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ASYMPTOTICS OF CONDITIONAL MOMENTS OF THE
SUMMAND IN POISSON COMPOUNDS

BY TOMASZ ROLSKI AND AGATA TOMANEK

Abstract

Suppose that N is a Z+-valued random variable and that X, X1, X2, . . . is a sequence of
independent and identically distributed Z+ random variables independent of N . In this
paper we are interested in properties of the conditional variable Nk

D=(N | ∑N
j=1 Xj =

k). In particular, we want to know the asymptotic behavior of the conditional mean E Nk

or the conditional variance var Nk as k → ∞. We consider the cases when X is Poisson
and when X is mixed Poisson. The problem is motivated by modeling loss reserves in
nonlife insurance.

Keywords: Compound Poisson; conditional expectation; loss reserving

2010 Mathematics Subject Classification: Primary 62E20
Secondary 90B30

1. Introduction

Recently, the following mathematical problem appeared in modeling of loss reserves; see,
e.g. [4], [6], and also the older papers [7] and [8]. Suppose that N is a Z+-valued random
variable and that X, X1, X2, . . . is a sequence of independent and identically distributed (i.i.d.)
Z+ random variables independent of N . In the abovementioned papers, for a prediction of
future payments under the condition of known old payments, we need an estimation of the
number of old payments. Hence, we are interested in properties of the conditional variable

Nk
D=

(
N

∣∣∣∣
N∑

j=1

Xj = k

)
.

In particular, we want to know the conditional mean E Nk or the conditional variance var Nk

and their asymptotics as k → ∞.
It turns out that the simplest case when N is Poisson with mean a and X is Poisson with mean

b leads to interesting mathematical problems, with roots in nineteenth-century mathematics.
We refer to this case as the (Poi(a), Poi(b)) case. Compute

E Nk =
∞∑

m=0

m
am

m! e−a (mb)k

k! e−bm

/ ∞∑
m=0

am

m! e−a (mb)k

k! e−bm = Bc(k + 1)

Bc(k)
,

where

Bc(k) =
∞∑

m=1

mk cm

m! e−c
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Figure 1: The ratio J (k)/(k/ log k).

is the kth moment of the Poisson distribution and c = ae−b. More generally,

E(Nk)
l = Bc(k + l)

Bc(k)
, var Nk = Bc(k + 1)

Bc(k)

(
Bc(k + 2)

Bc(k + 1)
− Bc(k + 1)

Bc(k)

)
.

Therefore, of particular interest is the ratio J c(k) = Bc(k + 1)/Bc(k). In practice, we want
to obtain the properties of Nk for large k and, therefore, asymptotic formulae can be helpful.
Jessen et al. [4] showed that J c(k) ∼ k/log k as k → ∞. For c = 1, the asymptotics of
J 1(k) = J (k) were given earlier in [3], where a redundant e appeared in the denominator.
Unfortunately, these asymptotics are extremely slow, as illustrated in Figure 1.

In this paper we propose two other asymptotics for E Nk in the (Poi(a), Poi(b) case. We
also discuss the asymptotics when X is mixed Poisson.

It turns out that the study of the asymptotics of B(k) = B1(k) has a long history. It was
discovered by Dobinski that B(k) is equal to the kth Bell number. De Bruijn [2, Chapter 2.4]
gave the asymptotic formula

log B(n)

n
= log n − log log n − 1 + o

(
log log n

log n

)
.

However, for our purposes, the prototype is a result from Lovász [5, Problem 9 on page 17,
solved on page 166] (who quoted Moser and Wyman),

B(k) ∼ k−1/2[�(k)]k+1/2e�(k)−k−1,

where �(x) is the function defined by �(x) log �(x) = x. The function � is related to the
Lambert W -function by W(x) = x/�(x). From [2, Equation (2.4.3)], we know that

W(x) = log x − log log x + O

(
log log x

log x

)
,

and, hence,

�(x) ∼ x

log x

(
1 + log log x

log x
+ O

((
log log x

log x

)2))
.
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We also refer the reader to [9] for interesting connections between Bell numbers and Poisson
distributions.

Recently, Jessen et al. [4] showed that

Bc(k) = (1 + o(1))
∑

m∈[k(1−ε)/ log k,k(1+ε)/ log k]
mke−c cm

m! ,

from which they concluded that J c(k) = Bc(k + 1)/Bc(k) ∼ k/ log k. We will utilize their
method of proof for other cases.

2. The (Poi(a), Poi(b)) case

The following result can be proved similarly as in [5].

