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ON THE SINGULARITIES OF PLANE CURVES
TIBOR BISZTRICZKY

Let I be a differentiable curve in a real projective plane P? met by every
line of P? at a finite number of points. The singular points of I' are
inflections, cusps (cusps of the first kind) and beaks (cusps of the second
kind). Let n(I'), n,(I') and n;(I') be the number of these points in T’
respectively. Then I is non-singular if

n(I) = n(T) + ny(T') + ny(T) = 0;

otherwise, I is singular.

We wish to determine when I is singular and then find the minimum
value of n(I'). A history and an analysis of this problem were presented in
[1] and [2]. It was shown that we may assume that I' is a curve of even
order (even degree if I is algebraic), met by every line in P?. Then if T does
not contain any multiple points or if I' contains only a certain type of
multiple point, I is singular. Presently, we complete this investigation.

We assume that P? has the usual topology. Let p, ¢,...and L, M, ...
denote the points and lines of P* respectively. Let {(p, L, ...) denote the
flat of P’ spanned by p, L,... . The other notations used are
self-explanatory.

Differentiable curves. As we are presenting a theory already introduced
in [1] and [2], we list only definitions and relevant results.

Let 7 C P? be an oriented line. For 1, # ¢, in T, [z, ¢,] denotes the
oriented closed line segment of T with initial point ¢, and terminal point
t;. We set

[, 1) = [0, n1\{t1}, (to11] = [1, 1,1\ {70} and
(10, 1) = 10, ;1\ {10, 1, }-
If U(t) = (1), t;) is a neighbourhood of ¢ in T then
U (t) = (ty, 1), UT(t) = (4, 1;) and U() = U (1) U UT ().

A curve T in P? is a continuous map from T into P*. T is differentiable if
the tangent line

() = lim (T(), T(7) )
t#1 >t

exists for each ¢ € T and any line of P? meets I'(T) at a finite number of
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points. Henceforth T is differentiable and we identify I'(T") with T'.
Let # C T be a segment. We call I'| , a subarc of T' and identify I'(#)
with I' ,. If

n= sup. |L N T'(A)|
LcP?

is finite, we say that ./ is of order n. The order of a point t € T, ord(z), is
the minimum order which a U(t) can possess. Clearly ord(z) = 2. A point
t is ordinary if ord(t) = 2; otherwise t is singular. M is ordinary if each
point of # is ordinary.

Let 1 € T and I'(r) € L C P% Then L supports T at t if there is an
L' # L with I'(¢) ¢ L’ and a U'(¢) such that I'(U’(¢) ) is contained in one
of the open half-planes of P* determined by L and L. If L does not
support I' at ¢ then L cuts I' at t. Let

S@t)={L c PT¢t) € L # (1) }.

Then either all L € S(¢) support I' at  or all L € S(¢) cut T at ¢. Thus
there are four types of points in 7 with respect to I': ¢ is regular if L € S(1)
[(7) ] cuts [supports] T at #; ¢ is an inflection if L € S(t) and I}(z) both
cut I' at #; t is a beak if L € S(t) and I}(¢) both support I at z; ¢ is a cusp if
L € S(1) [I1(¢) ] supports [cuts] I" at r. We note that an ordinary point is
regular and hence inflections, cusps and beaks are singular.

Next we note that either every line of P? cuts I at an even number of
points or every line of P* cuts I" at an odd number of points. In the case of
the former [latter], we say that I' is of even [0odd] order. Let #/ C T. The
index of I'(#), ind(I'(A) ), is the minimum number of points of I'(#)
which can lie on any line of PP A point ¢t € . is a simple point of M, if
L) # I'(t) for v € #\{t}; otherwise, t is a multiple point of M. Let
m(I'(A#) ) be the number of multiple points of .#. We say that # is simple
if m(I'(#)) = 0. A point p € I'(T) is strong if there exist f; # ; such
that

p=TI@) = I‘(tj) and ind(I7z, 41) = 0.

Let s(I'(#) ) be the number of strong points of I' contained in I'(#). Since
a simple point of .# need not be a simple point of I', we note that
m(I'(#)) = 0 does not imply that s(I'(#)) = 0. If s(T') = 0, we say
that I' is almost simple.

Finally let # be a connected compact set in P? such that % is bounded;
that is, there is an L C P? not meeting 2 We denote by H(Z) the convex
hull of Zin the affine plane P\ L. It is clear that if N N % = @ then H(%)
is also the convex hull of # in P2\N . We say that # is convex if
X = H(R).

As indicated in the introduction, we wish to determine when n(I') > 0
and then find the minimum value of n(I"). Hence we restrict our attention
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to curves I' with the property that n(I') < co and (cf. [1]) m(I') < co.
Thus I" will be the differentiable union of a finite number of simple regular
arcs. As such arcs are ordinary (cf. [4], p.148), we have that I}(¢) depends
continuously on ¢ € T, a regular point is ordinary (hence a singular point
is an inflection, a cusp or a beak) and n(I') = 0 (mod 2) if and only if I is
of even order where

AT) = ny(T) + 2ny(T) + ny(D).

The main theorems. Henceforth we assume that I' is a differentiable
curve of even order with ind(I') > 0, n(I') < oo and m(T') < oco. We
note the following results regarding the minimum number of singular
points of I'.

1. If m(T) = 0 then n(I) = 3 and if ny(T) > 0 [ny(I) = 0] then
AT) = 6 [4]. ([2], 4.)

2.1f s(T') = 0 then n(T) = 2 and &(T) = 4. ([1], 3.1)

Thus it remains to determine the minimum values of »n(I') and n(T')
when s(I') > 0 and m(I') > 0. In Figure 1 of [1], we presented a
non-singular I' with s(I') = m(I') = 3 and each strong point, a double
point. From that example, it is readily seen that there exists a non-singular
I' with s(I') = m(T') = 1 and the strong point, a triple point. Finally in
Figure 1, we present a non-singular I' with m(I') > s(I') = 2.

