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Abstract
We introduce a constrained priority mechanism that combines outcome-based matching from machine
learning with preference-based allocation schemes common in market design. Using real-world data, we
illustrate how our mechanism could be applied to the assignment of refugee families to host country
locations, and kindergarteners to schools. Our mechanism allows a planner to first specify a threshold ḡ

for the minimum acceptable average outcome score that should be achieved by the assignment. In the
refugee matching context, this score corresponds to the probability of employment, whereas in the student
assignment context, it corresponds to standardized test scores. Themechanism is a prioritymechanism that
considers both outcomes and preferences by assigning agents (refugee families and students) based on their
preferences, but subject tomeeting the planner’s specified threshold. Themechanism is both strategy-proof
and constrained efficient in that it always generates a matching that is not Pareto dominated by any other
matching that respects the planner’s threshold.

Keywords: game theory, machine learning, matching, political market design, social choice

1 Introduction

We introduce a priority mechanism that matches agents to locations in instances where a

planner/designer (hereafter, planner) can set a minimum acceptable threshold on her own

measure of aggregate welfare. The design of our mechanism is motivated by the assignment

of refugee families to host country locations. In this context, refugee families have preferences

over locations, and host governments would like to conduct the assignment to take account of

these preferences, but these governments would also like to make sure that their own measure

of social welfare is not compromised so much so that it falls below a prespecified threshold. In

the refugee assignment problem, host country governmentsmay consider theirmeasure of social

welfare to be an index of predicted integration success asmeasured by, for example, employment

or earnings. In other applications such as student assignment to schools, this measure of welfare

could be the average GPA of students, or their performance in standardized tests—measures that

are typically of concern to school boards.

Our mechanism is a priority mechanism but differs from the canonical version (e.g.,

Satterthwaite andSonnenschein 1981) in the following respects. After preferences are elicited from

the agents and the agents are lined up in a random order, each successive agent is assigned to

their highest-ranked location provided that assigning them to that locationmeets two conditions:

(i) there is an available seat at that location and (ii) there is a way to complete the assignment

of the remaining agents that respects the planner’s threshold. We assume that agents can rank

locations strictly, except possibly their worst-ranked locations. If there is no location that an agent

can rank strictly thatmeets the two criteria above, then the agent is put in a “holding set” andwill

be assigned to one of their worst-ranked locations (over which they are indifferent) at the end of
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the process. At this point, all agents in the holding set are assigned to locations to maximize the

planner’s welfare measure, and the assignment is complete.

Outcome-basedmatchingwas introduced in the context of refugee assignment to host country

resettlement locations by Bansak et al. (2018).1 The idea in outcome-based matching is to

assign agents to locations so as to maximize a social planner’s welfare measure, for example,

the refugee’s expected employment success. Data-driven algorithms train supervised learners

on historical data to discover synergies between places and types of refugees. The learned

models are then used for newly arriving refugees to predict their expected integration success

and optimally match them to locations where they have the highest probability of success

subject to capacity and other constraints. Outcome-based matching is appealing because

it harnesses historical data to maximize expected integration success and does not require

collecting data on refugee preferences. Indeed, the outcome-based refugee matching methods

as proposed by Bansak et al. (2018) have already been implemented in the real world by

research teams in collaboration with resettlement organizations. One implementation was

conducted by the Swiss State Secretariat of Migration in collaboration with the Bansak et al.
(2018) research team. Another implementation of the methods proposed by Bansak et al. (2018)
was conducted by Trapp et al. (2018) with HIAS, a resettlement agency in the United States.
However, a pure outcome-based approach does not take preferences into account and does not

utilize private information that refugees may possess regarding which location would work best

for them.

Our mechanism addresses this limitation by assigning agents based on their preferences, to

an extent that is acceptable to the planner. It draws on the strengths of both the pure preference-

based approach and the data-driven outcome-based approach, allowing the planner to harness

the power of data-driven assignment to ensure some minimum level of welfare while taking into

account the preferences of the agents. The mechanism achieves this by integrating the data-

driven matching algorithm of Bansak et al. (2018) into a priority mechanism for preference-based

matching.

Our mechanism has several desirable properties. First, it strikes a compromise between the

needof theplanner to ensure aminimum level for theirmeasureof averagewelfare and theappeal

of incorporating agents’ preferences.2 Second, despite the added complexity of accounting for the

planner’s constraint, our mechanism inherits the desirable properties of priority mechanisms. It

remains strategy-proof and hence is immune to strategic manipulation through false reporting of

preferences. It is constrained Pareto-efficient in that it generates an assignment that is not Pareto

dominatedby another assignment that also satisfies the planner’s constraint. It also allows agents

to express preferences without the requirement that they strictly rank all locations. This flexibility

is important, especially in the refugee assignment context, since there may be a large degree

of heterogeneity as to whether refugees have distinct preferences over all locations. Finally, the

mechanism is both computationally and administratively feasible. It can be implemented by the

planner with only minor adjustments to existing methods. It only requires the additional step of

eliciting agents’ preferences.

Weprovide twoapplicationsof ourmechanismusingdata fromtwodistinct settings. In the first,

we illustrate howourmechanism could be used to assign refugees admitted into theUnited States

toAmerican cities, taking theplanner’swelfaremeasure to thebeexpected level of employmentof

a member of the refugee household within 90 days of resettlement. The importance of matching

refugees to host country locations as a tool to improve integration success is discussed in Mousa

(2018), and there have been many proposals for how host countries may approach the match-

1 Follow-up studies include Trapp et al. (2018), Gölz and Procaccia (2019), and Bansak (2020).
2 The idea of integrating machine-learning methods with the preference-based matching methods of market design has
been suggested by Milgrom and Tadelis (2018).
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ing problem (e.g., Moraga and Rapoport 2014; Fernández-Huertas Moraga and Rapoport 2015;

Delacrétaz, Kominers, and Teytelboym 2016; Andersson and Ehlers 2016; Bansak et al. 2018; Roth
2018; Trapp et al. 2018; Gölz and Procaccia 2019; Bansak 2020). The idea of refugee matching is to
select locations that are likely to be a good fit for a given refugee to thrive, and extant research

has shown that the place of initial settlement has a profound impact on the long-term integration

success of refugees (Åslund and Rooth 2007; Damm2014; Bansak et al. 2018; Martén, Hainmueller,
and Hangartner 2019).

In practice, however, the assignment of refugees in most countries is usually determined by

simple capacity constraints and/or proportional distribution keys. Governments want to ensure

that refugees become self-sufficient and are typically reluctant to let them freely choose where

to settle due to concerns that this could result in a highly uneven regional distribution and the

creation of ethnic enclaves. That said, a few governments have started to appreciate the value of

eliciting the refugee families’ own preferences over locations.3 Recognizing this value, the Dutch

government, for example, has started collecting unstructured information on the location prefer-

ences of refugee families as part of their interviews. However, there currently exist no systematic

data on refugee preferences, including in the United States. As a result, for our evaluation, we

impute refugee preferences based on secondary migration data.

In our second application, we demonstrate how our mechanism could be applied outside

of refugee matching. In this application, we apply the mechanism to the problem of matching

kindergarteners to schools in Tennessee, taking the planner’s welfare measure to be the sum of

their reading, math, and listening scaled scores on the Stanford Achievement Test (SAT) for the

Kindergarten level. School choice is a canonical application in the matching literature (see, e.g.,

Abdulkadiroğlu and Sönmez 2003; Abdulkadiroğlu, Pathak, and Roth 2009; Abdulkadiroglu and

Sönmez 2013; Pathak 2011, 2017; Ehlers et al. 2014) and thus serves as a useful second context in
which to illustrate our mechanism.