Lemma 1. For c > 0, an asymptotic evaluation for Bc(n) is given by

Bc(n) ∼ n−1/2�c(n)n+1/2e�c(n)−n−c,

where �c(n) log(�c(n)/c) = n.

Proof. The proof follows almost exactly as in [5]; however, instead of the functions gn, we
have

gc
n(x) =

⎧⎪⎨
⎪⎩

1√
2π

xn−x−1/2ex−ccx for x ≥ 0,

0 for x ≤ 0.

We can show that gc
n(x) has a unique maximum at the point �c(n), where

�c(n) log

(
�c(n)

c

)
= n.

For later reference, note that �(n) ∼ �c(n) ∼ n/log n. Now, using Lemma 1, we will prove
the following proposition.

Proposition 1. For c > 0 and k → ∞, we have

E Nk ∼ �c(k + 1), var Nk ∼ �c(k + 1)2

�c(k + 1) + k
.

Hence, var Nk/(E Nk)
2 → 0.

Proof. Applying Lemma 1, we have

J c(k) ∼ (k + 1)−1/2�c(k + 1)k+3/2e�c(k+1)−k−1−c

k−1/2�c(k)k+1/2e�c(k)−k−c

=
(

k

k + 1

)−1/2(
�c(k + 1)

�c(k)

)k+1/2

�c(k + 1)e−1e�c(k+1)−�c(k).

We now focus on the second factor. Note that

(�c(k))′ = 1

1 + log(�c(k)/c)
.
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From the mean value theorem, there exists a point θk ∈ (k, k + 1) such that

�c(k + 1) − �c(k) = (�c(θk))
′ = 1

1 + log(�c(θk)/c)
→ 0 as k → ∞.

Therefore,
(

�c(k + 1)

�c(k)

)k+1/2

=
(

1 + 1

k

�c(θk)

�c(k)

k

�c(θk) + θk

)k+1/2

.

In order to show that (
�c(k + 1)

�c(k)

)k+1/2

→ e as k → ∞,

we have to check that
�c(θk)

�c(k)

k

�c(θk) + θk

→ 1.

Using the mean value argument once again, it is easy to show that �c(θk)/�
c(k) → 1. To deal

with the second part, we write

k

�c(θk) + θk

= k

θk/log(�c(θk)/c) + θk

= k

θk

1

1 + 1/log(�c(θk)/c)
→ 1.

Hence, J c(k) = �c(k + 1) + o(1), which is our claim.
We now turn to the variance. It was already mentioned that

var Nk = J c(k)(J c(k + 1) − J c(k)).

From this, it follows that, for θk+1 ∈ (k + 1, k + 2),

var Nk ∼ �c(k + 1)(�c(k + 2) − �c(k + 1))

= �c(k + 1)
1

1 + log(�c(θk+1)/c)

∼ �c(k + 1)2

�c(k + 1) + k
,

which completes the proof.

In Figure 2 we present the results of a numerical experiment which confirms the good quality
of the approximation given in Proposition 1.
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Figure 2: The ratios E Nk/�
c(k +1) (left) and var Nk/(�

c(k + 1)2/(�c(k + 1) + k)) (right) for c = 5.
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3. General scheme

In this section we follow [4]. Consider

Fk =
∑
m≥1

fk(m), Gk =
∑
m≥1

mfk(m),

and the ratio ιk = Gk/Fk . Our aim is to work out the asymptotics for ιk as k → ∞. The
idea is to find λ(k), where the sequence fk(m) achieves its maximum. However, for practical
situations, it is sometimes better to use the following approximation. Define the ratio

qk(m) = fk(m + 1)

fk(m)
.

Suppose that qk(l) can be considered as a function qy(λ) with (y, λ) ∈ [0, ∞)2, and let λ(y)

be the unique solution of the so-called λ-equation

qy(λ) = 1.

For ε > 0, let l∗ = l∗(k) = 
(1 − ε)λ(k)� and r∗ = r∗(k) = �(1 + ε)λ(k)
.
We now list some assumptions needed for the sequence (fk(m)).

(A1) For large enough y, the λ-equation has a unique solution.

(A2) As k → ∞,
fk(l

∗)
fk(λ)

→ 0,
fk(r

∗)
fk(λ)

→ 0.

(A3) We have

ρk = sup
m≥r∗

qk(m), ρ′
k = sup

m≤l∗
1

qk(m)
,

and
lim sup

k

ρk < 1, lim sup
k

ρ′
k < 1.

Proposition 2. If assumptions (A1)–(A3) hold then ιk ∼ λ(k) for k → ∞.

