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A universal method for evaluating the quality of aggregators

Ying Han∗ David Budescu†

Abstract

We propose a new method to facilitate comparison of aggregated forecasts based on different aggregation, elicitation and

calibration methods. Aggregates are evaluated by their relative position on the cumulative distribution of the corresponding

individual scores. This allows one to compare methods using different measures of quality that use different scales. We

illustrate the use of the method by re-analyzing various estimates from Budescu and Du (Management Science, 2007).
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1 Introduction

Forecasting can be defined as a process of making predic-

tions about future events based on past events and present

information. Researchers and practitioners can use various

elicitation formats reflecting what is being forecasted – val-

ues of some target quantity or probabilities of future events

– and the precision level of the forecasts – point estimates,

precise interval estimates or vague interval estimates – that

are calibrated by different measures which rely on differ-

ent metrics. Hence it is almost impossible to compare the

relative accuracy of forecasts obtained from different elici-

tation methods (e.g., Brier scores of point probabilities and

hit rates of probability intervals) or from the same elicitation

but using different calibration measures (e.g., hit rates and

Q scores of probability intervals).

The quality of forecasting can be also influenced by the

aggregation method applied and variations in the size of the

group of individual forecasts aggregated (Chen et al., 2016;

Larrick & Soll, 2006; Park & Budescu, 2015). Yet meaning-

ful comparisons of aggregation methods can be conducted

only between forecasts obtained by identical elicitation meth-

ods. This problem plagues many real-life forecasting scenar-

ios where forecasts are often collected by various elicitation

methods in various formats prior to being optimally aggre-

gated.

In this paper, we propose a new measure – the quantile

metric – that can address this problem, and we illustrate
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its potential by showing how it can answer several research

questions related to aggregation of forecasts.

1.1 Forecast elicitation formats and corre-

sponding calibration measures

Point estimates of quantities. Forecasters1 are sometimes

asked to estimate a target quantity using a single numerical

value. For example, analysts often forecast the Earning per

Share (EPS) of a security in $ in the next quarter. Hyndman

and Koehler (2006) summarized various measures that have

been proposed to calibrate such point estimates of arbitrary

quantities. If Yt denotes the true value of the target quantity,

and Ft represents the forecast, the forecasting error can be

defined as et = Yt − Ft . Hyndman and Koehler (2006) dis-

cussed four types of measures. The first type involves scale-

dependent measures which are usually based on squared, or

absolute, errors such as Mean Square Error (MSE) = mean

(e2
t
) and Mean Absolute Error (MAE) = mean (|et |). The

second type consists of measures based on percentage errors

pt = 100et/Yt , for example, Mean Absolute Percentage Er-

ror (MAPE) = mean (|pt |). The third class measures relative

errors and relative measures, for example, Mean Relative

Absolute Error (MRAE) = mean (|et/Ft |). The last class

includes relative measures (usually ratios), such as relative

MAE = MAE/MAEB where MAEB is the MAE obtained

from a chosen benchmark method (e.g., the “naïve” method

based on the most recent observation).

Point-probability estimates. Point-probability forecasts

of target events are very popular in finance, meteorology,

intelligence, etc. For example, an analyst might need to esti-

mate the probability that a stock price will exceed a certain

threshold, and he/she can decide to buy or sell it. There are

many methods for obtaining these probabilities (e.g., Abbas,

Budescu, Yu & Haggerty, 2008).

1We use the terms judge, forecaster and analyst interchangeably through-

out the paper.
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The most common calibration measure for point probabil-

ity forecasts is the Brier score:

Brier = a + b
1

N

N∑

t

(Ft − Ot )
2
, (1)

where N is the number of categories, Ft denotes estimated

point probability of category t, and Ot is the outcome of

the category ( Ot = 1 when the target event t occurs and

Ot = 0 if it does not) and a and b are arbitrary scaling

constants. Brier score can be further decomposed into three

additive components: uncertainty, reliability and resolution

(Murphy, 1973). Brier scores take on values between 0 (for a

perfect forecaster) and 2 (the worst possible forecaster) and,

in general, the lower the Brier score, the more accurate the

forecast. Many alternative proper scoring rules can be used

in this context (see Merkle and Steyvers, 2013 for a recent

review).

Subjective probability intervals2 of quantity. Alterna-

tively, forecasters can be asked to provide an interval of a

target quantity corresponding to a pre-stated level of confi-

dence. For example, an economist might need to forecast a

90% probability interval of the growth of the annual gross

domestic product (GDP). The judge may be asked to directly

report upper and lower limits of the target interval, or to re-

port multiple quantiles (e.g., .01, .25, .50, .75 and .99) which

can be used to infer lower and upper limits of the probability

interval (e.g., .05 and .95 can be used to obtain 90% interval)

(Alpert & Raiffa, 1982).

Eliciting full probability distributions can be extremely

time-consuming (Whitfield & Wallsten, 1989), so these sub-

jective intervals can be viewed as simplified and crude ap-

proximations to the forecasters’ full subjective probability

distributions. On the other hand, recent studies developed

forecasting methods that can approximate a more refined sub-

jective probability distribution in a relatively efficient way

(Abbas et al., 2008; Haran, Moore & Morewedge, 2010;

Wallsten, Shlomi, Nataf & Tomlinson, 2016). For example,

Haran, Moore and Morewedge (2010) developed the Subjec-

tive Probability Interval Estimates (SPIES) method where

judges are asked to allocate probabilities to several prede-

fined bins (intervals) to approximate the full distribution.