Our paper contributes to the recentmarket design literature that takes into account a planner’s

constraints (Echenique and Yenmez 2015; Kamada and Kojima 2015; Dur et al. 2018). Two papers
along these lines are particularly related. The first (Narita 2019) looks at the problem of assigning

subjects to treatments in a randomizedcontrol trial tomaximize thewelfareof the subjects subject

to the constraint that the researcher gleans a certain level of scientific information from running

the trial. Thesecond (Delacrétazetal. 2016) considers several variantsof the top tradingcycle (TTC)
mechanism, first allowing for multidimensional constraints and then allowing for the agents to

have a starting endowment. Since thesemechanisms do not respect both strategy-proofness and

Pareto efficiency, they relax the efficiency requirement and impose the condition that there be

no sequence of swaps that generate a Pareto-improving assignment. Our paper differs from this

priorwork in thatwe incorporatepreferences into theassignmentproblemwhile fixingaminimum

expected outcome threshold.

Although our mechanism is both constrained efficient and strategy-proof, we also investigate

howwellwe candoona secondmetric ofwelfare, namely thepercent of agents that receive oneof

their highly (e.g., top-three) ranked locations. When we take a sample of rerandomizations of the

priority order of agents, we find that there may be substantial potential gains to be made on this

welfare metric.4 We then suggest two ways of potentially capturing these gains without violating

the requirement that themechanismbe strategy-proof.5 The first is to usehistorical data topredict

3 For example, refugee families may possess valuable private information about which location would be best for them.
4 We note, however, that since our constrained priority mechanism does not characterize the set of constrained efficient
assignments (i.e., the finding of Abdulkadiroglu and Sonmez (1998) that every efficient assignment can be generated by
some ordering of the agents does not generalize), this sampling approach may not give us an unbiased estimate of how
much we can gain on this metric if we consider the set of all constrained efficient assignments.

5 Note that amechanism that rerandomizes the order of agents so that their order is decided based on the preferences that
were elicited is not strategy-proof.
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the preferences of the agents based on their observable traits, then fix the ordering that does best

on this metric under the predicted preferences, and finally, elicit the agents’ actual preferences

and assign them according to this ordering. The second is to fix the ordering of agents so that an

agent with a lower variance in outcome scores across locations is served before one with a higher

variance.

A final contribution of our study is to open a closer dialogue between political methodology

and the study ofmarket design. Politicalmethodology has historically thrived on interdisciplinary

engagement with methods developed in related disciplines, such as statistics, econometrics,

psychometrics, andcomputer science. Yet, for some reason, it has largelyneglected toengagewith

the foundational work that has developed in economics on the study of market and mechanism

design.6 This is an unfortunate omission, because market and mechanism design is arguably

at the core of many issues that are highly relevant to political science. Fundamentally, market

design is about engineering institutions to ensure that they generate desired outcomes, such

as an efficient or equitable distribution of opportunities or resources. As economist Alvin Roth

recently put it, market design is about “Who gets what—andwhy” (Roth 2015). This phrase resem-

bles one of the canonical definitions of politics as “Who gets what, when, and how” by Harold

Lasswell (Lasswell 1936). Institutional mechanisms that allocate opportunities and resources

are a central feature of modern democracies, and algorithms are increasingly used for public

policy in a wide variety of domains. We hope that our study can help pave a path for political

methodology to begin to contribute to these important developments given its unique blend of

expertise.

2 The Mechanism

2.1 Preliminaries
There are n agents (refugee families/school children) randomly labeled 1, ...,n , each of which has
to be assigned to a location (host country city or town/school). Let L denote the finite set of
locations. Each location l ∈ L has a capacity ql ≥ 1 as to how many agents it can accommodate.

We assume that n ≤
∑

l ql so that it is feasible to assign all agents. For each agent i, let gi (l ) be
a measure of success at location l (employment probability/test scores) when assigned to that
location. In practice, thismeasuremayneed tobe estimated, inwhich case it represents an agent’s

success at location l in expectation. Thismeasuremay be accounted for in the agent’s preferences
but is the key consideration for a social planner. We refer to gi (l ) as the planner’s outcome score

for agent i at location l.
Each agent i has a complete and transitive preference ordering �i over the set of locations.7

Indifference and the strict preference relations are denoted by ∼i and �i , respectively, and �=
(�1, ...,�n ) denotes the vector of preferences.
Wemake the assumption on agents’ preferences that the only indifferences are over the worst-

ranked locations. That is, apart from possibly having ties among a set of locations that an agent

deems to be the worst, each agent has a strict preference over all of the other locations. Formally,

for all agents i, if l ∼i l
′ for some l ′ � l , there is no l ′′ such that l �i l

′′. This still allows for an agent

to be indifferent over all locations. This assumption is motivated by our application to refugee

assignment: refugee families often do not have full information on all possible locations, but they

may have (strict) preferences over a limited set of top choices.8

6 A search on the Political Analysis archive reveals zero search results for the terms “market design” or “mechanism design.”
7 We assume that all agents prefer to be assigned to a location rather than be not assigned, so we can omit nonassignment
from the set of possible outcomes for each agent.

8 We interpret this as reflecting true indifference across the worst-ranked locations. Our mechanism would not necessarily
be strategy-proof if the agents do, in fact, have strict preferences over these locations but express indifference due to lack
of information.
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Define the set Si = L\{l ∈ L : �l ′ ∼i l }, which are all of the locations except any that agent i is
indifferent over. Agent i has a strict preference across all locations in Si , and if any location is left

out of Si , then it must have been ranked worst.

A matching μ maps the set of agents to locations. A matching μ is

1. feasible if it satisfies the capacity constraints: |μ−1(l )| ≤ ql ,�l ;

2. ḡ -acceptable if the average outcome score is not lower than ḡ : 1n
∑

i gi (μ(i )) ≥ ḡ .

ḡ -acceptability reflects the idea that theplannerwants theaverageoutcomescorenot to fall below

a specified threshold ḡ . The planner wants to ensure that the allocation is such that agents have

some minimum level of expected outcomes (e.g., a minimum expected employment rate/GPA or

test score).

Note that not all values of ḡ can produce a feasible matching. Let ḡmax denote the highest

possible average outcome score that can be generated by a feasible matching

ḡmax :=max
μ

1

n

∑
i

gi (μ(i )) subject to |μ
−1(l )| ≤ ql ,�l . (1)

Feasible ḡ -acceptable matchings exist only for ḡ ≤ ḡmax.

2.2 The Assignment Procedure
Given a value of ḡ ≤ ḡmax, the algorithm starts with agent 1 and works down to agent n in a
sequence of n steps before completing in either the nth or an additional (n + 1)th step. At Step

i ≤ n , agent i is either assigned to a location or put on hold by being added to a set of temporarily
unassigned agents that will all get assigned simultaneously at Step n + 1. At each Step i, let Ni

denote the set of agents j < i that havebeenputonhold.N1 =∅, sinceat the start of thealgorithm,

no agent is on hold.

If agent j < i was assigned a location prior to Step i, then let αi (j ) denote the location
and (j ,αi (j )) the assignment, viewing αi as a function. Refer to this function as the completed

assignment at Step i. Note thatα1 =∅, so the completedassignment at Step 1 is trivial. A remaining

assignment βi at Step i is amapping of the unassigned agents {i , ...,n}∪Ni to locations such that

μ(αi ,βi )(j ) :=

{
αi (j ) if j < i

βi (j ) if j ∈ {i , ...,n} ∪Ni

is a matching. We refer to μ(αi ,βi ) as the matching associated with the pair of completed and

remaining assignments (αi ,βi ). The existence of these matchings will be guaranteed recursively

by the algorithm.

At each Step i ≤ n , given αi , define the set

L
ḡ
i
(αi ) = {l ∈ L : �βi s.t. l = βi (i ) and μ(αi ,βi ) is a feasible ḡ -acceptable matching}.