Figure 1.

We now state the main theorems and list the results required for the
proofs. By the preceding, we of course assume that every strong point I' is
a double point.
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3. THEOREM. If s(I') = 1 then T is singular.
4. THEOREM. If s(T') = m(') = 1 then n(I') = 2 and n(T') = 4.
5. THEOREM. If s(T') = m(T') = 2 then T is singular.

6. Let (s, 5,) be a subarc of order two. Then (s, s,) is simple and
ordinary, Ii(s) N Is;, s,] = {I'(s) } for s € (s/, 5,) and there is a line
L c P? such that

L N ITs;, s,] = 0 and ind ITs|, s,] = 0.
Let (¢, t,) be ordinary and simple.

7. There exist s; << s, (s, preceding s,) in [, #,] such that (s}, s,) is of
order two and

l-‘[tl’ t2] Cc H(F[Sl, S2] )
We call [s,, s,], the (unique) convex cover of [t,, t,). ([1], 3.15).

8. If I'(t;) # I'(t,) and (I'(¢)), I'(t,) ) N I'(¢, t) = O then (¢}, t,) is of
order two. ([1], 3.13).

9. Forany t € (1}, 1)
L) NnTI[t,t) =0 or L(t) N T 1) =0.
([1], 3.12).

10. Let s(I'(¢,, 2,) ) = 0. If L N I[t,, 1;] = @ then L meets, and cuts, I'
in exactly two points. If L’ is a limit of lines, none of which meets
It,, t;], then L’ cuts I' in at most two points and these points lie
in [1), ;). ([1], 3.17).

Finally we note some elementary facts about the convex hull of a subarc
of T.

11. LEMMA. Let #* = H([u, v]), u # v and ind(I'[u, v]) = 0. Let
t € (u, v) be an ordinary point with the property that t is simple in [u, v] and
I'(z) € bd(#*).
1. The only supporting line of #* through I'(t) is I}(2).
2. If Ii(t) N Tlu, v]| = 1 then there is a U(t) such that
I'(U(t)) € bd(#*).
3. If ITi(¢) N Tu, v]| = 2 then there is a U(t) such that either
DU (t)) € bd(@*) or T(U (1)) C bd(%*).

Proof. 1. Since T(t) € bd(#*), there is a line L through T'(z) which
supports Z*. Since I'(z) € TI'(u, v) € £*, it follows that L also supports I’
at ¢ and thus L = I (¢).

2. Let
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[L(t) N Iu, v]| = 1.

It is clear that there is a U(¢) C (u, v) such that U(¢) is order two and
ILi(s) N IMu, v]| =1 foralls € U(z).

Since each s € U(¢) is ordinary, I (s) supports I'Tu, v] at 5. As
R* = H(I[u, v]),

it follows that I'(s) € bd(#*) for s € U(r).
3. Since I(z) is a line of support of %#*,

L) A Tlu, v]| = 2

implies that I (¢) supports I' at a point ¢ # ¢ in [u, v]. Hence the
continuity of tangents yields that there is either a Ut(t) ora U (1) in
(u, v) with the property that

ITy(s) N Tu, v]| = 1fors € Ut(t)ors € U (2).
Now 11.2 yields 11.3.

12. LEMMA. Let # be a closed bounded region bounded by the simple
subarc T[r, '] and the line L = (T(r), T(¥) ), L N I'(r, ') = O. Let r be
ordinary, I'(v, r) C &, L'(v) € I\{I'(r) }. Then I'(v, r) is not both simple
and ordinary.

Proof. Let I'(v, r) be simple. As |L N T'| < oo and v may be replaced by
any v/ € (v, r) satisfying I'(v") € L\{I'(r) }, we may assume that

T'(v, r) C inl(A).

Since I'(r) € bd(#%) and I'(r) is ordinary, L = Ii(r) by 11.1.
Put #* = H(Z) and thus

#* = H{I[r, r']) = HI[y, r']).
For w € (v, r), we note that
#* = HI'[w, 1) and |I}(r) N I'w, ]| = 2.

Hence by 11.3, there is a U(r) C (v, r’) such that either F(U+(r)) or
(U (r)) lies in bd(#£*). Since

DU (r)) € T, r) C int(®) C int(R*),
we have
(i) T (r)) c bd(#*).

Suppose that I'(v, r) is ordinary. Then (v, r) is of order two by 8.
Since

LTI, r]={TW),I@},
L and T'(v, r) bound a bounded closed region #’. Clearly,
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# = HI, r]) € &*.

Since #* is a closed bounded region in P?, #* is contained in some
affine restriction 4% of P%. In A, we note that I'(r) is the initial point of
two opposite rays.¥and.¥’ on L, say I'(v) € & Since (v, r) is of order two,
every ray from I'(r) meets I'(v, r) in at most one point. Let w € [v, r] move
from v to r. Then the ray from I'(r) through I'(w) rotates monotonically
about I'(r) starting from .# and hence, ending at .¥’.

Next let s € (r, ¥') tend to r. Since I' is ordinary at r, the ray from I'(r)
through I'(s) necessarily converges to the ray opposite .#’; that is, Z Since
L supports I at r, this implies that ['(s) € int(%£*). This is a contradiction
by 1.

