, e", e"\ ...
Elemente in endlicher Anzahl und so beschaffen, dass sich aus je zweien dersel-
ben mittels eines bestimmten Verfahrens ein drittes ableiten lasst. Demnach
soil, wenn das Resultat dieses Verfahrens durch f angedeutet wird, fur zwei
beliebige Elemente 9' und 9", welche auch mit einander identisch sein konnen,
ein 9'" existiren, welches gleich: f(0', 6") ist. Ueberdies soil:

und aber, sobald 9" und 9'" von einander verschieden sind, auch:

f(0',0") nicht identisch mit f(0',0"')

sein.

Note that Kronecker did not use any such word as 'Gruppe'. His elements are completely
general, his binary operation is explicit and general, his statement of the associative
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law is clear, so is his cancellation axiom. What he defined was what we would now call
a finite (commutative) cancellative semigroup.

A similar definition, explicitly about groups and without the commutativity, was
made twelve years later by Weber. Although he was familiar with Kronecker's work,
there is no reference to [28] in [40] and, since the language and notation he used are
very different from Kronecker's, it is probably safe to assume that there was little or no
direct influence. Section 1 of his paper [40] is entitled 'Hiilfssatze iiber Gruppen' and
begins:

Definition. Ein System G von h Elementen irgend welcher Art, 0 i , 0 2 ,
. . . , O/i heisst eine Gruppe vom Grade h, wenn es den folgenden Bedingungen
geniigt:

I. Durch irgend eine Vorschrift, welche als Composition oder Multipli-
cation bezeichnet wird, leitet man aus zwei Elementen des Systems
ein neues Element desselben Systems her. In Zeichen

0 r 0 s = Qf

II. Es ist stets

( 0 r 0 s ) 0 t = 0 r (O s 0 t ) - 0 r 0 g 0 t .

III. Aus 0 0 r = QQa und aus 0 r 0 = 0 S 0 folgt 0 r = 0S .

Here we see connections with the group theory of Galois (and Cauchy), Jordan, Cayley
through the use of the term 'Gruppe' and the possibility of non-commutativity. Finite-
ness is still an important ingredient, however, and is used in the immediately following
paragraphs to infer the existence and uniqueness of identity and inverses. Thus for
Weber a group is what we would now call a finite cancellative semigroup. His definition
is economical and very clear, except in one small respect: the status of the assertion
= QrQsQt in Axiom II is doubtful. Unless we take it as definition of the three-factor
product, it seems to have no meaning. But this is a small point. By the standards
of the time it would not have distracted readers from the point Weber was seeking to
make. And the fact is that Weber's definition was often referred to by later writers.

The famous paper of Frobenius and Stickelberger [18], which was published three
years before Weber's, is about commutative groups and uses the term 'Gruppe' ex-
tensively. Connection with groups in the sense of groups of substitutions is made by
a passing reference in Section 1 to Cauchy [9]. Nevertheless, although the aim is to
explain and prove the structure theorem for finite Abelian groups in general, the mean-
ing of the word is explained rather discursively, essentially in terms of examples from
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number theory. On the other hand, when Frobenius was writing in 1884 (published as
[17]) he referred to Kronecker [28] and to Weber [40] and defined what he meant by a
(finite) group very precisely, rehearsing essentially Weber's definition.

Holder, in his paper [22] of 1889, treats the matter similarly. Although the elements
of his groups are called 'Operationen' and although the paper refers to Dyck repeatedly
and never to Weber, he was, I believe, strongly influenced by the latter. Indeed, if
the word 'Operation' is replaced by 'Element' then his definition still makes excellent
sense and becomes essentially the same as Weber's, namely that of a finite cancellative
semigroup.