A similar elicitation method was adopted by the European

Central Bank (ECB; Garcia, 2003) and the Federal Reserve

Bank of Philadelphia (Croushore, 1993) in surveys of ex-

pert forecasters regarding macroeconomic indicators such as

inflation and GDP growth rate. Abbas et al. (2008) took a

different approach where participants were asked to use a

“probability wheel” to make pair-comparisons between (a)

a fixed value of a variable and probabilities or (b) values of

2We use the term probability-interval to prevent confusion with con-

fidence intervals that are computed with standard formulas using sample

statistics.

a variable and a fixed probability to find any quantile (up-

per and lower limits of a probability interval) in a dynamic

process.

The most common method of calibration for probability

intervals is the hit rate, i.e., the proportion of intervals that

contain the true value. For instance, if a judge is asked to

construct 90% probability intervals for 10 quantities (e.g.,

prices for 10 different stocks at a specific time point) and if 8

of these intervals include the corresponding true values, the

hit rate is 80%.

The Q score is another measure of calibrating probability

intervals (Jose & Winkler, 2009):

Q(L,U,T) = −(α/2)(U − L) − max{L − T,0}

−max{T − U,0},
(2)

where L and U are lower and upper bound of 100(1-α)%

probability interval reported, and T is the true value of the

target quantity. The −(α/2)(U − L) portion of the Q score

penalizes overly wide probability intervals and the last two

terms (only one of them applies in any given case) impose an

additional penalty when the true value falls below the lower

bound or above the upper bound of the interval specified.

1.2 Comparison of different forecasting for-

mats

Point-estimates of target quantities and probabilities are sim-

ple, straightforward and intuitive, but in many cases it is un-

realistic to expect judges to generate them. Klayman et al.

(1999) argued that probability intervals have real-life coun-

terparts. When one is not sufficiently informed, or certain,

and choses to accompany the best guess by a “margin of

error” the subjective interval format provides a natural way

to express the uncertainty.

Empirical studies have found that individual forecasts are

often miscalibrated (over- or under-confident) and biased

(e.g., Alpert & Raiffa, 1982; Gilovich et al., 2002; Juslin,

Wennerholm & Olsson, 1999; McKenzie, Liersch & Yaniv,

2008; Soll & Klayman, 2004). For point probability esti-

mates, over-confidence (under-confidence) is defined as fore-

casted probabilities that are higher (lower) than the fraction

of actual occurrences of the target event. For example, if

a weather forecaster expressed 70% confidence in his/her

forecasts, but it rains in 50% (or 80%) of the cases where

predictions were made with this confidence, the forecaster is

considered over-confident (under-confident). For probabil-

ity interval estimates, over-confidence (under-confidence) is

associated with probability intervals that are too narrow (too

wide).

Empirical research suggested both point probability es-

timates and probability intervals are, mostly, overconfident

(Fischhoff, Slovic & Lichtenstein, 1977; Alpert & Raiffa,

1982; Klayman et al., 1999). However, only a few stud-

ies compared different elicitation methods directly in terms
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of forecasting quality, and they yielded inconsistent results

(Klayman et al. 1999; Juslin et al. 1999; Budescu & Du,

2007). Klayman et al. (1999) and Juslin et al. (1999) found

that the probability interval format induces more severe mis-

calibration than the point probability format. Klayman et

al. (1999) compared the rate of overconfident cases when

using point probability (5%) and probability-interval format

(45% overconfidence in 90% probability intervals). Juslin

et al. (1999) compared the two elicitation methods in terms

of the difference between forecasted value and true value

(for the probability interval format the error was measured

by the difference between the targeted confidence level and

the hit rate). Budescu and Du (2007) utilized a more re-

fined within-subject design to compare different elicitation

modes and found out the level of mis-calibration did not differ

between point-probability estimates and probability-interval

estimates.

Previous studies also yielded different results regarding

the judges’ sensitivity to the target confidence level for the

probability intervals. Some concluded that forecasts are

insensitive to the target confidence level so, for example,

50% and 80% intervals are indistinguishable (Teigen & Jor-

gensen, 2005; Langnickel & Zeisberger, 2016). In contrast,

Budescu and Du (2007) found out the 50% probability inter-

vals resulted in under-confidence, 90% probability intervals

induced over-confidence and the 70% intervals were well

calibrated. Park and Budescu (2016) argued that this differ-

ence is due, at least in part, to different experimental designs.

Teigen and Jorgensen (2005) and Langnickel and Zeisberger

(2016) adopted between-subject designs, where people are

required to report a single probability interval without any

reference and, therefore, were insensitive to confidence lev-

els. On the other hand, Budescu and Du (2007) used a

within-subject design, where people could adjust their fore-

casting results by referring to their own predictions and their

forecasts were much more likely to be influenced by the level

of probability intervals (Park & Budescu, 2016).

1.3 Aggregation of forecasts

The quality of forecasting can also be improved by com-

bining individuals’ forecasts using mathematical aggregates

(Davis-Stober, Budescu, Dana & Broomell, 2014; Larrick

& Soll, 2006; Soll & Larrick, 2009). This approach, la-

beled “wisdom of crowd” (WOC), suggests that mathemati-

cal aggregation of individual estimates will yield more accu-

rate result than the average individual estimate of the same

quantity because of the benefits of error cancellation (Lar-

rick et al., 2011). The most commonly used aggregation

methods are mean and median (Gaba, Tseltin & Winler,

2017). Both methods are suitable for both point and in-

terval estimates. For point estimates, one simply takes the

mean/median of individuals’ forecasts and for interval esti-

mates, one can calculate the mean/median of both the upper

and lower bounds of the individuals’ forecasts. Enveloping3,

probability averaging and quartiles are aggregation methods

suitable for interval estimates (Gaba et al., 2017; Park &

Budescu, 2015). Park and Budescu (2015) compared simple

mean, trimmed mean, median, enveloping, probability aver-

aging and quartile aggregation method for interval estimates

and concluded that the quartile method outperformed other

aggregation methods in terms of accuracy and informative-

ness.