Proof. Decompose Fk as

Fk =
∑
m≤l∗

fk(m) +
∑

m∈(l∗,r∗)
fk(m) +

∑
r∗≤m

fk(m) =: I1(k) + I2(k) + I3(k).

Now
I3 = fk(r

∗) + fk(r
∗)qk(r

∗) + fk(r
∗)qk(r

∗)qk(r
∗ + 1) + · · ·

≤ fk(r
∗)(1 + ρk(r

∗) + ρk(r
∗)2 + · · · )

= fk(r
∗) 1

1 − ρk(r∗)
.

Since I2 ≥ fk(λ), by assumptions (A2) and (A3) we have I3/I2 → 0. Similarly, we show that
I1/I2 → 0, and, hence, Fk = I2(1 + o(1)). In a similar way as before we can demonstrate that
Gk = I ′

2(1 + o(1)), where
∑

m∈(l∗,r∗) mfk(m). Now

l∗ ≤
∑

l∗<m<r∗ mfk(m)∑
l∗<m<r∗ fk(m)

≤ r∗.

Since ε is arbitrary, the proof is complete.
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4. Special cases

4.1. Another approach for the (Poi(a), Poi(b)) case

In this case

fk(l) = lk
cl

l! , qk(l) = c

l + 1

(
l + 1

l

)k

,

and, hence, the λ-equation is
c

λ + 1

(
λ + 1

λ

)y

= 1. (1)

Proposition 3. It holds that λ(y) ∼ �c(y) as y → ∞.

Proof. We first note that λ(y) → ∞ for y → ∞. Hence, from

log

(
c

λ + 1

)
+ y log

(
1 + 1

λ

)
= 0,

we have

log

(
c

λ + 1

)
+ y

λ
+ o

(
1

λ

)
.

Now

y + λo

(
1

λ

)
= λ log

λ

c
+ λ log

(
1 + 1

λ

)
.

Thus, y + O(y) = λ log(λ/c), which implies that λ(y) = �c(y + O(y)). Simple calculations
show that �c(y + O(y)) ∼ �c(y).

From Proposition 3 we see that λ(k) ∼ k/ log k. Using this fact and Stirling’s formula, we
can verify that assumptions (A2) and (A3) do hold in Proposition 2 (see Appendix A for details
of these computations). We thus conclude with the following proposition.

Proposition 4. It holds that E Nk ∼ λ(k) as k → ∞.

4.2. (Poi(a), mixPoi(F ))

If ξ is a random variable with distribution F then mixPoi(F ) is a mixed Poisson distribution
with mixing distribution F . Thus, if ξ ∼ F then X ∼ mixPoi(F ) if

P(X = k) = E

[
ξk

k! e−ξ

]
.

Let
Ck(m) = E(ξ1 + · · · + ξm)ke−(ξ1+···+ξm).

In this case

fk(m) = am

m! e−aCk(m).

In the next lemma we use the standard change-of-measure argument. For this, suppose that the
basic probability measure is P = P ×P ×· · · on 	 = R×R×· · · and let P(s) = P (s)×P (s)×· · ·
be the probability measure defined by P (s) = e−sξ dP/φ(s), where φ(s) = E e−ξs is the
Laplace transform and P(0) = P. Furthermore, for short, we will write Ẽ = E(1).
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Lemma 2. We have

E(ξ1 + · · · + ξm)ke−(ξ1+···+ξm) = φm(1)Ẽ(ξ1 + · · · + ξm)k.

Proof. We have

dP × P × · · · × P︸ ︷︷ ︸
m times

= φm(s)es(ξ1+···+ξm) d P (s) × P (s) × · · · × P (s)︸ ︷︷ ︸
m times

.

4.3. (Poi(a), mixPoi(F )): the case of exponential ξ

Recall that if ξ ∼ Exp(b) then

E(ξ1 + · · · + ξm)k = (m + k − 1)!
bk(m − 1)! .

Since

φ(s)(t) = φ(t + s)

φ(s)
,

we have, under P̃, ξ ∼ Exp(b + 1). Hence,

Ck(m) = Ẽ(ξ1 + · · · + ξm)k = (m + k − 1)!
(b + 1)k(m − 1)!

b

b + 1
.

In this case we have

fk(m) = 1

m!
(

ab

b + 1

)m

e−a

(
1

b + 1

)k
(k + m − 1)!

(m − 1)!
and

qk(m) = ab

b + 1

k + m

m(m + 1)
= C

k + m

m(m + 1)
,

where C = ab/(b + 1). It is easy to check that the solution to the λ-equation is

λ(k) = C − 1 + √
(1 − C)2 + 4Ck

2
.