13. LEMMA. Let %, and %, be convex sets in P* such that R = R, O\ R, is
connected. Then there is a line L C P* such that

Proof. Since %, is convex, there is an L, such that L, N %, = @;i = 1, 2.
We may assume that L; % L,, #, %, and %, are mutually distinct and
L, [L,] is not a supporting line of %, [%,]. Let {q} = L, N L, and denote
by 2 and 2’ the closed half-planes of P’ determined by L, and L,.
Since
R C int(2') say. Let L* C 2', L, # L* # L, and set
RF=2NRi0i=102.
As 2 C int(2),
LyNniny(%) #0 and L, N in(%) # 0

imply that #f and %5 are non-empty, disjoint convex sets in P2\L*
Hence (cf. [3]) there exist two distinct lines N, and N, such that
NA\L* supports and separates #Ff and %5 in P\L*; i = 1, 2. Put
Ny NNy, ={p}. Let Zand & be the closed half-planes in P> determmed
by N, and N,. Then by our construction, ¢ # p € int(2) and #ZF and #5
are both contained in &’ say.

If g € Pthen (p, q) € # N 2 and it follows that either

PPN R UB)=0 or (p,qg) N (A VYR =({(p}

In the latter case, (p, g) is disjoint from say %, and supports %, at p.

Hence a suitable line through ¢ close to (p, ¢) is disjoint from #;, U %,.
Let g € #'. As N, and N, separate Z{ and %5 in 2, this readily yields

that N, or N,, say N;, does not meet (L; N #5) U (L, N #F). Since

L, N N, € 2\%7,
we obtain that L, N N| & %,. As %, and #, N N, are convex in PA\L,,
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this implies that Z, N N; N 2" = @ and hence N|\L, supports %, in
P2\L1. Similarly, N\\L, supports %, in Pz\Lz. Altogether, N, supports
both %, and %,.

We note that the closed segments N\ N #F and Ny N %5 liein N, N 2
and are disjoint. Hence there is a point b € (N; N 2)\(Z} U %5) which
separates them in N, N 2 and there is a line N through b, close to N,
which does not meet ZF U %%. Since

N N2 N (% VU R =0,
N can be chosen so that it does not meet (%, U %) N 2’. Thus
Nn@# U =040
14. LEMMA. Let (x, y) and (u, v) be subarcs of order two with the property
that L = (I'(x), I'(y) ) is a line and T'(x, y) N R, = O where
R = HTu,v]) and % = H([x, y]).

Then

1. there is a line N' such that N' N (%, U %) = 0 or

2.{I'(x), I'(y) } € %, and there is a line N such that N N %, = 0 and N
meets, and cuts, I at exactly one point of (x, y).

Proof. 1f not 14.1 then #, N %, is not connected by 13. Since #, and %,
are convex, the same applies to

R Nbd%) = NTE))UVULNR))=R NLNSA.
As L N %, and L N %, are closed segments of L and L N %, has the end
points I'(x) and T'(y), this yields that

{I'x). T} c %

and there is a point p € (L N %)\%,. As %, is convex, there is a line N
through p disjoint from 2,. Since

{F(X), F(y)} - bd(‘@l)s
N # L and 14.2 follows.

15. LEMMA. Let m(T') = s(I') and let p = T'(¢,) = I'(t,) be a double point
of T such that (t,, t,) is of order two, t, or t, is ordinary,
ind(I[ty, ,]) >0 and s(Tt), ,]) = 1.
Then there is a differentiable curve T* of even order such that ind(T*) > 0,
m(T*) = s(I'*) = s(I') — 1, n;(I'*) = n/(F)forj = 1, 3 and n,(I'*) equals
ny(I) or ny(T') +1. ‘
Proof. Case 1. I (1)) = I1(1,).

Let T* be the closed segment [t,, #;] with ¢, and ¢, identified, say
t =1t = ty. Let T'*:T* — P? be the curve defined by T'*(¢) = T'(2)
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for t € T*. Since I' is differentiable and m(I') = s(I'), we obtain that I'* is
differentiable and

m(T*) = s(T*) = s(T) — 1.

It is easy to check that if #, [t,] is ordinary then ¢ is the same type of point
as t, [t;]. Thus n;(I'*) = n(T) fori = 1, 2, 3, n(I'*) = O(mod 2) and I'* is
of even order. Finally

ind(T[t, ,]) > 0

implies that ind(I'*) > 0.
Case 2. Ii(¢;) # I (t,) and ¢, t, are ordinary.
Since [¢,, t,] is ordinary with

there exists an ordinary subarc (u, v) such that 1, < t, in (u, v),
ind(I'fu, v]) = 0 and s(Iu, v]) = 1.

Let * € (¢, 1,). Since (¢, 1) is of order two and I}(#)) [I}(#,) ] cuts I at
ty [#;]), there exist t¥ € (u, t)) and 1§ € (¢,, v) such that

(1) any line meets I' in at most three points of (¢, #3),

(2) (¢F, r*) and (¢*, t¥) are both of order two,

(3) each line through two points of I'(¢}, #] [I[#,, 5)] cuts T in
(65, 13) [ (¢f, 1,]] and

(4) I'(¢}, %) has no double tangents, and a tangent of I'(¢¥, 1) meets this
arc at no more than one other point.

Finally, let & be the closed triangle in P? with the vertices I, I'(#)
and I'(#*) which contains the point p.

Let T*:T — P? be a curve with the property that I'*(z) = I'(¢) for
t € [13, tf], t¥ is an ordinary point of I'* with I'f(¢#) = L,(t*) (i = 1, 2),
[£f, t3] is a simple subarc of I'* such that I'*(¢}, t3) C £ and (¢f, r*) and
(t*, t3) are of order two and finally ¢* is a cusp of I'* with

T*e*) = I'(¢t*) and TH(*) = (T(*), p);
cf. Figure 2.
Clearly I'* is a differentiable curve with
nj(I‘*) = nj(I‘) forj = 1, 3,
ny(I'*) = ny(I') + 1 and
s(T*) = m(*) = m(T*[. 1]) = m(T[e, 13])

I

mT) — 1 =s(T) — 1
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Figure 2.