The next step in the development was again taken by Weber. The opening section
of the second volume of his Lehrbuch [41] has the heading 'Definition der Gruppen' and
begins as follows:

DEFINITION DER GRUPPEN

Wir haben im ersten Bande bei den Permutationen den BegrifT einer
Gruppe kennen gelernt und wichtige algebraische Anwendungen von ihm
gemacht. Es muss nun unsere nachste Aufgabe sein, diesen in der ganzen
neueren Mathematik so iiberaus wichtigen Begriff allgemeiner zu fassen und
die dabei herrschenden Gesetze kennen zu lernen. Wir stellen folgende Defini-
tion an die Spitze:

Ein System P von Dingen (Elementen) irgend welcher Art wird zur
Gruppe, wenn folgende Voraussetzungen erfiillt sind:

1. Es ist eine Vorschrift gegeben, nach der aus einem ersten und einem
zweiten Elemente des Systems ein ganz bestimmtes drittes Element des-
selben Systems abgeleitet wird.

Man schreibt symbolisch, wenn a das erste, b das zweite, c das dritte
Element ist:

ab = c, c = ab,

[•••]
Bei dieser Composition wird im Allgemeinen nicht das commutative

Gesetz vorausgesetzt, d. h. es kann ab von 6a verschieden sein, dagegen wird
2. das associative Gesetz vorausgesetzt,

d. h. wenn a, b, c irgend drei Elemente aus P sind, so ist

(ab)c = a(bc),
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3. Es wird vorausgesetzt, dass, wenn ab = ab' oder ab = a'b ist, nothwendig
im ersten Falle b — b', im zweiten a — a' sein muss.

Wenn P eine endliche Anzahl von Elementen umfasst, so heisst die
Gruppe eine endliche und die Anzahl ihrer Elemente ihr Grad.

Fur endliche Gruppen ergiebt sich aus 1., 2., 3. die Folgerung:

4. Wenn von den drei Elementen a, b, c aus P zwei beliebig gegeben sind, so
kann man das dritte immer und nur auf eine Weise so bestimmen, dass

ab = c

ist.

[•••]
Fur unendliche Gruppen kann nicht mehr so geschlossen werden [in a

footnote Weber gives the example of the positive integers under multiplication].
Fur unendliche Gruppen wird also noch die Eigenschaft 4- als Forderung in
die Begriffsbestimmung mit aufgenommen.

Where Weber's 1882 definition is written in the effective and ruthless style of a research
paper, the 1896 version, although it seems equally clear, is more leisurely and appro-
priate to its textbook context. Moreover, it has been developed (if perhaps only as
an afterthought) to deal explicitly with infinite groups. Axiom 4 looks different from
existence of inverses but is superficially equivalent to it and, as a result, what Weber
offers is very close to a modern description of what a group is.

Weber's book appears to have been quickly appreciated—for example, the axioma-
tisation of finite groups that James Pierpont gave in 1900 involves closure (essentially in
the form that asks for a binary operation on the set), associativity, existence of identity
and existence of inverses [37]. Nevertheless, as has already been observed, it seems to
have influenced Burnside rather less than one might have expected. If so then he was
not alone. The mathematical encyclopaedia [30] of the time contains extensive refer-
ences to groups. It has a chapter 'Endliche diskrete Gruppen' by Burkhardt, a chapter
"Endliche Gruppen linearer Substitutionen' by Wiman, and several sections of other
chapters, such as the chapter by Holder on Galois Theory, devoted to groups. Almost
all these groups, however, are concrete groups of substitutions of one kind or another.
There is just one short section in the chapter by Burkhardt which has something more
abstract. It is headed 'Allgemeiner Gruppenbegriff' and defines a group to be an as-
sociative system with cancellation. It is true that, immediately after the definition the
focus is on finite such systems. Nevertheless, the point of defining a group abstractly
and making existence of inverses (as in Dyck's exposition) or solubility of equations (as
in Weber's) a requirement had not yet been fully grasped.
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FOCUS ON AXIOMATICS.