All the aggregation methods discussed above implicitly

suppose equal weighting for all forecasters. However, this

may be suboptimal in the presence of different levels of ex-

pertise and experience of different forecasters. To refine

the original unweighted procedure of aggregation, Budescu

and Chen (2015) developed the contribution weighted model

(CWM) which was used to quantify the contribution of each

individual based on the historical forecasting accuracy and

then obtain weighted average (or applying various aggre-

gation heuristics) of individual estimates using individual

contribution as weight. They found that the CWM was 28%

more accurate than simple average (see also Chen et al.,

2016).

Aggregates of multiple forecasters often outperform the

average individual forecaster, but the approach may fail if the

entire group is biased in the same direction, since they cannot

benefit from the error cancellation. Soll and Larrick (2009)

empirically proved this point in experiments using simplified

groups (2 judges) and demonstrated that when bracketing4

rate was low, mean aggregation performed worse than the

“best” judge. Grushka-Cockayne et. al (2017) mathemati-

cally showed that the combined forecasts of quantiles should

be preferred compared to a randomly selected forecaster only

when the forecasts bracket the true value. Davis-Stober et al.

(2014) provided a more general analysis of the cases where

aggregation outperforms individual judges in terms of re-

ducing the MSE of the forecasts.

1.4 The current study

Numerous methods have been developed to elicit, calibrate

and aggregate different types of forecasts in order to improve

the accuracy of the forecasts and reduce mis-calibration and

other forecasting biases. For this reason, it is particularly

important to compare the quality of forecasts from different

elicitation methods, calibration measures, aggregation meth-

ods (and different combinations of elicitation, calibration and

aggregation methods) in order to choose the most appropri-

ate forecasting format, calibration measure and aggregation

methods.

3Enveloping aggregation, uses the minimum of the lower bounds and

the maximum of the upper bounds as estimates of the aggregated lower and

upper bound.

4Bracketing means the estimates are on both sides of true value (some

are larger than the true value and some are smaller than the true value), so

they “bracket” the truth.
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Yet there is a serious gap in the literature in this respect.

First, comparative studies of different elicitation methods are

rare and yield inconsistent conclusions. Second, no prior

studies have compared aggregation methods of forecasts us-

ing different elicitation formats. Third, even under the same

elicitation method, different calibration measures use differ-

ent scales and therefore are hard to compare. For example,

both the Q score and the hit rate measure forecasting accu-

racy of probability intervals, but if they yield inconsistent

results there is no way to resolve the incongruence.

These limitations highlight the need to develop a method

that facilitates comparisons across different elicitation, cal-

ibration, and aggregation methods. Such a methodology

would map all the methods on the same scale, so that they

can be compared in an efficient, flexible and elegant fash-

ion. These considerations lead to the development of quan-

tile metric, a standardized, easy-to-implement and interpret

comparison metric that can be used across different elici-

tation methods, different calibration measures and different

aggregation methods (or across different combinations of

elicitation, calibration and aggregation methods).

In the quantile metric the aggregated raw performance

measure score (e.g., Brier score, Q score, hit rate, MAE, etc.)

is mapped onto the empirical cumulative distribution of the

appropriate individual performance measure scores (i.e., the

empirical cumulative distribution of individual Brier scores,

Q scores, hit rates, MAEs, etc.). Thus, the quality of the ag-

gregated procedure is evaluated in the context of the individ-

ual forecasting performance. For example, if the aggregated

Brier score is at the 80th percentile of individual forecasting

performance, the aggregate is interpreted as being as good

as, or better than, 80% of the individual forecasters. The

appeal of this simple approach is that the procedure is scale

free and can be used for different aggregation methods, dif-

ferent elicitation methods, different calibration measures and

different combinations of these methods.

There is a simple and direct analogy between this approach

and standard interpretation of measures of optimal (e.g., ap-

titude tests) or typical (e.g., personality tests) performance.

It is impossible to compare directly person A’s score on a test

of verbal ability and person B’s score on a test of spatial abil-

ity, but it is meaningful to compare their percentiles in the

relevant distribution of scores and infer that A’s verbal ability

exceeds B’s spatial ability. Since quantile metric scores are

always in the same scale (0 – 100%), it is easy and conve-

nient to compare meaningfully aggregated performance of

different elicitation methods, aggregation methods (includ-

ing different aggregation group sizes) and differently scaled

calibration measures. Moreover, this approach can also help

people decide, based on the relative ranking of aggregated

result compared to the individual forecasters, whether it is

better to rely on aggregated result or to seek experts.

The present study introduces the new quantile metric

method and demonstrates various applications. To achieve

these goals, we analyze previously published data from

Budescu and Du (2007) and illustrate how the quantile metric

answers five distinct research questions regarding aggregated

forecasts. They are:

1. Which aggregation method is better: Mean or Median?

2. Which elicitation method benefits more from aggre-

gation of forecasts? Point probabilities or probability

intervals?

3. Do Q scores and hit rates based on the same intervals

yield similar aggregated forecasting results? If not,

which one benefits more from the aggregation?

4. Under what circumstances, should one look for “the

best expert” rather than aggregate multiple individual

forecasts?

5. Does extremization improve the accuracy of aggregated

forecasts?

2 Method

2.1 Data

We selected the Budescu and Du’s (2007) dataset because

(a) it has large enough number of subjects (N = 63) to

create robust empirical cumulative distribution of individ-

ual forecasts; (b) it provides both point-probability estimate

and probability-intervals estimates collected from a within-

subject experiment; and (c) it contains multiple probability

intervals. Therefore, the quantile metric can be applied to

multiple forecasts in various formats, and we can compare

multiple aggregation methods applied to forecasts based on

different elicitation methods (point probabilities or probabil-

ity intervals), various interval widths (50%, 70%, and 90%),

and various metrics (Hit rates or Q scores).