Hence, we can use the approximation

λapprox(k) ∼ √
Ck as k → ∞. (2)

To check that assumptions (A2) and (A3) hold in Proposition 2, we have to use Stirling’s formula
and asymptotic relation (2) (see Appendix A for some details of these computations). We thus
conclude with the following proposition.

Proposition 5. It holds that E Nk ∼ λapprox as k → ∞.

In Figure 3 we present the results of a numerical experiment which confirms the good quality
of the approximation given in Proposition 5.
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Figure 3: The ratio ENk/
√

Ck for C = 5.

4.4. (Poi(a), mixPoi(F )): the case of bounded ξ

Let r be the right end of the support of Z. It is known (see, e.g. [1, Problem 5.11]) that
(ẼZk)1/k = r − α(k), where limk→∞ α(k) = 0. We need a finer result for αm(k) for Z = S̄m.

Suppose that f (x), 0 ≤ x ≤ r , is the density function of ξ . We assume that f (r) = f (r−).
Then

S̄m = ξ1 + · · · + ξm

m

has density mf ∗m(mx). Note that f ∗m(mr) = 0 for m > 1. Let f̃ be the density function of
ξ under P̃.

Proposition 6. We have

ẼS̄k
m ∼ rk+2m2

(k + 1)(k + 2)
f̃ m(r).

Hence,
l

l + 1

ẼS̄k
l+1

ẼS̄k
l

= f̃ (r)(1 + o(1)). (3)

The proof of this proposition can be deduced from the following lemmas.

Lemma 3. Suppose that ξ has density function f . Then

d

dx
f ∗m(x)

∣∣∣∣
x=mr

= f m(r),

and, hence, for the density hm(x) of S̄m, we have

hm(r) = m
d

dx
f ∗m(mx)

∣∣∣∣
x=r

= m2f m(r).

Proof. We use induction with respect m. For two density functions f1 and f2 on [0, ri]
(i = 1, 2), which are right continuous at r1 and r2, respectively,

f1 ∗ f2(x) =
∫ r2

0
f1(x − y)f2(y) dy

=
∫ r2

x−r1

f1(x − y)f2(y) dy, r1 < x < r1 + r2.

https://doi.org/10.1239/jap/1318940456 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940456


Conditional moments of the summand 73

Hence, for r1 < x < r1 + r2,

d

dx
f1 ∗ f2(x) =

∫ r2

x−r1

f ′
1(x − y)f2(y) dy − f1(r1)f2(x − r1)

and

lim
x→r1+r2

d

dx
f1 ∗ f2(x) = −f1(r1−)f2(r2−).

Lemma 4. Let g be a probability density function on [0, r] such that g(r−) = g(r) = 0 and
g′(r−) < 0. Then, for k → ∞,

∫ r

0
xkg(x) dx ∼ rk+2

(k + 1)(k + 2)
(−g′(r−)).

Proof. Integration by parts followed by a substitution yields

∫ r

0
xkg(x) dx = − 1

k + 1

∫ r

0
xk+1g′(x) dx

= rk+2 1

(k + 1)(k + 2)

∫ 1

0
(−g′(rx1/(k+2))) dx

∼ rk+2

(k + 1)(k + 2)
(−g′(r−))

for k → ∞.

Our interest is in ιk = Fk/Gk , where

fk(m) = mk cm

m! ẼS̄k
m and c = aφ(1).

Then the λ-equation is given by

c

l + 1

(
l + 1

l

)k ẼS̄k
l+1

ẼS̄k
l

= 1.

Therefore, for large k, we have the following approximation for the λ-equation:

c′

l + 1

(
l + 1

l

)k+2

= 1 and c′ = cf̃ (r). (4)

Clearly, the solution of (4) is asymptotically consistent with the solution of (1).
Unfortunately, the convergence in (3) does not seem to be uniform, and, therefore, we cannot

conclude with a proposition, only with the following conjecture.

Conjecture 1. Suppose that 0 < f̃ (r) < ∞. The solution λ of (4) is asymptotically equivalent
with �c′

(k). Furthermore, as k → ∞,

λ(k) ∼ E Nk.
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5. Central limit theorem

Suppose now that (Yi) is a sequence of i.i.d. random variables independent of Nk . We assume
that E Y1 = 0 and var Yi = 1. Our aim is to consider a limit theorem for

Zk = 1√
Nk

Nk∑
i=1

Yi.

We have to prove the following proposition.

Proposition 7. If, for k → ∞,
var Nk

(E Nk)2 → 0 (5)

then Zk
D−→ N (0, 1).