This is the setof locations thatarenotat full capacityand forwhich there is away to finishassigning

all unassigned agents so as to create a feasible ḡ -acceptable matching.

Let qi
l be the remaining capacity of location l after any agents ahead of i (i.e., j < i ) have been

assigned in the previous i −1 steps. At the start, we have q1
l = ql for all l. It will also be convenient

to define the following problems: for all Steps i = 1, ...,n +1, and given a vector qi := (qi
l )l ∈L ,

Gi (q
i ) :=max

βi

∑
j ∈{i ,...,n }∪Ni

gj (βi (j )) subject to |β
−1
i (l )| ≤ qi

l ,�l , (2)
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with the convention that {i , ...,n} := ∅ if i = n + 1. At each Step i, the problem in (2) finds the

remaining assignment that maximizes the total outcome score subject to the updated capacity

constraints at Step i. The solution to this problem at each step determines whether the associated

matching is ḡ -acceptable. In fact, to verify whether or not a location l belongs in Lḡ
i
(αi ), we must

first check whether the highest possible value of the average outcome score that can be achieved

under the remaining assignment is at least ḡ ; i.e., whether

ḡi (l ) :=
1

n

���Gi+1(q
i+1)+gi (l )+

∑
j<i s.t. j�Ni

gj (αi (j ))
�	
 ≥ ḡ ,

where qi+1
l ′ = qi

l ′ for all l
′ � l and qi+1

l = qi
l − 1. If indeed ḡi (l ) ≥ ḡ and qi

l > 0, then l belongs to
L
ḡ
i
(αi ); otherwise, it does not. Constructing L

ḡ
i
(αi ) at each Step i = 1, ...,n +1, therefore, requires

solving the problems given in (2). In addition, to verify whether ḡ ≤ ḡmax also requires solving one

of these problems, since the problem in (1) equalsG1(q1)/n .

The steps of the algorithm are as follows.

Step 0. Verify that ḡ ≤ ḡmax and proceed only if it holds.

Step i≤ n. If Si ∩ L
ḡ
i
(αi ) is empty (meaning that there is no location that agent i ranked

strictly to which it could be assigned that would allow us also to find a remaining

assignment that generates a feasible ḡ -acceptablematching), then place agent i on
hold. In this case, set

Ni+1 = Ni ∪ {i },αi+1 = αi ,q
i+1
l = qi

l �l

and move on to Step i + 1. Otherwise, if Si ∩ L
ḡ
i
(αi ) is nonempty, then it contains

a unique best location from the perspective of agent i—i.e., a location l ∗i such that
l ∗i �i l for all l ∈ Si ∩L

ḡ
i
(αi ). This follows from the fact that i ranks the elements of

Si strictly. Assign agent i to l ∗i , and set

Ni+1 = Ni ,αi+1 = αi ∪ {(i , l ∗i )},q
i+1
l ∗
i

= qi
l ∗
i
−1, and qi+1

l = qi
l �l � l

∗
i .

If i < n , thenmove to Step i +1. If i = n , thenmove to Step n +1 only if an agent was

ever put on hold (i.e., Nn+1 � ∅); otherwise, stop.
Stepn+ 1. At this stage, the only unassigned agents are those that were put on hold in Nn+1.

Here, choose any remaining assignment thatmaximizes the averageoutcome score

given the completed assignment and the capacity constraints; that is, solve (2) for

i = n +1 and stop.

For any preference vector � satisfying our assumptions, our algorithm produces a matching,

namely μ(αs ,βs ), where s ∈ {n,n + 1} was the step at which the algorithm stopped. The

algorithm defines a mechanism ϕ, which, given the other parameters of the model, is a

mapping from preference vectors to feasible matchings. We refer to the mechanism as ḡ -

constrained priority, since it is a modification of the usual priority mechanism (Satterthwaite and

Sonnenschein 1981).

At each Step i, implementation of themechanism involves iteratively solving themaximization

problem in Equation 2 to verify that ḡ -acceptability can still bemet if agent iwere assigned to each
available location in order of preference, until such a location is found. This amounts to iteratively

solving a standard linear sumassignment problem, for which various polynomial-time algorithms
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exist.9 Under a worst-case scenario where every agent is put on hold after unsuccessfully consid-

ering all of its strictly ranked locations, this would require solving an equally sized maximization

problem in Equation 2 a total of n(|L | −2) times.10

2.3 Properties of the Mechanism
Let ϕ(�) denote the matching produced by the ḡ -constrained priority mechanism for any pref-

erence vector � that satisfies our assumptions, and ϕ(�)(i ) the location assignment of agent i
under this matching. By construction, the matching produced by this mechanism is feasible and

ḡ -acceptable. In addition, the mechanism satisfies two key properties. It is:

1. constrained efficient in the sense that for all preference vectors � that satisfy our

assumptions, ϕ(�) is not Pareto dominated by another feasible ḡ -acceptable matching

μ. That is, it is not the case that μ(i ) �i ϕ(�)(i ) for all agents i, and μ(i ) �i ϕ(�)(i ) for some
agent i.

2. strategy-proof in the sense that truthful reporting is a dominant strategy of the induced

preference reportinggame.That is, for everypreferencevector� satisfyingourassumptions,
every agent i, and every alternative preference �′i that i could report that also satisfies our
assumptions,ϕ(�)(i ) �i ϕ(�′i ,�−i )(i ).

Theproof that themechanism is constrainedefficient and strategy-proof is straightforward, but

for completeness, we include it in the SI.

One important property of the canonical priority mechanism that does not carry over to our
ḡ -constrained priority mechanism is the property that the mechanism characterizes the full set

of Pareto-efficient assignments. Abdulkadiroglu and Sonmez (1998) showed that for any Pareto-

efficient assignment, there exists an ordering of agents under which implementing the priority

mechanism for that ordering generates that assignment. Given this, one could ask whether for

every ḡ -constrained efficient assignment, there exists an ordering of the agents for which the ḡ -

constrained prioritymechanismgenerates that assignment. The answer to this question turns out

to be no, as demonstrated by the following example with two agents 1 and 2 and three locations

A,B , and C. The table gives the ranking of the three locations for each agent and in parentheses
the outcome score gi (l ) for each agent–location pair.

First Second Third

choice choice choice

1 A (0.1) B (0.5) C (0.9)
2 A (0.1) C (0.5) B (0.9)

Suppose that each location has a capacity of 1 seat. If the planner’s threshold ḡ is set to 0.45

and agent 1 goes first, then he will be assigned to location A, and agent 2 will be assigned to B. If
agent 2 goes first, then shewill be assigned to A, and agent 1will be sent to C. But the possibility of
sending 1 to B and 2 to C also meets the planner’s constraint and is not Pareto dominated by any
other assignment that is acceptable to the planner.

9 In graph theory, the assignment problem is known as a maximum weighted bipartite matching. See the Supplemental
Information (SI) for more details on how the assignment problem is featured in the mechanism implementation.

10 Note that the maximization problem would then need to be solved one final time at Step n +1 with all of the agents. The
reason the worst-case scenario features the ( |L | − 2) term is that it arises when agents have strictly ranked all but two
locations, since it is not possible to strictly rank all but one location, and if all locations have been strictly ranked then
agents will not be put on hold and the maximization problem in Equation 2 would gradually become smaller and less
costly to solve at each successive Step i.
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3 Applications

To illustrate themechanism,we apply it to both simulated data and two empirical examples using

real-world data from the United States that involve the assignment of refugees to resettlement

locations and the assignment of students to schools.11

Our mechanism requires the planner to select a value for ḡ , and this choice implies a trade-

off between an outcome-based and preference-based matching. From the planner’s perspective,

it is desirable to achieve the highest possible value of ḡ to ensure that the agents’ outcomes

are optimized. However, setting a higher value of ḡ comes at the cost of assigning agents to

locations that are, in expectation, lower in their preference rankings. That is, while themechanism

simultaneously considers both outcomes and preferences, there is a trade-off between the two,

where the balance of that trade-off changes as ḡ increases.