We analyze the data from Experiment 1 in Budescu and

Du (2007). The researchers recruited 63 graduate account-

ing students (31 women and 32 men) at the University of

Illinois at Urbana-Champaign. The subjects were shown

price series of 40 (unidentified) real stocks for the 12 months

of Year 1 and asked to forecast 50%, 70% and 90% probabil-

ity intervals for the 40 stocks at the end of Month 3 of Year

2. They were also asked to estimate the (point) probability

that the price of each stock would exceed $20 at the same

time.

The original study also collected lower and upper bounds

for the best estimate of point probability and median of stock

price, but we do not analyze these measures. Three sub-

jects were removed from the dataset because of incomplete

responses, so the final dataset includes 60 subjects and 40

different stocks as forecasting items and 7 estimates (1 point

probability estimate and 3 pairs of upper and lower bound

estimates defining 50%, 70% and 90% probability intervals)

per subject per stock.
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2.2 Applying the quantile method

We computed for each subject three measures of forecasting

performance. The point probability estimates (that each

stock will exceed $20 at the end of Month 3 of Year 2) were

calibrated by a linear transformation of regular Brier score:

Trans f ormed Brier = 100 − 50(Brier). (3)

This transformation generates a score ranging from 0 to 100

with 100 indicating a perfectly calibrated judge (who reports

probability = 0 for all events that do not occur and/or proba-

bility = 1 for all events that occur) and 0 indicating the worst

possible judge (who assigns probability = 0 for all events

that do occur and/or a probability = 1 for all the events that

occur).

We computed Q scores for 50%, 70% and 90% probability

intervals – (based on three pairs of lower and upper bound

estimates of the stock price at the end of Month 3 of Year

2) of the 40 stocks. We obtained individual Q scores by

averaging the 40 Q scores of each subject.

We computed hit rate deviances for 50%, 70% and 90%

probability intervals for each subject. These measure how

close hit rates were to the target probability intervals:

Hit Rate Deviance = (−1)|Hit Rate−Target Rate|. (4)

Hit rate deviance is non-positive score, and the closer it is to

0, the better forecasting quality it represents.

Next we obtained empirical cumulative distributions of

the seven individual forecasting performance measures (the

Brier scores for point probabilities, and Q scores and hit rates

for 50%, 70% and 90% probability intervals) by compiling

all judges’ data.

To examine the group size effect on the aggregation

method, we selected randomly 32 (of the 60) judges, ran-

domly assigned them to smaller groups and analyzed their

judgments as 16 groups of size k = 2 (k represents the number

of subjects in each group), 8 groups of size k = 4, 4 groups

of size k = 8, 2 groups of size k = 16 and 1 group of size k =

32. This approach guarantees that all aggregates are based

on the same information. For each group we calculated both

the mean and median aggregate for all performance mea-

sures. This process was repeated 100 times to reduce the

random selection effect. The design is presented in Table 1.

For each of the 100×32/k groups with equal group size

(k), we averaged the aggregated results and constructed 90%

empirical confidence interval for each measure of aggre-

gated group performance using 5th and 95th percentiles of

100×32/k aggregated measures in any given condition (same

performance measure, same aggregation method and same

group size). For instance, there were 800 (transformed) Brier

scores with the k = 4, for the median aggregation, and we

recorded the 5th and 95th percentiles (corresponding to the

40th and 760th observation of these 800 scores).

Table 1: The Number of observations and group sizes used

in analyzing Budescu and Du (2007)

Group size

(k)

Number of
groups

in each dataset

Number of

datasets

Total number of

observations

2 16 100 1600

4 8 100 800

8 4 100 400

16 2 100 200

32 1 100 100

Finally, the mean and 90% empirical confidence intervals

of the aggregated results of the same condition were mapped

onto the corresponding individual cumulative distributions

(e.g., aggregated Q scores for 50% probability interval of

k = 2, 4, 8, 16 and 32 were mapped onto empirical cumu-

lative distribution of individual Q scores for 50% probabil-

ity interval) to obtain quantile metric scores (equivalent to

percentiles of these group performance measures in corre-

sponding individual cumulative distribution). Aggregation

of all 60 judges was also mapped on the same cumulative

distribution as a reference.

3 Results

3.1 Which aggregation method is better:

Mean or Median?

We compare directly the forecasting quality of different ag-

gregation methods and different group sizes. Table 2 summa-

rizes group performance measures and corresponding quan-

tile metric scores of 70 different forecasting conditions -

seven measures × two aggregation methods (mean and me-

dian) × five group sizes (k = 2, 4, 8, 16 and 32). We can

compare directly any subset of quantile scores obtained from

different combinations of elicitation methods, calibration

measures and aggregation heuristics. For example, when

the forecasts of 32 randomly selected subjects were aggre-

gated, the aggregated Brier5 score percentiles of mean and

median aggregation are .767 and .867, respectively, indi-

cating that mean aggregation exceeds 76.7% of individual

forecasters and the median aggregation is as good as or bet-

ter than 86.7% of the individual forecasters.