Proof. For each a > 0, because E Nk → ∞,

P(Nk < a) = P(Nk − E Nk < a − E Nk)

= P(|Nk − E Nk| > E Nk − a)

≤ var Nk

(E Nk − a)2 .

Hence, Nk → ∞ in probability. Now we can use a classical result (see, e.g. [10, p. 471]) to
complete the proof.

Note that condition (5) holds in the (Poi(a), Poi(b)) case (see Proposition 1).

Appendix A. Details of computations

Formally, we understand x! = �(x + 1). To check assumption (A1), we write

λ!
((1 − ε)λ)! = (1 − ε)−1/2−(1−ε)λe−ελ(1−log λ)(1 + o(1)),

where we used Stirling’s formula, and

fk(l
∗)

fk(λ)
= c(1−ε)λ((1 − ε)λ)k

((1 − ε)λ)!
(

cλλk

λ!
)−1

(1 + o(1))

= exp
{−ελ(log c + 1 − log λ) + (

k − 1
2 − (1 − ε)λ

)
log(1 − ε)

}
(1 + o(1))

→ 0,

because the dominating terms are ελ log λ + k log(1 − ε). Similarly,

λ!
((1 + ε)λ)! = (1 + ε)−1/2−(1+ε)λeελ(1−log λ)(1 + o(1))

and
fk(r

∗)
fk(λ)

= c(1+ε)λ((1 + ε)λ)k

((1 + ε)λ)!
(

cλλk

λ!
)−1

(1 + o(1))

= exp
{
ελ(1 + log c) − ελ log λ − (1 + ε)λ log(1 + ε) + (

k − 1
2

)
log(1 + ε)

}
× (1 + o(1))

→ 0,

because the dominating terms are −ελ log λ + k log(1 + ε).
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To check assumption (A2), we write

fk(r
∗)

fk(λ)
= 1

((1 + ε)λ)!C
(1+ε)λ (k + (1 + ε)λ − 1)!

((1 + ε)λ − 1)!
(

1

λ!C
λ (k + λ − 1)!

(λ − 1)!
)−1

(1 + o(1))

=
(

λ!
((1 + ε)λ)!

)2

(1 + ε)
(k + (1 + ε)λ − 1)!

(k + λ − 1)! (1 + o(1))

= (1 + ε)−2(1+ε)λeελ−2ελ log λCελ

(
1 + ελ

k + λ − 1

)k+λ−1/2

× (k + (1 + ε)λ − 1)ελ(1 + o(1))

= exp{−2(1 + ε)λ log(1 + ε) − 2ελ log λ + 2ελ + ελ log C + ελ log k}(1 + o(1))

= exp{(−2(1 + ε) log(1 + ε) + 2ε)(Ck)1/2}(1 + o(1))

→ 0.

Similarly,

fk(l
∗)

fk(λ)
= 1

((1 − ε)λ)!C
(1−ε)λ (k + (1 − ε)λ − 1)!

((1 − ε)λ − 1)!
(

1

λ!C
λ (k + λ − 1)!

(λ − 1)!
)−1

(1 + o(1))

=
(

λ!
((1 − ε)λ)!

)2

(1 − ε)
(k + (1 − ε)λ − 1)!

(k + λ − 1)! (1 + o(1))

= (1 − ε)−2(1−ε)λe−ελ+2ελ log λC−ελ

(
1 − ελ

k + λ − 1

)k+λ−1/2

× (k + (1 − ε)λ − 1)−ελ(1 + o(1))

= exp{−2(1 − ε)λ log(1 − ε) + 2ελ log λ − 2ελ − ελ log C − ελ log k}(1 + o(1))

= exp{(−2(1 − ε) log(1 − ε) − 2ε)(Ck)1/2}
→ 0.

To check assumption (A3), we write

ρk = sup
m≥r∗

C

m + 1

m + k

m

≤ C

(1 + ε)
√

kC + 1

(
1 + k

(1 + ε)
√

kC

)

= C(1 + ε) + √
Ck

(1 + ε) + (1 + ε)2
√

kC

→ 1

(1 + ε)2

< 1 as k → ∞
and

ρ′
k = sup

m≤l∗
m + 1

C

m

m + k

≤ (1 − ε)
√

kC + 1

C

(
1 − k

(1 − ε)
√

kC + k

)

https://doi.org/10.1239/jap/1318940456 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940456


76 T. ROLSKI AND A. TOMANEK

=
√

Ck(1 − ε) + (1 − ε)2kC

kC + (1 − ε)C
√

kC

→ (1 − ε)2

< 1 as k → ∞.
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