The magnitude of the trade-off also depends upon the joint distribution of agents’ preference

rankings and their outcome scores. Two measures, in particular, play an important role: the

correlation between outcome scores and preference rankings within agents (i.e., the degree to

which an agent’s preferred locations alignwith the locationswhere that agentwould achieve their

best outcomes) and the correlation between preference rankings across agents (i.e., the degree to

which agents have similar preference rankings). We demonstrate this below.

3.1 Simulation Data
We apply the mechanism to simulated data to show these properties. For simplicity, our sim-

ulations involve assigning 100 agents to 100 locations with one seat each. For each agent, we

randomly generate a preference rank vector (with 1 indicating the most desired location and

100 the worst) and an outcome score vector (with values in [0,1]). The simulations vary both

the correlation between preference and outcome vectors ( −0.5, 0, and 0.5) and the correlation

between preference vectors across agents ( 0, 0.5, and 0.8).12 This yields nine different scenarios,

and in each, we apply our mechanism to make the assignment for various values of ḡ . See the SI

for details.

3.2 Refugee Data
As a simulated illustration of how the mechanism could perform in a real-world scenario, we

apply it to data from refugees in the United States, where refugee families are the agents and

resettlement cities are the locations. Early employment is a core goal of the U.S. resettlement pro-

gram,which strives toquickly transition refugees into self-sufficiency after arrival. This application

illustrates howourmechanism could hypothetically be employed in theUnited States to achieve a

desired level of early employmentwhile geographically assigning refugees based on their location

preferences.

Our real-world refugee data include deidentified information on working-age refugees (ages

18–64; N = 33,782) who have been resettled to the United States during the 2011–2016 period

by one of the largest U.S. refugee resettlement agencies. Over this time period, the agencies’

placement officers centrally assigned refugees to one of approximately 40 resettlement locations

in the agency’s network. The data contain details on the refugee characteristics such as age,

gender, origin, and education. The data also include the assigned resettlement location, whether

the refugee was employed at 90 days after arrival, and whether the refugee migrated from the

initial location within 90 days.

11 Replication materials for this study are available in Acharya, Bansak, and Hainmueller (2020a,b).
12 The correlation between preference and outcome vectors treats higher preferences (i.e., closer to 1) as more positive

values, such that a positive correlation between preferences and outcomes indicates more highly preferred locations are
those that also result in higher outcome scores.
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We applied our mechanism to data on the refugee families who arrived in the third quar-

ter (Q3) of 2016, specifically focusing on refugees who were free to be assigned to different

resettlement locations (561 families), in contrast to refugees who were predestined to specific

locations on the basis of existing family or other ties. To generate each family’s outcome score

vector across each of the locations, we employed the same methodology in Bansak et al. (2018),
using the data for the refugees who arrived from 2011 up to (but not including) 2016 Q3 to

generate models that predict the expected employment success of a family (i.e., the mean prob-

ability of finding employment among working-age members of the family) at any of the loca-

tions, as a function of their background characteristics. These models were then applied to

the families who arrived in 2016 Q3 to generate their predicted employment success at each

location, which comprise their outcome score vectors. See the SI and Bansak et al. (2018) for
details.

Our mechanism also requires data on location preferences of refugees. To the best of our

knowledge, such data do not currently exist in the United States, where refugees are assigned

to locations by the resettlement agencies. We therefore infer revealed location preferences from

secondary migration behavior. Specifically, we use the same modeling procedures used in the

outcome score estimation, simply swapping in outmigration in place of employment as the

response variable. This allows us to predict for each refugee family that arrived in 2016 Q3 the

probability of outmigration at each location as a function of their background characteristics.

For each family, we then rank locations such that the location with the lowest (highest) prob-

ability of outmigration is ranked first (last). Details about the data and sample are provided in

the SI.

We acknowledge that inferred location preferences from secondary migration behavior are

not necessarily the same as the stated location preferences that refugees would express in an

application form if given the opportunity to do so by host country governments. That said, there

are reasons to believe that the inferred location preferences provide a useful proxy. Outmigration

is a costly signal indicating that a refugeeprefers tomove rather than stay in theoriginally assigned

location. Mossad et al. (2020) provide a comprehensive analysis of the secondary migration
patterns of refugees in the United States and find that secondary migration is mostly driven by

refugees relocating in search of employment opportunities and coethnic communities. One of

the main channels through which these effects operate is the refugee’s nationality, which is also

an important predictor in the model that we use to infer revealed location preferences from

secondary migration.

3.3 Education Data
As a second simulated illustration of how the mechanism could perform in a real-world sce-

nario, we apply it to education data from the United States, where the agents are individual

students and the locations are schools. In particular, we consider data from the Tennessee’s

Student Teacher Achievement Ratio (STAR) project conducted by the Tennessee State Depart-

ment of Education (for details, see Achilles et al. 2008). These data contain information on the
choice of elementary schools for a large sample of students as well as information on the test

score performance of these students. We focus on the Kindergarten grade level and apply our

mechanism to generate new assignments of students to schools with the goal of improving the

outcomes of students asmeasured by standardized tests administered at the end of Kindergarten.

One could imagine a school district setting a minimum test score that should be achieved on

average.

To generate each student’s outcome score vector across each of the schools, we employ the

samemethods as in theprevious application topredict the expected test scores of a student at any

of the schools, as a function of their background characteristics. The background characteristics
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included the students’ age, gender, and race, as well as information on whether they are eligible

for free school lunches (a proxy for socioeconomic status) or special education. The test score

outcome was defined as the sum of reading, math, and listening scaled scores on the SAT for the

Kindergarten level.

We inferred revealed school preferences of students from the observed transfers out of the

schools. Specifically, we used the same modeling procedure as for the test scores but instead

used a response variable that measured whether a student had transferred to another school by

the first, second, or third grade. Based on these models, we can then predict for each student

the propensity for leaving each school as a function of their background characteristics. For each

student, we then rank schools such that the school for which they have the lowest (highest)

propensity for transferring out is ranked first (last).

We generate these outcome score and preference vectors and apply our mechanism to a ran-

dom sample of 1,000 students from 33 schools that are observed for all grades from Kindergarten

through third grade and have nonmissing data for tests scores and background characteristics.

Details about the data and sample are provided in the SI.

4 Results

4.1 Simulated Data
Figure 1 depicts the results for assignment under the ḡ -constrained priority mechanism for nine

different simulation scenarios that vary the correlation between preferences and outcome scores

within agents and the correlation between preferences across agents. In addition, to model a

real-world scenario in which agents can indicate only a limited number of top locations in an

application form, the preference vectors are truncated such that only the top 10 ranks are retained

and indifference is establishedamong the remaining location. The toppanel shows theproportion

of agents who were assigned to one of their top-three locations given various levels of ḡ , the

threshold for the minimum average outcome score. The bottom panel shows the mean outcome

score for agents in their assigned locations for the same levels of ḡ . The curves end once ḡmax has

been reached, and hence no feasible assignment is possible.

There is a clear trade-off between realized preference ranks and outcome scores in all sim-

ulations. As ḡ is increased, the realized mean outcome score eventually increases. This is a

mechanical result of increasing ḡ andhenceenforcing the requirement for ahighermeanoutcome

value. Simultaneously, as soon as the mean outcome score is impacted, the proportion of agents

assigned to oneof their preferred locations also begins to decrease. This occurs because enforcing

the requirement for a higher value of ḡ requires the mechanism to deviate from the preference-

based optimization.