When we focus on the comparison of the aggregation

methods and group sizes, two patterns emerge. First, for any

group size and elicitation method the median aggregates are

as good, or better than, the mean aggregates. This pattern is

observed for six performance measures (transformed Brier

5For simplicity, Brier score here and hereafter indicates transformed

Brier score.
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Table 2: Mean and Median Aggregation Percentiles of Aggregated Brier Scores, Q Scores and Hit Rates for 50% CI, 70%

CI and 90% CI for Different Group Sizes.

k=2 k=4 k=8 k=16 k=32 n=60

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

Brier 92.624 92.585 92.959 93.041 93.116 93.230 93.189 93.354 93.229 93.441 93.231 93.595

Percentile 0.600 0.600 0.750 0.750 0.750 0.767 0.767 0.817 0.767 0.867 0.767 0.900

Q50% −2.774 −2.777 −2.651 −2.550 −2.599 −2.463 −2.579 −2.423 −2.568 −2.400 −2.559 −2.380

Percentile 0.583 0.583 0.667 0.683 0.683 0.733 0.683 0.783 0.683 0.817 0.683 0.833

Q70% −2.040 −2.027 −1.948 −1.895 −1.898 −1.842 −1.866 −1.814 −1.848 −1.799 −1.832 −1.777

Percentile 0.583 0.600 0.700 0.750 0.750 0.833 0.783 0.833 0.833 0.850 0.833 0.850

Q90% −0.956 −0.957 −0.867 −0.875 −0.824 −0.837 −0.804 −0.823 −0.796 −0.825 −0.792 −0.819

Percentile 0.683 0.683 0.817 0.800 0.900 0.883 0.933 0.900 0.933 0.900 0.933 0.933

HR 50% −0.168 −0.170 −0.180 −0.161 −0.186 −0.165 −0.187 −0.167 −0.191 −0.167 −0.175 −0.150

Percentile 0.550 0.550 0.467 0.550 0.467 0.550 0.467 0.550 0.467 0.550 0.533 0.650

HR 70% −0.109 −0.106 −0.091 −0.083 −0.084 −0.069 −0.076 −0.053 −0.076 −0.037 −0.075 −0.025

Percentile 0.500 0.500 0.617 0.617 0.617 0.700 0.617 0.700 0.617 0.817 0.683 0.950

HR 90% −0.080 −0.080 −0.059 −0.053 −0.046 −0.035 −0.036 −0.023 −0.032 −0.016 −0.025 0

Percentile 0.550 0.550 0.600 0.600 0.767 0.767 0.767 0.917 0.767 0.917 0.917 1

scores, Q scores for 50%, 70% probability intervals and hit

rates for 50%, 70% and 90% probability intervals) and all

group sizes (k = 2, 4, 8, 16 and 32), suggesting that the me-

dian aggregation generally leads to better forecasting quality

compared to the mean aggregation (see also Hora, Fransen,

Hawkins & Susel, 2013). The most likely explanation for the

superiority of the median relates to the distributions of all

the scores. Most of them are skewed with longer tails in the

direction of poor performance, on the relevant metric. Inclu-

sion of some of these low performing judges has a negative

impact on the aggregates. It is well known that the mean

(minimizing least squares) is more sensitive that the me-

dian (minimizing least absolute deviations) to the presence

of outliers, so the median tends to outperform the mean.

The only exception is Q scores for 90% probability in-

terval where the mean aggregation outperforms the median

aggregation for k = 4, 8, 16 and 32.6 However, these differ-

ences are very small (smaller in absolute values than those

for Q70% and Q50%) so, for all practical purposes the two

aggregation methods perform identically in this case.

The second regularity is that, for all elicitation and ag-

gregation methods, the larger group sizes have almost al-

ways higher scores than the smaller groups, suggesting that

forecasting quality improves as a function of the number

of forecasts being combined. The only exception is mean

6When k = 2, the mean and median coincide, so they map into the same

percentiles.

aggregation of hit rates of 50% probability intervals where

dyads (k = 2) yields higher score than other groups sizes (k

= 4, 8, 16 and 32).

Figure 1 plots the aggregated Brier scores (means in Fig-

ure 1A and medians in Figure 1B) of different group sizes (k

= 2, 4, 8, 16 and 32) on the empirical cumulative distribution

of the individual Brier scores. Different colored dots repre-

sent the aggregated Brier scores for five different group sizes

(orange for k = 2, purple for k = 4, blue for k = 8, red for k =

16 and green for k = 32). The error bars that match the colors

of dots represent 90% empirical confidence intervals of av-

eraged aggregated Brier scores of different group sizes. For

example, in Figure 1A, the error bar of k = 4 (purple) ranges

approximately from 0.50 to 0.91, which indicates that 90%

of the aggregated Brier scores based on mean aggregation

with group size of 4 fall in this range.

The key patterns observed in Table 2 – superior perfor-

mance of median aggregation compared to mean aggrega-

tion, and monotonicity in group size – can also be clearly seen

in the figure. Figure 1 also illustrates that the effect of group

size is more salient in median aggregation where different

colored dots are more spread out than in mean aggregation,

where all the dots for k > 2 (red) are clumped together indi-

cating similar forecast qualities. Comparison of error bars

of the same color (equal group size) from Figure 1A and 1B

does not show any particular pattern whereas comparison

of different colored error bars show that the variation of the
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Figure 1: Mean and median aggregation of transformed Brier scores of 5 different group sizes plotted on empirical cumulative

distribution of individual Brier scores (Figure 1A for mean aggregation and Figure 1B for median aggregation). Error bars that

match the colors of dots represent 90% empirical confidence interval of averaged aggregated Brier scores of different group

sizes.
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Figure 2: Mean and median aggregation of Q scores of 50% CIs of 5 different group sizes plotted on empirical cumulative

distribution of individual Q scores of 50% CI (Figure 2A for mean aggregation and Figure 2B for median aggregation). Error

bars that match the colors of dots represent 90% empirical confidence interval of averaged aggregated Q scores of 50% CI

of different group sizes.
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aggregated results is reduced when the group size increases

for both mean and median aggregation. Figure 2 shows ag-

gregated Q scores for 50% probability intervals (means in

Figure 2A and medians in Figure 2B) of different group sizes

plotted on the empirical cumulative distribution of individual

Q scores for 50% probability interval. The superiority of the

median over the mean aggregation is demonstrated by two

features. First, for the same group size, median aggregation

leads to higher percentile than the mean aggregation. Sec-

ond, the effect of group size is more pronounced for median

aggregation. A visual inspection of the error bars confirms

the conclusions from Figure 1, highlighting the group size
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Figure 3: Mean and median aggregation of Q scores of 70% CIs of 5 different group sizes plotted on empirical cumulative