It remains to show that ind(I'*) > 0.
Let L ¢ P2 If L N T[#}, r¥] # 0 then

IL N T* = |L N T, 6] = |L N T, 1] > 0.
Thus we may assume that
(5) L N Ik, 5] = 0.

Suppose that L supports I' at some ¢ € (¢f, t¥) and thus L = I}(¢).
Since "

ind(Ity, 1,]) > 0

by assumption, L necessarily cuts I'[,, 7;] in at least one point. By (5), such

a point lies in I'(z§, #¥) and by (4), there is not more than one such point.

Thus L supports I and L cuts I" at one point each. Since I' is of even order,

this is a contradiction and hence L cuts I' at every point of intersection.
We again note that L N Iz, #;] = @ and by (5),

L N T[4, 4] € T@F, 1] U I, ).

As T is of even order, the preceding result implies that
IL NI =I|Ln I, 5)|

is even. Hence by (1),
L n Tt ) = {I@), I}

where {t', t"} C (¢}, 1] U [t,, t§) and ¢’ #* ¢”.
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If {¢, 1"} C (¢}, ;] say, then L N Iz, t5) # 0 by (3). Since this is
impossible, each of (¢, #,] and [#,, #§) contains exactly one of # and ¢”.
Hence L N £ separates I'(t*) from both I'(s§) and I'(#f) in & and L
necessarily meets both I'*(¢f, r*) and I'*(¢*, 13).

Finally, we observe that the preceding yields that any line meets both
I*(r¥, 5) and I'(#F, £5) with the same parity. Thus I'* is also of even
order.

Case 3. Ii(¢;) # I\(t,) and ¢, or ¢, is singular.

Let ¢, be singular, say.

We choose 1f € (1), t,) and 15 € (1,, t;) so close to t, that I'(¢}, t3) is an
arc of order two and that %', one of the closed triangles bounded by
L(#7), (%) and (L'(¢}), I'(#3) ), contains I[¢§, £5]. We may clearly assume
that p is the only double point and I'(¢)) is the only singular point in #’; cf.
Figure 3.

The arc I[t}, #§] decomposes & into two subsets. If 7f and 5 are
sufficiently close to t,, one of these subsets, say £, does not meet I'(3, 1,).
Let I":T — P?> be a curve with the property that I'(r) = I'(¢) for
t € [, tf] and I"[¢}, £3] is a convex curve in & with

L'ty =Ly, i=1,2.
Then I is a curve of even order with
indI”) >0 and n(I") = n(T);j = 1,2 3.
If ¢, is a cusp or a beak (case (a) ) then
sy =mI) =8ST) — 1
and I'* = I” has the required property. If ¢, is an inflection (case (b))
then
s(I'")y = m(I") = s(I)
and I has a double point in & which satisfies the assumptions of
case 2.
16. Remarks. Since
T(eg, 1f] = T*[5, 7] and
L@t, 13) © int(H(Tey, 13]),
ind(I') > 0 implies that the construction in Figure 3(a) results in a curve
I'* satisfying 15 even if ind(I'[t,, #;,]) = 0.

The construction in Figure 3(b) performed when ¢, is an inflection
point results in a differentiable curve I'” of even order with ind(I") > 0,
m(I") = s(I") = s(I') and n,(I") = n,(I) for i = 1, 2, 3. Furthermore, I
contains a double point p’ = I"(¢}) = I"(#)) such that neither (7], 15)
nor (t5, t}) is ordinary.
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(a) (b)

Figure 3.

As a final comment, we note that a similar construction allows us to
replace any simple cusp [beak] of I' by a pair of inflections [one inflection]
in such a manner that the resultant curve T' has the property that
s(T) = SA), m(@) = m(T), ind(T) > 0 and T is of even order; cf. [2],
p. 147.

Proof of Theorem 3. Let p = I'(t)) = I'(t,), t; # t,, be the only strong
point of I with

ind(I'z, 1,]) = 0.

We assume that (¢, t,) and (1,, t;) are ordinary.

Since ind(T[¢,, #,]) = 0, every multiple point of (¢, t,) is then the
common end-point of a subarc of index 0 in Iz, #,] and is therefore
strong. Thus s(I') = 1 implies that (¢}, ¢,) is simple. Then by 7, there exist
s; < s, in [¢, t,] such that (s}, s,) is of order two and

Iz, ] € 2 = H(T sy, 55)).

Let I'[v, v,] be the maximal subarc of I' contained in %, v, < v, in [¢t;, #;].
If t; # 5, then v, # s, I'(v|) & I'[s}, s,) and I'(v, 5;) has index 0. As in the
preceding, ind(I'(v;, s;) ) = O implies that every multiple point of (v, 5,) is
strong. Thus ¢, & (v, 5;) and s(I') = 1 imply that (v, s,) is simple. By 12,
(v, s1) is not ordinary and n(I') = 1. Hence we assume that ¢, = s, and by
symmetry, 1, = §,.

Suppose that ind(I'[z,, #;]) > 0. Since (z,, #,) is ordinary, (z,, ;) is not
simple by 7. Thus m(I'[#,, t;]) < oo implies that there exist u < u’
in (t,, ¢;) such that ¢ = T'(u) = I'(«') and (u, u’) is simple. But then
ind(T[u, ¥]) = 0 by 7 and ¢ # p is strong; a contradiction. Since
ind(I'[z,, 7,]) = 0, we assume as in the preceding that (¢, ;) is of order
two. Let

# = H(T[ty, 1,]).
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Since I(#;) meets I' at exactly ¢, and 1, and I is of even order, I}(¢;)
supports I at both ¢, and t, or I (¢;) cuts I" at both t; and ¢,; i = 1, 2. If
I (z)) and Ii(z,) both support I' at ¢, and ¢, then I(¢;) = I}(¢,) and it is
easy to check that Z N %’ is connected. Hence by 13, there is a line not
meetingZ U #'. Since I' C # U %', we obtain that ind(I') = 0. Thus I}(¢;)
cuts I' at ¢; and ¢ is singular.