Figure 1 also shows how the immediacy and severity of the trade-off can vary substantially

depending upon the joint distribution of preferences and outcome scores.13 First, focusing on the

top panel, we see that the higher the correlation between agents’ preferences, the worse is the

achievable baseline proportion of agents that can be assigned to one of their top locations at the

lowest values of ḡ . This result, which holds regardless of the correlation between preferences and

outcome scores, is intuitive: themore similar are different agents’ preferences, themore rivalrous

is the matching procedure, and hence the more difficult it is to match agents to one of their top-

ranked locations given limited capacity in each location.

Second, the more positive the correlation between preferences and outcome scores, the less

severe is the trade-off in the sense that the trade-off does not kick in until higher levels of ḡ are

enforced. The intuition for this result is that if preferences and outcomes are positively correlated,

13 It can also depend on the number of seats available in each location and the extent to which each location contributes to
the correlations.
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Figure 1. Results from applying our ḡ -constrained priority mechanism to simulated data that varies the
correlationsbetweenpreferenceandoutcomescore vectors and the correlationsbetweenpreference vectors
Across agents. Upper panel shows the average probability that an agent was assigned to one of its top-three
locations. Lower panel shows the realized average outcome score. N = 100.

then matching based on preferences should indirectly also lead to outcome-based matching,

and hence deviation from the preference-based solution will not occur until a higher level of

ḡ is reached. This is a useful finding from the standpoint of a real-world implementation of

the mechanism. If, in advance of their preference reporting, agents were given information on

their predicted outcomes in each location, they could incorporate such information into their

preference determination. If this results in a closer alignment of preferences and outcomes, that

would help alleviate the trade-off in the mechanism.

Third, turning to the bottom panel in Figure 1, we see that once the trade-off kicks in, the

realized mean outcome curves trace closely along the identity line; that is, upon enforcing a level

of ḡ that deviates from the preference-based assignment, the mechanism will find an alternative

assignment that optimizes for preferences subject to just barely satisfying the ḡ constraint. The

realized mean outcome results also mirror the trends on realized preference ranks: the more

positive is the correlationbetweenpreferenceandoutcomevectors, the later the trade-offkicks in.

Fourth, we see that given a negative correlation between preferences and outcome scores,

the correlation across preference vectors has a significant impact on how the trade-off affects

the realized mean outcome score, with the trade-off being more severe with a low correlation

across preference vectors. This result can be explained as follows. A negative correlation between

preference and outcome vectors implies that preference-based assignment is counter to the

goal of optimizing for realized outcome scores. However, if there is also a positive correlation

across agents’ preferences, that means that different kinds of agents generally prefer the same

locations, and hence also that the locations that result in low outcome scores are also similar

across agents, thus limiting the degree to whichmatching based on preferences will actually hurt

realized outcome scores on average. If, in contrast, there is no correlation across preferences, then
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Figure 2. Distribution of pairwise correlations between refugee family location preferences, integration
outcomes (i.e., employment), and preferences and outcomes. N = 561 refugee families who arrived in the
United States in Q3 of 2016.

there is greater latitude for themechanismtoassignagents to their higher-ranked locations,which

also happen to be the locations that are the worst for their outcome scores. As the correlation

between preference and outcome vectors becomes more positive, this dynamic begins to disap-

pear. However, the reason it does not reverse in the bottom-right panel of Figure 1 is due to the

existence of trailing indifferences in the preference rank vectors, which means the agents who

could not be matched to one of their strictly ranked locations are assigned using outcome-based

optimization, thereby limiting the effect of the phenomenon described above.14

4.2 Refugee Data
Figure 2 shows features of the joint distribution of the refugee families’ outcome score and

preference rank vectors. The top panel pertains to the correlation between the families’ outcome

and preference vectors. For each family, a correlation is computed between its two vectors, and

the panel displays the distribution of those correlations. The distribution is roughly centered

around zero (themean correlation is 0.03). This suggests a relatively limited relationship between

the locations refugees prefer and those where they would actually achieve better employment

outcomes. This is an interesting finding and also has a key policy implication. Providing refugees

with information on which locations are beneficial for their employment outcomes would allow

them to formulate more informed preferences. If this results in a closer correlation between

preferenceandoutcomevectors, thiswouldhelp strengthenourmechanism, sinceamorepositive

correlation alleviates the trade-off between outcome- and preference-basedmatching.

The middle panel in Figure 2 shows the distribution of pairwise correlations between families’

preference vectors. The correlations are mostly highly positive, with a mean correlation of 0.67.

This shows that preference vectors are relatively similar across the families; many refugees would

more or less prefer to be placed in similar locations. Given the existence of location capacity

constraints, this is an inconvenient finding from the standpoint of preference-based assignment.

14 The SI includes the results of the same simulations without truncating the preference rank vectors. In that case, we do see
the expected reversal across the lower three panels.
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Figure 3. Results of applying the ḡ -constrained priority mechanism to refugee families in the United States
for various specified thresholds for the expectedminimum level of average integration outcomes ( ḡ ). Upper
panel shows the average probability that a refugee family got assigned to one of their top-three locations.
Lower panel shows the realized average integration outcomes, i.e., the average projected probability of
employment. N = 561 families who arrived in Q3 of 2016.

The bottom panel in Figure 3 shows the distribution of all pairwise correlations between

families’ outcome vectors. As can be seen, the correlations are overwhelmingly positive (with a

mean correlation of 0.75), highlighting the fact already shown elsewhere (Bansak et al. 2018) that
certain locations are generally better than other locations for helping refugees to achieve positive

employment outcomes. However, the fact that there is still meaningful variation across different

families’ outcome score vectors indicates that certain locations do indeedmake a bettermatch for

different refugee families, depending on their personal characteristics, which is the foundation for

the outcome-optimization matching procedure introduced by Bansak et al. (2018).
In applying our mechanism to the 2016 Q3 refugee data, we impose real-world assignment

constraints, giving each location capacity for the same number of families as were sent to those

locations in actuality. We also truncate each family’s preference vectors such that only the first 10

ranks are retained and indifference is established among the remaining locations.

Figure 3displays the results of applying ourmechanism. As before, themechanism is applied at

various levels of ḡ , which is denoted by the x-axis. The y-axis of the top panel denotes the propor-
tion of cases assigned to one of their top-three locations, whereas the y-axis in the bottom panel

denotes the mean realized outcome score, i.e., the average predicted probability of employment,

based on the assignment. The two dashed vertical lines highlight the trade-off interval, where

altering the value of ḡ impacts both preferences and outcomes, and the interval ends when ḡ is

raised above ḡmax.

Given a predominantly preference-based assignment (i.e., setting ḡ to any value below the

value at which the trade-off interval begins), a mean outcome score of 0.41 is achieved, meaning

the predicted average employment rate is 41%.15 Under this assignment, about 25% of refugee

families are assigned to a location that is among their top-three choices. For comparison, the

15 Setting ḡ to a value below the trade-off interval does not result in a purely preference-based assignment given the trailing
indifferences in the preference rank vectors. We also applied the mechanism to the same data without truncating the
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average observed employment rate for families at their actual locations without applying any

mechanism was 34%. This suggests that there are significant synergies between refugees and

locations in the sense that certain locations are a better match for different refugees, depending

on their personal characteristics. Even under a predominantly preference-based assignment, the

mechanism can therefore increase the predicted average employment rate to 41%, about a 20%

increase over the mean employment rate observed without applying any mechanism.

On the opposite end of the spectrum, a purely outcome-driven optimization would yield the

highest feasible ḡ ( ḡmax), which is just below 0.52, i.e., a predicted average employment rate of

52%.16 This amounts to about a 53% increase over the mean employment rate observed without

applying anymechanism. Therefore, if all the government cared about for the assignment was to

maximize the score, it could attain a considerably higher predicted employment rate by enforcing

ḡmax. Yet, at ḡmax, only 15% of refugee families would be assigned to one of their top-three

locations. The preference curve in the top panel features a gradient that gradually steepens, with

the trade-off becoming increasingly more severe as ḡ is increased.