distribution of individual Q scores of 70% CI (Figure 3A for mean aggregation and Figure 3B for median aggregation). Error

bars that match the colors of dots represent 90% empirical confidence interval of averaged aggregated Q scores of 70% CI

of different group sizes.
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Figure 4: Mean and median aggregation of Q scores of 90% CI of 5 different group sizes plotted on empirical cumulative

distribution of individual Q scores of 90% CIs (Figure 4A for mean aggregation and Figure 4B for median aggregation). Error

bars that match the colors of dots represent 90% empirical confidence interval of averaged aggregated Q scores of 90% CI

of different group sizes.
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effect on the width of 90% confidence intervals for both

aggregation method.

Figures 3 and 4 plots the aggregated Q scores of 70%

and 90% probability intervals in individual cumulative dis-

tribution (means in Figure 3A and Figure 4A and medians

in Figure 3B and Figure 4B). The median aggregation yields

equal, or higher, scores than the mean aggregation for ag-

gregated Q scores of 70% (Figure 3), but this superiority

does not hold for aggregated Q scores of 90% (Figure 4).

In Figure 3, the different color dots are more spread out in

mean aggregation (Figure 3A) than in median aggregation

(Figure 3B) where aggregated performance of k = 8, 16 and
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Figure 5: Aggregated Brier scores, Q scores of 50% CI, 70% CI and 90% CI of 5 different group sizes using mean (5A) and

median aggregation (5B).
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32 clump together. Therefore Figure 3 suggests a stronger

group size effect for the mean, unlike the pattern seen for the

Brier scores. In Figure 4 the positions of the same colored

dots in left and right panels are quite similar, suggesting there

is no significant difference in the group size effect between

mean and median aggregation methods.

3.2 Which elicitation method benefits more

from aggregation of forecasts: Point prob-

abilities or probability intervals?

One could argue that the comparisons in first example could

have been done without using the new metric. In this section

we use the quantile method to compare forecasting perfor-

mance of different measures based on different elicitation

methods. More specifically, we compare point probabili-

ties and probability intervals (three different widths 50%,

70% and 90% CIs). Such comparisons could not have been

performed without invoking the quantile metric.

Figure 5A and 5B summarize aggregated forecasting qual-

ity of four measures (Brier scores for point probability format

and Q scores for 50%, 70% and 90% for probability interval

format) across different group sizes under mean (Figure 5A)

and median (Figure 5B) aggregation. The 90% probabil-

ity intervals yield the highest aggregated forecasting quality

and 50% intervals lead to the lowest aggregated performance

with 70% probability intervals and point probabilities lying

in between. When the probabilities were elicited by interval

format, wider probability intervals benefit more from aggre-

gation compared to the narrower intervals, for both mean

and median aggregation: Percentile (Q90%) ≥ Percentile

(Q70%) ≥ Percentile (Q50%). Part of the explanation for

this pattern has to do with the definition of the Q score itself

that penalizes more heavily narrow intervals. Assume the

target variable has a standardized normal distribution and

our judge is perfectly calibrated (so only the first part of the

Q score matters), and predicts 50% intervals of width 1.35,

70% intervals of width 2.07 and 90% intervals of widths

3.29. This judge would be penalized −0.25*1.35 = −0.338

for the 50% interval, −0.15*2.07 = −0.311 for the 70% in-

tervals and 0.05*3.29 = −0.165 for the 90% intervals.7 In

addition, the inter-individual variance of the Q90% is higher

than the variance of the narrower intervals, reflecting the

higher variance for extreme cases, so the benefits of aggre-

gation for Q50% and Q70% are more limited.

The ranking of the Brier scores and the Q scores for the

70% intervals varies slightly across aggregation methods

and group sizes. More specifically, under mean aggrega-

tion point probabilities outperform 70% intervals based on

smaller group sizes (k = 2, 4 and 8), yet it is defeated by

70% intervals for larger group sizes (k = 16 and 32). In

contrast, when aggregated by the median, the point proba-

bilities outperform 70% probability intervals when the group

size equals 32. Moreover, when the group size is fixed, the

variation of mean aggregation is larger than that of median

aggregation, suggesting that the effect of elicitation format

is more salient in mean aggregation than in median aggrega-

tion.

7The penalties for coverage of the 50%, 70% and 90% intervals would be

equal only if we the judge’s distribution has very long tails, such that ratio of

the widths of the intervals is inversely proportional to their corresponding

αs: (Width Interval 1 / Width Interval 2) = α2 / α1.
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Figure 6: Aggregated hit rates and Q scores of 50% CI of 5 different group sizes plotted on empirical cumulative distribution

of individual hit rates and Q scores of 50% CIs using mean aggregation (Figure 6A for aggregated hit rates of 50% CI and

Figure 6B for aggregated Q scores of 50% CI).
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3.3 Do Q scores and hit rates based on the

same intervals yield similar aggregated

forecasting results? If not, which one ben-

efits more from the aggregation?

The new quantile method can help “equate” various evalu-

ation measures that are on different and unrelated scales by

mapping them on the common percentile scale and facilitate

comparisons among them. To illustrate this point we com-

pared the aggregated performance of probability intervals

calibrated by hit rate deviances and Q scores.