In Figure 4, we present a I' of even order with ind(I') > 0, s(I') =
1 # m(') and n(T') = 1.

Figure 4.

Proof of Theorem 4. Let p = I'(t)) = I'(1,), t; # t,. Since n(T') is even, we
need only to show that n(I') = 3 or ny(I') = 2.

Case 1. Neither (¢, t,) nor (¢,, ¢;) is ordinary.

If ¢, or t, is singular or if (¢;, t,) or (¢,, t;) contains more than one
singular point then n(I') = 3. Hence we assume that ¢; and ¢, are ordinary
and say u [u,] is the only singular point of (¢;, t,) [ (t,, #;) ]. If u; or u, is a
cusp then n(I') = 4 and hence we assume that they are not cusps. From
16, we may then assume that u; and u, are inflections. Finally as p is
strong, we may assume that say

ind(I{t,, 1,]) = 0.

Let # = H(I'[t,, t;]). Since no line through I'(u,) supports I' at u,,
I'(u,) € int(#). Hence some line L supports &% in at least two distinct
points of I'[t,, #,] and there is a segment [r,, ;] C [t,, ¢,] such that

L =(I(r),I(ry)), LNTI(ry,r)) =0 and
L # Ii(t) forallt € (ry, r)).

As {I'(r)), I'(r,) } € bd(#%), we have that r; and r, are ordinary. Then
by 11,
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L = Ii(r,) and either r; = ¢, or L = Ii(r)).

Finally, let #’ be the closed region in # bounded by Ir,, r|] and L.

a) r; # t; and (r,, ry) is ordinary.

By 8, (r,, ry) is of order two and hence #' = H(I'[r,, r;] ). Since L is a
supporting line of both # and #’ and It,, t,] is simple, it follows that
I'ty, 1] € #’ and thus Z = #'.

Since ind(I') > 0, there is a maximal subarc I'[v,, v;] # T in # with

[ra 1] © (12, 1)) € (v, ).

As m(I') = 1, (v,, rp) and (r|, v,) are both simple and thus by 12, (v,, r;)
and (r|, v|) are both singular. As {u;, u,} C (v5, r,) U (r}, v;), we may
assume that say

Uy € (1, 1) N (r, v) = (1, vy)
and
uy € (ty, 1)) N (vy, 1) = (ty, ).

Finally, we note that since I'[v,, v,] is the maximal subarc contained in #
and

L)) & bd(R)\Ilr,, 1],

L cuts I' at v; and v,.
Suppose that (v|, v,) is ordinary and let t € (v;, v;) C (u;, 1,). By 9,

L) n Iy, 1) =0 or L) NI, 1) =0

Hence I'(v)) or I'(v,) does not lie on I}(z), I}(¢) # L and L cuts I at every
point of L N I'[v;, v,]. Since I'[v;, v,] is simple with index 0, L cuts I at
only v; and v, by 10. Altogether then

LT, =0
and thus (v,, v,) is of order two by 8. Let
R" = H({Iv,, vy] ).
Since
I'(vi,vy) N T(ry, 7)) =0 and L N Ty, vy) = 6,
we have that
I'(vi, vy) N bd(R) = 0.
As L cuts I' at v; and I'[v,, v|] C Z, it follows that

F(Vl, V2) N .@ = ﬂ
Thus by 14, either Z U #” is bounded in P? or there is a line not meeting
2 which meets and cuts I' at exactly one point. Since ' € # U #”, the
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latter yields that ind(I') = 1; a contradiction. Thus (v,, v,) is not ordinary
and n(I') = 3 or (r,, r}) is not ordinary.

b) r; # t; and (r,, ry) is not ordinary.

Then u, € (r5, 1)) C (15, t;) and we may assume that [¢,, ,] and [r}, #;]
are ordinary. Since I'(t,) € #Z\I'[r,, r|], either

I'ty, ;] € Int(&R') or TIty, ry) C A\X.
Similarly, either

L(ri, ] € int(#') or I(r, 1] € A\Z'.
Since I'(¢)) = I'(,), it follows that I'[z,, r,) U I'(r, #,] is in either int(#’) or
IZANZ A8

We recall that L = I (r)) = I (r,) supports both I" and the convex set #

at I'(r;) and I'(r;) and #' C Z. Let T*:T — P? be a curve with the property
that I'*(t) = I'(¢) for ¢t € [ry, 1], T'§(r)) = T¥(ry) = L, T*(ry, ry) is of order
two,

I*(r,rp)y NA=0 and HI*[r,r]) N ZC L.

Clearly, I'* is a simple curve of even order with the three singular points
I'*(u,), T*(r)) and I'*(r,). We note that I'*(u,) is an inflection and since L
cuts I'* at both r| and r,, each of I'*(r|) and I'*(r,) is an inflection or a
cusp. It is easy to check that I'[t,, r,) U I'(r|, ¢,] in either int(%#’) or Z\%’
yields that I'*(r)) and I'*(r,) are both cusps or both inflections. In either
case, we then have that n(I'*) is odd and thus I'* is of odd order; a
contradiction. Hence u, is not the only singular point of (r,, r;) and
n) =3orr =1,

c)ry =ty and u, € (8, ry).

By the preceding cases, we may assume that L meets I' at exactly t,, r,
and ¢, in [t,, t;]. Then L N I'[r,, 7;) = @ and (r,, t,) ordinary imply that
(r5, ;) is of order two and

R = H{r,y, 11]).