Finally,wealsoemployedanalternativemethod toestimate locationpreferences that attempts

to correct for potential bias due to relocation costs. As described, we are inferring location

preferences from outmigration behavior. However, outmigration decisions are a function of two

primarycomponents: a family’sdesire to leaveand their ability to leave. It is the formercomponent

that captures preferences and hencewhat is of primary interest for our purposes, but it is possible

that differential costs of leaving and relocating across different locations have an effect on outmi-

gration patterns via the latter component. With only observational behavioral data, it is difficult

to perfectly decompose these two components. However, we attempt to do so by estimating

a structural model of outmigration designed to capture geographic and economic factors that

relate to the costs of relocation, and then by using this structural model to adjust our original

preference estimates such that our new preference estimates are, in theory, driven more strictly

by the preference component of outmigration behavior. We then reapply our mechanism to the

2016 Q3 refugee data with the new preferences substituted in. The results, which are provided in

the SI, display a similar pattern as when the original preference estimates are employed with one

main difference: the proportion of families assigned to one of their estimated top-three locations

is systematically lower at all levels of ḡ , which is the result of the families’ top-ranked locations

being more rivalrous (more highly correlated) according to the alternative preference estimates.

More details about the methodology and the results are provided in the SI.

4.3 Education Data
We now turn to the results for the application of the mechanism to the education data from

Tennessee, where we assigned students to elementary schools to optimize on test scores and

students’ preferences over schools.

Figure 4 shows features of the joint distribution of the students’ outcome score and preference

rank vectors. The top panel pertains to the correlation between the students’ outcome and

preference vectors. We see that for most students, the correlations are modest but positive with

a mean of 0.11, indicating that the students slightly prefer schools where they are predicted

to have higher test scores. As mentioned earlier, a positive correlation between preference and

outcome vectors somewhat alleviates the trade-off between outcome- and preference-based

matching. That said, as shown in the middle panel in Figure 4, the distribution of pairwise

correlations between students’ preference vectors are tightly clustered around a high positive

preference vectors. The result is a purely preference-based assignment at the lowest values of ḡ , which yields a mean
outcome score of 0.36. See the SI.

16 The fact that it is not possible to raise ḡ even further is, of course, the result of the full distribution of the refugee families’
outcome vectors, namely the fact that they feature a large positive correlation with one another.
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Figure 4. Distribution of pairwise correlations between student preferences over elementary schools, test
score outcomes, and preferences and outcomes. N = 1000 randomly sampled students from Tennessee
Project STAR data.

mean correlation of 0.93. This shows that students mostly prefer to be placed in similar schools,

which makes the preference-based matching assignment more rivalrous given a fixed number of

seats in the preferred schools. As shown in the bottom panel in Figure 4, we also find that the

pairwise correlations between students’ outcome vectors are almost all positive (with a mean

correlation of 0.79), which suggests that certain schools are generally better than other schools

for students to achieve higher test scores.

In applying our mechanism to these education data, we impose the same real-world assign-

ment constraints as before, giving each school capacity for the same number of students as were

enrolled in those schools in actuality.Wealso truncate each student’s preference vectors such that

only the first 10 ranks are retained and indifference is established among the remaining schools

in order to mimic a situation on an application form where students can rank only the top-ten

preferred schools.

Figure 5 displays the results of applying our mechanism. As before, the mechanism is applied

at various levels of ḡ , which is denoted by the x-axis. The y-axis of the top panel denotes the
proportionof students assigned tooneof their top-three schools,whereas the y-axis in thebottom
panel denotes the mean realized outcome score, i.e., the average predicted test score, based on

the assignment. The two dashed vertical lines highlight the trade-off interval, where altering the

value of ḡ impacts both preferences and outcomes, and the interval ends when ḡ is raised above

ḡmax.

Given a predominantly preference-based assignment (i.e., setting ḡ to any value below the

value at which the trade-off interval begins), a mean predicted test score outcome of 1,502 is

achieved. Under this assignment, about 42% of students are assigned to a school that is among

their top-three choices.17 For comparison, the average observed test score for the students at

their actual locations without applying the mechanism was about 1,490 with a standard devi-

ation of 86. This suggests that, as with the refugee data above, there are significant synergies

between students and schools in the sense that certain schools are a better match for different

17 Note that this fraction is not directly comparable to the refugee example above, since there are a different number of
persons, locations, and seats per location.
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Figure 5. Results of applying the ḡ -constrained priority mechanism to student assignment to elementary
schools for various specified thresholds for the expected minimum level of average test score outcomes (ḡ ).
Upper panel shows the average probability that a student got assigned to one of their top-three schools.
Lower panel shows the realized average test score outcomes, i.e., the average projected SAT score.N = 1000
randomly sampled students from Tennessee Project STAR data.

students, depending on their personal characteristics. Even under a predominantly preference-

based assignment, the mechanism can therefore increase the predicted average test score to

1,502, a meaningful improvement of about a seventh of a standard deviation in test scores

compared to the observedmean under the actual assignments.

On the opposite end of the spectrum, a purely outcome-driven optimization would yield the

highest feasible ḡ ( ḡmax), which is amean predicted test score outcome of 1,519. A fully outcome-

based matching of students to schools can therefore result in a sizable increase in the predicted

average test score of about a third of a standard deviation in test scores compared to the observed

mean under the actual assignments. Given the trade-off between preference-based and outcome-

basedmatching, this means that under a purely outcome-driven optimization, only about 10%of

students would be assigned to a school that is among their top-three choices. This highlights that

compared to the refugee application, the trade-off in this education example is somewhat more

severe, which is expected given that the preferences are more concentrated on similar schools

even though there is a somewhat more positive correlation between preferences and outcomes.

5 Other Welfare Concerns

Onepossible concernwith ourmechanism is that if agentswhosepreferences are not highly corre-

latedwith their outcome scores are givenhigher priority thanothers, then their assignments could

lower the overall preference rank of locations assigned to agents who have lower priority. As an

example, besidesworrying about achieving a constrained Pareto-efficient allocation, suppose the

planner also cares about the percentage of agents who are awarded one of their top-three ranked

locations. Let us refer to this welfaremetric as the “top-3metric.” Just howmuch improvement on

this metric can be achieved by changing the order in which families are assigned?

To get a sense of this, we took a random sampling of the different possible orderings of agents

and study the variation generated in the top-3 metric. We reran a subset of the nine simulation
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scenarios considered in Section 4.1, generating thedata using identical procedures andemploying

the same parameters (number of agents, number of locations, size of indifference sets, and levels

of ḡ ). However, at each level of ḡ considered in each scenario, we apply the mechanism to the

simulated data 100 separate times, where the order of the agents is rerandomized each time. The

results are shown in the SI. With respect to the proportion assigned to a top-three location, the

difference between themaximumandminimum ranges from0.05 to 0.18with amediandifference

of 0.13.18 Thus, reordering could produce a typical improvement on the top-3 metric over the

typical draw by several percentage points in these data.

One limitation of this exercise, however, is because the ḡ -constrained priority mechanism

does not characterize the set of constrained Pareto-efficient assignments (as we showed by

example in Section 2.3), we do not know if there are constrained efficient assignments that yield

improvements even beyond the oneswe can generate by reordering the families and applying our

mechanism.We also do not know if there is a strategy-proof constrained-efficientmechanism that

picks out the assignment that maximizes the top-3 metric among those that can be generated

by reordering the agents under our constrained priority mechanism—let alone an assignment

that cannot be generated by reordering. It is obvious that themechanism defined by successively

reordering and then selecting the one thatmaximizes the top-3metric does not define a strategy-

proof mechanism. If the planner is willing to sacrifice strategy-proofness, she could attempt to

target the best assignment that could be generated using our constrained priority mechanism

by successively reordering the agents. But by implementing this approach, agents may have an

incentive to falsify their preferences, and hence the best assignment(s) the planner is trying to

target may no longer even be generated.