At about this time, however, a new phenomenon emerged, namely, interest in
axiomatics as a topic in its own right. Presumably this was inspired by the famous
work of Dedekind, C S . Peirce, Hilbert, Frege, Russell and many others towards the
logicisation of mathematics. The papers [23, 24, 32] of Huntington and Moore form
a written discussion in 1902 (part of which may, perhaps, have been conducted orally
at meetings of the American Mathematical Society) about axiom systems for group
theory. They mention Weber's, Burnside's and Pierpont's definitions of what a group
is and then exhibit axiom systems of their own. The focus is more in independence of
the proposed axioms, however, than in pinning down a precise description of what a
group should be.

It was also at about this time, or a year or two later, that the conscious recognition
of 'abstractness' of a group became established. The word abstract was used with two
meanings. In the writings of L. E. Dickson and others an abstract group was a group
described by generators and relations in the manner of Dyck. But in the preface of De
Seguier's book [13] published in 1904 the term is explained as follows:

Des divers groupes particuliers rencontres en Algebre, en Analyse et en
Geometrie devait necessairement se degager l'idee du groupe abstrait, c'est-a-
dire du groupe considered en lui-meme, independamment de la nature de ses
elements.

Unfortunately, his definition of a group, which seeks to build on those of Huntington
and Moore and pays attention to independence of axioms, is seriously defective in a
number of ways. We will, however, not pursue this point here.

Economical axiom systems defining a group as a set G with a binary operation
G x G —> G satisfying

Va, b, c : a(bc) = (ab)c and Va, b 3x : ax = b and Va, b 3x : xa = b,

or

Va, 6, c : a(6c) = (ab)c and 3e Va 36 : ae = a & ab — e,

or the obvious dual of this in which existence of right identity and right inverses is
replaced with existence of left identity and left inverses, are nowadays well-known if not
as widely used as the standard textbook definition discussed in the second paragraph
of this paper. A careful analysis of such systems is to be found in a paper by Baer and
Levi [1] of 1932. About that time it was realised that there is advantage to be gained
in the avoidance of existential quantifiers in axioms. Thus if a group is specified as a
set G equipped with a binary operation G x G -4 G, (a,b) >-¥ ab, & nullary operation
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{0} —> G, 0 ^ e , and a unary.operation G -» G, O K a"1, then the axioms may be
expressed in equational form as

Va, 6. c : a(bc) = (ab)c and Va : ae = ea — a and Va : aa~1 = a~la = e,

or

Va, 6. c : a(6c) = (a6)c and Va : ae = a and Va : aa'1 = e,

or

Va, b, c : a(bc) = (ab)c and Va : ea= a and Va : a - 1 a = e.

Such systems define the class of groups by means of identities and exhibit the class of all
groups as a variety (see Birkhoff [2], Neumann [33]). And of course this is the context
of the papers [21, 34] and [35].

A POSTSCRIPT

The introductory section of this paper contains comments on a textbook exposition
of the axioms of group theory. One of those comments is addressed to the notion of
Closure. In a letter to me dated 21st February 1999 Walter Ledermann, author of the
highly successful textbook [29] (not the course cited in my introduction), discussed ter-
minology (in relation to Burnside's usage of 'self-conjugate' where we now use 'normal')
and then wrote:

It may be difficult to find the right word. When my Introduction to
the theory of finite groups appeared in 1949 I gave a complimentary copy
to H. W. Turnbull, who had been my revered mentor and fatherly friend at
St. Andrews. Turnbull was an eminent member of the Cambridge school of
classical algebraists and had taken little interest in group theory or abstract
algebra. A few days after I had given him the book he said to me: "I have
looked at your little book on group theory. On page 2 you state that a group
is a set that is closed with respect to multiplication." Always eager to correct
my foreign lapses in English he added benevolently: "Surely, Walter, what you
wanted to say is the set is open to multiplication."

ACKNOWLEDGEMENTS: It is a pleasure to acknowledge my gratitude to Emeritus
Professor Walter Ledermann for permission to include the above passage from his letter
and to thank my wife Sylvia who read a draft of this paper with a helpfully critical eye.
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