We now consider (u,, 4;) which is both simple and ordinary. Let [s5, s,]
be the convex cover of [uy, u;]. Thus (s,, 5,) is of order two and

H(uy, w)]) = H('[sy, 51]) = %, say.

As [ry, 1;] C [uy, u,] we have Z C X,.
Let I'[z,, z,] be the maximal subarc of I' contained in %,. Thus

[s2, 51] € [ua, wy] C [23, 2]
Since # C £, we also have
[, 4] €[22, 2] and [, u)] C [uy, uy].

Thus
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(6, ] C [25, 2] and [z}, 2] C [uy, 1],

and (z,, z;) is ordinary and simple.
Let [w;, w,] be the convex cover of [z, z,],

R. = H(I'[w,, wy)).
We note that I'(w;) # I'(w,), L' = (I'(sy), I'(s;) ) is a line and
bd(Z,) = I'(sy, s)) U (L' N A).

If {I'(z)), I'(z;) } € L’ then by arguing as in the preceding (with L’ = L,
zy = v, and z, = v,), we obtain that ind(I) = 1; a contradiction.
Thus {I'(z)), I'(z,) } is not contained in L’ and in particular

s(I'sy, 541) # 0.
As p € ITs,, 5], this implies that
t2<u2<S2<tl<Sl éul §Z]<22=t2.

Hence p = I'(z;) € L’ and I'(z)) € L’. Since L’ is a supporting line of £,
and I7z,, z;] is the maximal subarcin %,, L’ cuts I" at z;. By 10, L’ cuts I’ at
exactly one point, say z, in (z,, z;) and by 9,

L NT(z,z)=0

and L’ supports I' in at most one point of (z, z,). Clearly (z,, z) is of order
two and

I'(zy,z) N %, = 0.
It is now easy to check that I'(z) & %, L’ N I'(z, z,) = @ and thus’
I'(zy, z) N %, = 0.
Since w; < w, in [z, z,],
Fw;, wy)) N R, = 0.
Since I'(w;) # I'(w,), 14 implies that
NN@RUR) =0
for some N’ or
{T(w)), I'(wy) } < £,

and there is an N such that N N %, = @ and N meets, and cuts, I' at
exactly one point of (w;, w,). Since

I' = Iz, 2,] U T2y, 2] € %, U &,

the latter is true. But {I'(w)), T'(w,) } < £, implies that w;, = z
and w, = z, and thus (z,, z,) is of order two. Since I'[z,, z;] C %, and
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N N %, = B, the intersection property of N implies that I is odd order; a
contradiction. Thus (z,, z,) is not ordinary and n(I') = 3.

d) ry = t; and u, € (ry, 1)).

In this case, we consider the simple and ordinary arc (4, u,) and argue
as in ¢) with (u,, u;) to obtain a contradiction to n(I') = 2.

Case 2. (1), 1) or (1,, t;) is ordinary.

Let (1, t,) be ordinary and let [s,, 5,] be the convex cover of [t,, t,] with
R = H(Is, s5]).

Suppose s, # t,. Since L = (I'(s)), I'(s,) ) supports both # and T at
I'(s;), we have L = I (s,). Hence p # I'(s,) by 9 and either

[Sl’ 32] C (tl’ 12)

or

(S], S2) = (tl’ t2)

Let I'[v,, v,] be the maximal subarc of I' in # containing Iz, t,].
Assume [s), 5;] C (¢}, t,). Thus L = I(s;) = I (sy). Since (1), 1) is
ordinary, we obtain that p € int(%#), L cuts I at v; and v,, and

tl<SI<S2<12<v2<V1<tl-

As both (v, s)) and (s,, v,) are simple, 12 yields that each of them is
singular. Arguing as in Case 1 a), we obtain that ind(I') = 1 if (v,, v))
is ordinary. Hence (v,, v;) is not ordinary and n(I') = 3. Thus we may
assume that s; = 1,5, = 1, and (¢, 1,) is of order two.

Since the preceding is symmetric in (¢, t,) and (¢,, t;), we also have that
(15, ;) is of order two whenever (#,, ¢;) is ordinary. Since

I[r), ) N Ity 1] = {p},

the intersection of H(I'[¢,, t,]) and H(I'[t,, t,]) is either {p} or one of
these two sets is contained in the other. In the latter case, ind(I') = 0 and
in the former case we obtain that ind(I') = 0 by 13. Thus we may assume
that (7,, 1;) is not ordinary. We may also assume that say ¢, is ordinary, for
otherwise n(I') = 3.

If ind(I'[¢,, t;] ) > 0 we apply 15 and 1 to obtain that n,(I'*) = 0 implies
n(I') = n(I'*) = 3 and ny(I'*) > 0 implies that

) = w(l*) — 2 = 4.
Hence, let
ind(T[z,, 1;]) = 0.

If ¢, is singular then the construction in 15, Case 3 yields a curve I with
all the properties of T except that either m(I") = 0 or I" has exactly
one strong double point and I” is ordinary at that point. Since 1 is
applicable when m(I") = 0, we may assume that 7, is also ordinary. Thus
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(t,, t;) contains two inflections or a cusp. From 16, we may assume that (z,,
t,) contains two inflections. Let Z* denote the convex hull of the bounded
arc (curve) Iz, t,]. We claim that

(1) there exist r < s in (,, ¢;) such that

{T(). T(s)} C bd(@*) and T(ty, r) U I(s. 1;) C int(®#*).

If p € int(#*) then clearly (1). If I (z;) # I (z,) then (cf. 15, Case 2) for
any ordinary ¢ arbitrarily close to ¢; or 1, in (2,, t;), I}(¢) cuts I in (25, ¢,).
Thus I3(¢) is not a supporting line of #* and I'(+) & bd(%*). Since there
exist ordinary U+(t2) and U (#)) in (2, #;), (1) follows. Let

p € bd@*) and () = L(ty).