5.1 Using Predicted Preferences
An alternative approach to capturing part of the gains that we are seeing from reordering the

agents thatdoesnot sacrifice either strategy-proofnessor constrainedefficiency is tousehistorical

(or other) data to predict the preferences of the agents. For example, the planner could use

historical data to predict preferences based on the demographic similarities of past agents to

currentonesand fix theorderingof agents tobe theone thatmaximizes the top-3metric according

to the predicted preferences.19 In particular, note that if the planner can perfectly predict the

preferences of agents, then strategy-proofness is not a concern, since the planner already has

the agents’ preferences. In this case, the planner can recover the full gain from rerandomizing

the order of agents. If the planner cannot perfectly predict the preferences of the agents, but can

come close, then the planner should, in expectation, be able to recover some of this gain. Note

that because we are using historical data from past agents to set the order of the current agents,

the agents cannot use their reported preferences to manipulate the mechanism.

In order to evaluate this approach, we employed the data from our refugee application

described earlier. Specifically, we began by randomly drawing 100 families from the full set of data

used in the application. We then randomly generated 100 different orderings of those families,

and for each ordering, we implemented the constrained priority mechanism along a sequence

of values of ḡ . We used the families’ outcome score vectors and “actual” preference vectors (i.e.,

the preference vectors employed in the application presented earlier). This allows us to asses the

extent towhichdifferent orderings can result in varying levels of the top-3metric. The components

of Figure 6 labeled “Many Orders” display these results, with the black dots corresponding to the

18 With respect to the mean outcome score, the difference between the maximum and minimum ranges from 0.00 to 0.06
with a median difference of 0.04.

19 As an example, suppose in the refugee matching application that based on historical data, we know that male agents
in their 30s that come from a particular country and have worked in a particular profession are more likely than others
to report certain locations as being their top choices. Then, we have some noisy prediction of their preferences that, in
expectation, will be correlated with that particular agent’s true preferences.
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Figure 6. Results from applying our ḡ -constrained prioritymechanism to 100 randomorderings of a random
sample of 100 families from the 2016Q3 refugeedata, alongwith “best guess” orderingbasedonpseudopref-
erences. The black dots correspond to the average results across the 100 orderings, and the intervals denote
the maximum and minimum results obtained across the 100 orderings. The triangles (labeled “Pseudo-
Inferred Order”) denote the actual results when employing the ordering that yielded the best pseudo top-
3 metric according to the pseudo preferences. The three scenarios successively increase the amount of
perturbationapplied to theactual preferencevectors togenerate thepseudopreferences.Upperpanel shows
the average probability that an agent was assigned to one of its top-three locations. Lower panel shows the
realized average outcome score. N = 100.

average across the 100 orderings and the intervals denoting the maximum and minimum results

obtained across the 100 orderings.

Furthermore, for each of the 100 orderings, we also evaluated the results of applying the

constrainedprioritymechanismusingpseudo-preference vectors in place of the actual preference

vectors. These pseudo-preference vectors are intended to represent the imperfectly predicted

preferences of the agents. At each level of ḡ , we identified the random ordering that resulted

in the best pseudo aggregate welfare as measured by the fraction of families receiving one of

their top-three locations according to these pseudo preferences. We were then able to assess

the actual welfare results (based on the families’ actual preferences) of applying these “best

guess” orderings. In order words, we ran through the process by which a researcher could (i) in

advance/independent of actual preference reporting employ simulations to identify orderings

likely to lead to higher levels of aggregatewelfare based on predicted preferences and then (ii) use

those as the final orderings by which to actually apply the ḡ -constrained priority mechanism to

assign the families.

To simulate the process of imperfectly predicting the families’ pseudo preferences, we con-

structed their pseudo preference vectors by randomly perturbing their actual preference vectors.

In order to investigate the performance of this approach across different levels of effectiveness

in predicting preferences (i.e., the extent to which it is possible to construct pseudo preference

vectors that are similar to the actual preference vectors), we imposed varying degrees of perturba-
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tion and evaluated the results across those different specifications. The results can be seen in the

components labeled “Pseudo-Inferred Order” in Figure 6, where the separate panels correspond

to scenarios with increasing amounts of perturbation.20 For each scenario, the triangles labeled

“Pseudo-Inferred Order” denote the actual results when applying the ordering deemed best

according to the pseudo preference results, as described above. The figure shows that a large

portion of the gain from carefully fixing the order of agents could be recovered if the planner is

able to very accurately predict preferences, but how much can be gained could be very sensitive

how good a prediction the planner makes.21

5.2 Ordering Agents by Outcome Score Variance
We also explored an alternative strategy for identifying a priori (and hence without sacrificing
strategy-proofness) an agent ordering that is likely to result in a favorable level of the top-3metric.

Rather than attempting to predict pseudo preferences, this strategy instead utilizes the families’

outcome scores. Specifically, for each family the variance of outcome scores across locations can

be computed, and then agents can be ordered according to their variances. We propose ordering

the agents in increasing variance (from lowest variance to highest variance). The intuition for

this proposal is the following. In making assignments, the ḡ -constrained priority mechanism is

faced with the trade-off between sending agents to their preferred location and sending them to

a location that will enable the ḡ constraint to bemet. For each agent, the extent to which this par-

ticular trade-off can bite depends to some degree on the variance of their outcome scores across

locations. In the extreme case, there is no trade-off for an agent whose outcome score is identical

across locations: nomatter where they are sent, their assignmentwill have an equivalent implica-

tion for the ḡ constraint.However, for agentswhoseoutcomescorevariance is veryhigh, theextent

to which their assignment can work in favor of or against the ḡ constraint varies greatly across

locations. In otherwords, the high-variance agents’ assignments offer opportunity to create buffer

for the ḡ constraint, whereas the low-variance agents’ assignments do not. Therefore, assigning

low-variance agents earlier ensures that such units are more likely to be assigned to a highly

preferred location without occurring at the expense of excessively cutting into the ḡ constraint.22

Figure 7 shows the results of applying this increasing-variance ordering strategy (left panels)

as well as the opposite decreasing-variance ordering for illustrative purposes (right panels). The

components labeled “Many Orders” display the results from the same 100 random orderings as

in Figure 6, with the black dots corresponding to the average across the 100 orderings and the

intervals denoting the maximum and minimum results obtained across the 100 orderings. The

components labeled “Variance-Based Order” display the results when applying the mechanism

to the families put in the proposed increasing-variance order (left panels), or in the decreasing-

variance order (right panels). The figures show that when agents are ordered by increasing

outcome score variance, a substantial share of the gain from fixing the order of agents can be

recovered. It also depicts what we expect would happen when agents are ordered by decreasing

outcome score variance, which is that welfare measured by the top-3 metric is generally worse

than under the typical random ordering.

20 The degree of perturbation can be measured in various ways, but one set of intuitive measurements that correspond to
our top-3 metric is the proportion of families for whom 3, 2, 1, or 0 of their true top-three locations are contained in their
pseudo top-three locations. For each of our scenarios, the following reports the computed proportion of families forwhom
3, 2, 1, or 0 of their true top-three locations are contained in their pseudo top-three locations. Scenario 1: 0.77 (3), 0.23 (2),
0.00 (1), and 0.00 (0). Scenario 2: 0.37 (3), 0.59 (2), 0.04 (1), and 0.00 (0). Scenario 3: 0.03 (3), 0.33 (2), 0.51 (1), and 0.13 (0).