Figure 6 summarizes aggregated results for 50% proba-

bility intervals (hit rate deviances in Figure 6A and Q scores

in Figure 6B) of different group sizes plotted on the cor-

responding individual cumulative distributions using mean

aggregation. It is easy to observe that aggregated Q scores

of 50% intervals benefit from aggregation more (have higher

percentile scores) than the corresponding aggregated hit rate

deviances across all group sizes (dots of the right panel al-

ways yield higher y-axis values than the same colored dots

of the left panel). The error bars of aggregated hit rate de-

viances are wider than those of the corresponding aggregated

Q scores for all group sizes (see Table 3). This suggests that

for 50% probability intervals, aggregated hit rate deviances

might produce less “stable” forecasting performance than Q

score. Lastly, one unusual pattern of group size effect is ob-

served in Figure 6A: group size of 2 yields highest percentile

and exceeds all other group sizes (k = 4, 8, 16 and 32) even

the aggregated forecast including all subjects (n = 60).

Figures 7 and 8 display results for 70% and 90% proba-

bility intervals, respectively. Similar to Figure 6, aggregated

Q scores yield higher percentiles than aggregated hit rate

deviances for all group sizes for both probability intervals

and Q scores are more stable, as their narrower error bars

indicate.

The general superiority of the aggregated scores Q-scores

can be attributed to the fact that they include more informa-

tion (coverage and magnitude of over- and under-estimates)

and the inter-judge variance of the Q-scores is consider-

ably higher than their hit rate counterparts. The benefits of

aggregating Q-scores reflects the ability to reduce this vari-

ance effectively. Interestingly, both measures perform better

(higher percentile scores) as the confidence level increases,

replicating findings from the previous example.

3.4 Under what circumstances, should one

look for experts rather than aggregate

multiple individual forecasts?

The quantile metric can also address another question that

comes up often in forecasting contexts: Should one select

a random sample of k judges and aggregate their forecasts,

or should one seek a few, properly selected, “experts” and

rely on their judgments (e.g., Larrick & Soll, 2006). Con-

ceptually, one can frame this as a choice between “quantity”

and “quality”. Naturally, the answer depends on several pa-

rameters such as the value of k, the nature of the aggregation

function and, importantly, on one’s ability to reliably identify

expertise. The quantile metric is exceptionally well suited to

address this question.

Consider a case where one seeks to forecast 70% proba-

bility intervals of a target variable and uses the Q score as
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Figure 7: Aggregated hit rates and Q scores of 70% CI of 5 different group sizes plotted on empirical cumulative distribution

of individual hit rates and Q scores of 70% CIs using mean aggregation (Figure 7A for aggregated hit rates of 70% CI and

Figure 7B for aggregated Q scores of 70% CI).
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Figure 8: Aggregated hit rates and Q scores of 90% CI of 5 different group sizes plotted on empirical cumulative distribution

of individual hit rates and Q scores of 90% CIs using mean aggregation (Figure 8A for aggregated hit rates of 90% CI and

Figure 8B for aggregated Q scores of 90% CI).
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Table 3: Mean Percentiles and Corresponding Empirical 90% CI of Aggregated Q Scores for 50% CI, 70% CI and 90% CI

for Different Group Sizes Using Mean Aggregation.

50% Probability Intervals 70% Probability Intervals 90% Probability Intervals

Mean 90% CI Width Mean 90% CI Width Mean 90% CI Width

k=2 Q score 0.583 [0.117, 0.950] 0.883 0.583 [0.233, 0.950] 0.717 0.683 [0.233, 0.950] 0.717

HR 0.550 [0.067, 0.967] 0.900 0.500 [0.167, 1.000] 0.833 0.550 [0.083, 1.000] 0.917

k=4 Q score 0.667 [0.283, 0.950] 0.667 0.700 [0.400, 0.900] 0.500 0.833 [0.500, 0.950] 0.450

HR 0.467 [0.150, 0.967] 0.817 0.617 [0.233, 1.000] 0.767 0.600 [0.233, 1.000] 0.767

k=8 Q score 0.683 [0.400, 0.883] 0.483 0.750 [0.533, 0.883] 0.350 0.933 [0.750, 0.950] 0.200

HR 0.467 [0.233, 0.783] 0.550 0.617 [0.317, 1.000] 0.683 0.767 [0.550, 1.000] 0.450

k=16 Q score 0.683 [0.600, 0.833] 0.233 0.783 [0.683, 0.850] 0.167 0.933 [0.833, 0.950] 0.117

HR 0.467 [0.317, 0.717] 0.400 0.700 [0.367, 1.000] 0.633 0.767 [0.600, 1.000] 0.400

k=32 Q score 0.683 [0.650, 0.717] 0.067 0.833 [0.750, 0.850] 0.100 0.933 [0.917, 0.950] 0.033

HR 0.467 [0.383, 0.650] 0.267 0.700 [0.500, 0.950] 0.450 0.767 [0.767, 1.000] 0.233

the measure of quality of forecasts. The results in Table 3

indicate that taking the mean of k = 16 forecasters would, on

average, beat 78.3% of the individual forecasters and there is

a 95% chance of outperforming 68.3% of them (based on the

lower bound of the 90% CI). Thus, it makes sense to seek

an expert if, and only if, one can reliably identity the top

(100 − 68.3 =) 31.7% forecasters and choosing one of them.

Otherwise, it is better to rely on the average of k = 16 ran-

domly selected judges. The ability to identify top forecasters

based on their past performance depends on the stability of

the performance over time. Assuming that the performance

of the judges at times t1 and t2 follows a bi-variate normal

distribution with a correlation of ρ, it is possible to calculate

the chance that a judge who is in the top X% at t1 would

also be in the same category at t2. Table 4 summarizes these

probabilities for X = 20% and 30% and for ρ’s ranging from

0.5 to 0.9. Overall, the chances of finding an expert who will

beat the mean of k = 16 forecasters at t2, based on the fact

that she did this at t1, are quite low and they do not favor

chasing the experts.