Since ¢, and ¢, are ordinary and (,, t,) is of order two, it is immediate that
Ii(z)) is a supporting line of both # and #*. Hence

T[ty, t,] N Ty, 1] = {p)

yields that Z € %* or #* C % and thus ind(I') = 0. This is a
contradiction and hence (1).

Since {I'(r), I'(s) } < bd(#*), there are lines through I'(r) and I'(s)
which support #*. Since (t,, ¢;) contains at most inflections, it follows
that I'(r) and I'(s) are ordinary. In particular; I}(r) is a supporting line
of R#*,

L) N T, r)=190

and there exists a U(r) of order two in (,, t,). Let ¢ tend r in (t,, r) N U(r).
Then I'(t) € int(#*) and 6 imply that I (¢) cuts I' in (¢,, 1))\ U(r). Hence
by the continuity of tangents, I}(r) meets I in (r, #,]. Similarly, I}(s) meets
I in [#,, s).

Let u; and u, be inflections, u; << u, in (#,, t;) and suppose that
n(l') = 2. Then

{L'(u), T'(uy) } C int(X*)
and I}(r) meets I' at some point ' € (r, #;] such that
L) n T, r) = 0.
Since I'(¥) € bd(#*), we have that u; # r # u, and r is ordinary.

Let 7 # ¢,. If (r, ) is ordinary or (r, r’) contains only u, or u,, we argue
as in Case 1 to obtain a contradiction. If I(r) meets I" at say r < r/ < r”
in (15, ;) then one of (, ¥) or (#, r”") again contains at most one of u; and
u,, which is again a contradiction. Hence we may assume that I;(r) meets
I' at exactly r and 7’ in (¢, ¢,) and that {u, u,} C (r, ). If p € I }(r) then
(15, r) U (7, t)) ordinary yields that (¢,, ) and (#, t,) are both of order two
by 8. Since ¢, and ¢, are ordinary, it readily follows that either

#* = HT[t,, r]) or &* = H(II, 1,]);
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a contradiction by (1). Hence
p & Li(r) and |L}(r) N ITty, ]| = 2.
Then I'(z,, r) C int(%*) and 11.3 imply that
LUt (r)) c bd@*) for UT(r) c (r, 7).
Let % be the closed region in #* bounded by I'[r, ] and I}(r). Thus
LUt (r)) c bd@)
as well. But now
LUt (r)) € bd@*) N bd(Z)
and
L(r, ¥y N (T[ty, 1) U T, 1]) = @
clearly imply that
It,, ) VI, 1) € % and Tty 1)]] C X = R*.

Let I'[z,, z,] be the maximal subarc of I' contained in %', z; < z, in [¢}, 1,].
Then

[r, ] € (12, 1)) C (23, 2)).

As t| & (z,, r) we have that (z,, r) is both simple and ordinary; a
contradiction by 12.
Let / = ¢,. Then

L) n T, 1] = {p, I'(r) }.

Symmetrically, we obtain that
L(s) N Tt 1] = (2. T6) ).

Thus p € Ii(r) N Ii(s) and in fact, p € bd(#*). From (1),
bd(#*) c Ir, s] U I(r) U Li(s).

If (z,, r) is ordinary then (¢,, r) is of order two. Since r is also
ordinary,

I'[t,, ] € bd(H(Ity, r]))

implies that there is a U+(t) C (r, s) such that
T(U"(r)) < int(H(T[t5, r])).

Since (1, t,) is simple, it follows that
R* C H(It,, r])

and thus
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I(t,, r) € bd(#*);

a contradiction by (1). Thus (¢,, r) is not ordinary and similarly, (s, 7,) is
not ordinary. Let u, € (t,, r), u; € (s, ;) and thus

(r,8) C (uy, uy) C (1, 1))

We recall that (r, s) is ordinary and simple. Since I (r)[I}(s)] meets
T[r, s] at only I'(r)[T'(s) ], we have that

(T(r), T(s) Yy N I'(r,s) = @
and thus (7, s) is of order two by 8. Next

Ilr, s] N Iz, 1] = 0.
Since p € I (r) and (¢, 1,) is of order two, it follows that
2) L NT@, ) =190

or I(r) cuts I at ¢, ¢, and exactly one point of (¢, #,). As I}(r) does not
cut I' in (1, 1}), we have that T is of odd order in the latter case; a
contradiction. Thus (2) and symmetrically,

(3) ) N Tt 1) = 0.

But then bd(#) = I't,, t,] implies that Z N #* = {p} and thus Z U #* is
bounded by 13. Since I' € # U %*, this is a contradiction and hence (r, s)
is not ordinary and n(I") = 3.

Figure 5.

We note the arguments in the proof of Theorem 4 not only show that
n(I') = 2 but also indicate how I' may be constructed. For example, the
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curve I' in Figure 5 is of even order with ind(I') > 0, m(T') = s(I') = 1,
p = I'(t)) = T(t,), (1;, t,) of order two, ind I'[t,, #;]) = 0 and r and s cusps
in (tz, tl)

Proof of Theorem 5. Let T be an ordinary curve with the strong double
points p = I'(t;) = T'(ty), t; # 15, and ¢ = I'(u)) = I'(uy); u; # u,. By
suitable labelling, either ¢} < u; < t, < u, < tfjort), < t, < uy <
u, < t.

Case l. 1) <uy < t, <u <t

As (1), t,) is ordinary and simple [z, #,] has a convex cover [sy, 5,]. Let
I'[v,, v,] be the maximal subarc of I' contained in H(I[s,, s,]) and
containing I'[s,, s,]. Then either

[s]’ 52] C (tl’ t2) or [Sl, S2] = [tl, t2],

cf. Case 2 of the proof of 4.