21 In the graphs on the far right, the planner is able to predict at least one of the top-three locations for more than half the
agents, and at least two for a third of them.

22 Another way to view this is that because the assignment decision for the high-variance agents hasmore influence on the ḡ
score—andhence their assignment also offersmore potential to create buffer against violating the ḡ constraint—then from
the perspective of managing the trade-off between preferences and outcome scores, it does not make sense to waste the
potential these units offer by assigning themearly, given that earlier assignmentswill more strongly prioritize preferences.
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Figure 7. Results from applying our ḡ -constrained priority mechanism to 100 random orderings of a random
sample of 100 families from the 2016 Q3 refugee data, along with outcome score variance-based orderings.
The black dots correspond to the average results across the 100 orderings, and the intervals denote the
maximum and minimum results obtained across the 100 orderings. The triangles (labeled “Variance-Based
Order”) denote the results when employing orderings based on the families’ outcome score variances across
locations,with families orderedby increasing varianceon the left anddecreasing varianceon the right. Upper
panel shows the average probability that an agentwas assigned to one of its top-three locations. Lower panel
shows the realized average outcome score. N = 100.

5.3 Overview
One property of the increasing outcome variance ordering approach is that it does not rely on

historical (or any other) data to predict the preferences of agents. Another desirable property of

this approach relates to fairness/distributive considerations: the agents that cannot gain much

by way of their outcome score through different assignments can be prioritized to achieve gains

in terms of their preferences, and those agents that have a lot to gain by way of outcome scores

could enjoy such gains even if they do not get one of their top preferences. A concern with fixing

theorderof agentsusingeitherof these techniques, however, is that itmayunintentionally though

systematically put agents of particular backgrounds higher or lower in the priority order, a form

of potential disparate impact that may not be desirable to the planner. In choosing the order of

agents, onemightwant to incorporateadditional constraints toovercomepart of thebias thatmay

be implicit in these techniques. More theoretical workwill be necessary to evaluate howworkable

these and other approaches of using data and machine-learning techniques to determine the

order of agents will be in various applications.

6 Other Mechanisms

As we have shown, the priority mechanism is a mechanism for which we can add a welfare con-

straint without compromising important properties such as strategy-proofness and (constrained)

efficiency. One could ask whether we can amend other existing mechanisms to take into account

the same constraint while retaining their desirable properties.
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Figure 8. Three person-three location example showing violation of strategy-proofness when adding a
planner’s ḡ constraint to TTCmechanism.

6.1 Top Trading Cycles
One candidate for an alternative mechanism, amongmatching mechanisms with one-sided pref-

erences, is Gale’s TTC mechanism (Shapley and Scarf 1974; Roth 1982), which has already been

employed in previous proposals for refugee matching (Delacrétaz et al. 2016). However, adding a
planner’s ḡ constraint to this mechanism while retaining the feature that it is strategy-proof and

constrained efficient is not straightforward.

Consider, for example, the simple adjustment of this mechanism that begins by provisionally

assigning agents to locations to maximize the planner’s objective and removes cycles until the

planner’s welfare measure falls below the threshold, at which point it stops and everyone that is

unassigned receives the assignment that they currently provisionally have. The following three

person-three location example depicted in Figure 8 shows that this mechanism is not strategy-

proof. The agents are 1,2, and 3, and the locations are A, B, and C.
Tomaximize the average outcomes score, agent 1 is provisionally assigned to A, 2 to B, and 3 to

C. Preferences over locations are given on the left. In themiddle, we have the values of gi (l ). Under
truthful reporting, agent 1 points to B, and 2 and 3 point to A. The only cycle is between 1 and 2.

However, if the planner’s threshold ḡ is set to 0.5, then swapping 1 and 2’s locations guarantees an

average outcome score below this threshold. The algorithm would terminate with the outcome

maximizing assignment being assigned. However, agent 1 could do better by misreporting and

pointing to C instead. In this case, the assignment would be 1 to C, 2 to B, and 3 to A, which gives
an average outcome score above the threshold.

Thus, while it may be possible to incorporate an outcome constraint into the TTC mechanism

that preserves strategy-proofness and constrained efficiency, it appears that there is no straight-

forward way to do so. For the priority mechanism, however, incorporating this constraint is both

straightforward and computationally tractable.

6.2 Two-Sided Mechanisms
Finally, we could also consider matching mechanisms with two-sided preferences, such as the

deferredacceptancemechanism (GaleandShapley 1962),wherewe incorporate theplanner’swel-

fare objective into the preferences for the locations. Here, there are at least two possibilities. First,

we could assume that locations care about maximizing the planner’s welfare score, along with

other considerations; that is, we allow the locations to express their genuine preferences. At least

for the refugee assignment application, this appears to be politically challenging, partly because

policymakers are concerned that this could result in political problems, where some locations

might discriminate against refugees from certain groups/nationalities. The second possibility is

weassume that each location simplywants tomaximize the averageoutcome score amongagents

assigned to it. This creates competition among locations. Again, at least in the refugee assignment

application, it is not clear why the planner (national government) would want to allow this—i.e.,

it is not clear what this assignment mechanism would achieve that serial priority does not, given

the objectives of the planner.
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7 Conclusion

Wehaveproposedanassignmentmechanism for contextswhere there is a social planner/designer

with their own welfare objective. Our mechanism strikes a compromise between maximizing

the planner’s objective and conducting the assignment solely on the basis of the agents’ pref-

erences. The mechanism is strategy-proof, constrained efficient, and does not require agents

to rank all locations. In real-world implementations of our mechanism, a planner could either

fix a feasible value of ḡ in advance or review the projected results along a sequence of ḡ val-

ues (as in Figures 3 and 5) and choose the final preferred assignment according to their own

criteria.

We applied our mechanism to refugee assignment and school choice data to demonstrate

how it could be implemented. Refugee matching has become a prominent policy innovation

proposed to help facilitate the successful integration of refugees into host countries’ economies

and societies. However, there is disagreement overwhether integration is best servedbymatching

on refugee preferences or expected integration outcomes. Our study highlights the value for

governments to collect preference information from refugees to provide them with agency and

improve allocations by harnessing the value of private information they possess over which loca-

tions work best for them. In addition, our mechanism is applicable to other domains that involve

the assignment of agents to different types of locations (or more generally speaking, one-to-one

andmany-to-onebipartitematchingproblems). As a secondexample,we apply ourmechanism to

the assignment of kindergarteners to schools. School choice has been a longstanding application

of market design, and our illustration demonstrates how our mechanism can be applied to this

canonical setting.

In addition, our investigation resulted in interesting new theoretical insights. First, we discov-

ered that the priority mechanism appears to be unique in the sense that our outcome constraint

can be incorporated into it in a straightforward manner without sacrificing the important

properties of strategy-proofness, efficiency, and computational tractability. In contrast, the

simple modifications of the TTC that we considered to incorporate an outcome constraint did not

retain strategy-proofness and/or computational tractability. Future researchmight consider other

modifications that retain theseproperties. Second,wealsodiscovered that not all of the canonical

properties of the priority mechanism are inherited by our constrained version. Namely, the

ḡ -constrained priority mechanism does not characterize the full set of constrained efficient

assignments.

These applications of our mechanism provide examples of how predictive analytics from

machine learning can be fruitfully combined with the preference-based allocation schemes

common in market design. The marriage of these two approaches can provide a powerful

tool to improve allocations in a way that incorporates information about what people want

while harnessing the statistical learnings from the historical data about what would be the

best options. Given the heterogeneity in information levels and the richness of historical data

on outcomes, we envision that such a combined approach could lead to better allocations in

a variety of settings compared to schemes that rely only on preferences or only on expected

outcomes.
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