Suppose [s;, s,] € (¢}, t;). Then the quoted argument yields that
(t, 1) C (v}, vp). We now apply 12 repeatedly. If I'(v|) € ITs,, s,] then
v = u, and u; € [s}, 5,). Hence

vy € {u, i} and T'(vy) & I(sy, 59).

But then (s,, v,) is simple; a contradiction by 12. Hence I'(v,) & Is,, s5]
and (v, 5;) is not simple. Symmetrically, (s,, v,) is not simple and thus

{u;, } € (vy, ) O (553, Vo).

As this is impossible, we obtain that [s, s,] = [¢}, t,].

By the preceding, (1, t,) is of order two and symmetrically, (¢,, ¢;) is of
order two. The line I}(#,) supports both H(I'[¢,, ¢;,]) and H(I'#, #,]) and
thus

L) n T ={p}

Suppose I}(#;) # Ii(t,). Then Ii(¢,) supports I' at ¢, and cuts " at #,.
Thus I1(z) N T' = { p} yields that I" is of odd order. This is a contradiction
and hence L = I|(¢,) = I}(#,) supports I at both #; and ¢,. Symmetrically,
L' = Ii(u;) = I (4,) meets I" at only ¢ and supports I' at both u; and u,.
Clearly, L # L’ and L n L' & T. Thus T lies in one of the closed
half-planes bounded by L and L’ and ind(I') = 0. This is a contradiction
and therefore T is singular.

Case 2. 1) < b, < uy < uy < {.

Then Iy, ,] N Tu;, u,] = @ and (¢}, ;) and (u,, u,) are both simple
and ordinary. As in Case 1, we then obtain that (¢,, t,) and (u,, u,) are both
of order two. Let

R = H{T[ty, t,]) and %, = H(Iu,, wy]).

If ind(I'[z,, #;]) > O then 15 implies that there is a differentiable curve
I'* of even order with
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ind(T'*) > 0,
m(I*) =sI*) =s(T)— 1 =1 and
nT) = n(I*) - L
Thus by 4, n(T'*) = 2 and n(I") = 1. Hence we may assume that
ind(It,, t,]) = ind(T[uy, u;]) = 0.

Let #¥ = H(I'[t,, 1;]).
As in the Case 2 of the proof of 4:
(1) there exist » < s in (¢, ¢;) such that

{T(r), T(s) } C bdy),
T(t, r) U T(s, t}) C int(#¥)

and if ¢ # I'(r) [¢ # T'(s)] then I}(r) [I}(s) ] meets T" in (r, ;] [ [5, s) ]
Next we observe that both

(2) Ty, w] € I'uy, 1] © 4,
and
3) TIMuy, wy] € HI[t, uy] U IMuy, 1])
lead to a contradiction. Since (2) implies that
p €I, 1] € %,
bd(%,) = Tlu,, u,] and I'u;, uy] N Iy, t,] = B yield that
p € inY%)
and in particular
I, 1, =T € int(#,) and ind(T') = 0.
In case of (3),
Hty, u] U I'uy, 1) € HTuy, wy])

implies that I' € H(T[u,, ;] ). Thus ind(Tu,, u;]) = 0 now yields that
ind(I’) = 0.

Since I'[t,, ;] U I'[u,, ¢,] and T'[u,, u,] are curves which meet only at g,
I(u;) = I (uy) clearly implies either (2) or (3). Hence I(u;) # I}(u,),
I (u)) cuts I" at u, and g & bd(#}). Since r is ordinary, we have that

L(r) O Tty r) = 8
and I}(r) meets I" at a point ¥ € (r, #;] such that

L(r)y N T, r) = 0.
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Since (r, ¥’) is ordinary, (r, ) is of order two whenever (r, r’) is simple. Let
A’ be the closed region in %} bounded by I'fr, '] and I}(r).
Let ¥ # t,. If ¢ & I'(r, r) then (r, r') is simple and

@ = H(I[r, r]).

Clearly since r is ordinary, I'[t,, ] € %#’ and thus #' = %} and (3). If (r, r)
contains u; and not u, then (r, r’) is still simple,

R = H{r,r]) and p € I't,, uy] C Z#'.
Since ¢ € bd(#’) and I (u,) cuts I at #,, it follows that
p € Ly, 1)) € AN,

a contradiction. The preceding is symmetric in #; and u, and thus u; < u,
in (r, 7). But then it is clear that either

L(r, 7y C int(#}) or In, 1] Cc X.

Since I'(r, ¥') C int(#F) implies (3), there exist v; < v, in [t,, ;] such that
I'[v5, v,] is the maximal subarc of I' contained in #'. Then r < u; <
u, < r'in (t,, t;) implies that

{r(vl), F(VQ)} N F[r, I"] =0

and m(I') = 2 yields that (v, r) or (¥, v,) is simple. Hence n(I') > 0
by 12.

Let 7/ = t,. Then I (r) meets I at exactly t,, r and ¢, in [t,, £;] and (7, )
is ordinary. Since (#,, r) is also ordinary, (as in the preceding) r & (u,, u,)
implies that (¢,, r) or (r, t;) is of order two with Z* equal to its convex hull.
This is a contradiction by (1) and thus r € (u;, u,) and (r, ¢,) is of order
two. Since the preceding arguments are symmetric in » and s; I}(s) meets I’
at exactly #,, s and ¢, in [t,, #;] and s € (u;, u,). Since r < s in (8, 1)),
s € (r, ;). As (r, t}) 1s of order two, 6 implies that I'(;) & I(s); a
contradiction. Thus (z,, ) cannot be ordinary and n(I') > 0.

From the curve represented in Figure 5, it is easy to deduce that there
exists a differentiable curve I' of even order with ind(I') > 0, m(I') =
s(I') = 2 and n(I') = ny(I') = 1.
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