To further investigate this issue, we ran a small simulation

using the Budescu and Du (2007) data. We randomly split

the 40 stocks into two subsets of 20 each, and identified the

top forecasters, as measured by their Brier scores, in each

subset. We first identified top performers from the training

set (subset 1 or 2) and compared their performance in the

testing set (subset 2 or 1, respectively) with the performance

of the two aggregation rules (mean and median) of the same

set. We replicated the process with 100 different random

assignments of stocks into two subsets and averaged their

quantile metric scores over 200 trials (100 random assign-

ments × 2 subsets). The median (Kendall) rank correlation

Table 4: Probability That a Judge Who Is in the Top X% at

t1 Would Also Be in the Top X% at t2 for Different Bivariate

Normal Distributions.

ρ(t1, t2) Top 30% Top 20%

0.5 0.157 0.087

0.6 0.173 0.099

0.7 0.190 0.113

0.8 0.211 0.129

0.9 0.237 0.15

Table 5: Performance of Top Judges and Mean & Median

Aggregations

Rule Mean Quantile Score 95% CI

Top 5% Judges 0.641 [.619 - .663]

Top 10% Judges 0.711 [.696 - .726]

Top 15% Judges 0.750 [.737 - .763]

Top 20% Judges 0.765 [.753 - .777]

Mean of k = 60 0.747 [.741 - .753]

Median of k = 60 0.830 [.823 - .837]

between the two rankings of the 60 judges across the 100

replications is 0.30, and 90% of these correlations are be-

tween 0.11 and 0.48.

For each trial, the performances of top judges (top 5%,

10%, 15% and 20%) in the testing set were mapped onto

the cumulative distribution of individual Brier scores of the
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same set and corresponding quantile scores were obtained.

The mean and 95% empirical CI of these quantile scores

were computed based on the results of 200 trials separately

for top 5%, 10%, 15% and 20% and presented in Table 5.

Table 5 shows that the median aggregation handily beats

all competitors and the mean also beats most attempts to

select experts. The only exception is that the top 20% of the

judges are slightly better than the mean.

3.5 Does extremization improve the accuracy

of aggregated forecasts?

In the previous analyses, we combined raw probability esti-

mates, but this is not always the most effective approach. Ag-

gregation can benefit from transforming the original judge-

ments, using some predefined function, and aggregating

the transformed estimates. Various transformation meth-

ods have been proved to enhance the aggregated forecasting

accuracy (Ariely et al. 2000; Baron et al., 2014; Satopää

et al., 2014; Mandel, Karvetski & Dhami, 2018; Turner,

Steyvers, Merkle, Budescu & Wallsten, 2014). The quan-

tile metric can also be used to evaluate the effectiveness of

these transformations. We will use one common transforma-

tion method, extremization, as an example. Extermization

pushes probabilities to be closer to 0 or 1 (become more

extreme) by applying functions such as:

p∗ =
pa

pa
+ (1 − p)a

(5)

Baron et. al (2014) justifies such transformation to counter

two distorting factors – end-of-scale effects8 and forecasters’

tendency to confuse and conflate individual confidence with

confidence in the best forecast – and showed that the extrem-

ization function in (5) can reduce both, and contribute to

more accurate aggregated forecasts (see also Turner, 2014).

We applied the same transformation function (Equation

5) to the point probability estimates in the Budescu and Du

(2007) data and used two different approaches to estimate

the parameter α in Equation 5. First, we estimated α for

each forecaster by finding the value that minimizes individ-

ual Brier score (computed from probability estimates of 40

stocks), and we used the median of these 60 individual αs

to transform all the original probability judgements using

this α1 = 1.211.9 For the second method, we estimated the

parameter α by minimizing aggregated Brier score with me-

dian aggregation. Then, all raw probability estimates were

extremized more severely with optimal α2= 2.169.

We applied the Quantile method, as in the previous anal-

yses, using the median aggregation, which we showed to

8Because probabilities are bounded by 0 and 1, the distribution of errors

around true values is not symmetric (Erev, Wallsten & Budescu, 1994),

pushing forecasters to provide less extreme estimates when the true proba-

bility is close to the two end points (0 and 1).

9We used the conjugate gradients method based on Fletcher and Reeves

(1964) to find the global minimum.

be superior. We emphasize that the aggregated Brier score

of the transformed probabilities was mapped onto the cu-

mulative distribution of Brier scores of raw probability esti-

mates (not onto the distribution of individual Brier scores of

transformed probabilities). Thus the aggregated extremized

forecasts can be directly compared to the original ones.

Figure 9 compares the two extremization approaches. It

shows that the second approach (based on α2 that was esti-

mated by minimizing aggregated Brier score) was slightly,

but systematically, better than the approach using α1 for

all group sizes. Comparison with Figure 1B (median ag-

gregation of point forecasts without extremization) shows

that both transformations improved aggregated forecasting

quality compared to the median aggregation of the original

probabilities, for all group sizes. A complete and detailed

comparison among three conditions (two extremizations and

original median aggregation) is presented in Table 6.

4 Discussion

We proposed a new, easy-to-implement, use and interpret

comparison based on the quantile metric and illustrated its

application to answer various research questions using the

data from the experiment of Budescu and Du (2007). The

quantile metric was applied to compare (a) different aggre-

gation methods (mean and median) and aggregation group

sizes (k = 2, 4, 8, 16 and 32), (b) different forecasts and

elicitation methods (point probability estimates and proba-

bility intervals), (c) different calibration measures based on

the same judgments (Q scores and hit rates), (d) performance

of top experts and aggregation of individuals, (e) aggregates

based on raw and extremized judgments. These examples

not only showed the versatility of quantile metric that can

be easily and efficiently applied to various circumstances,

but also led to some meaningful findings about aggregated

forecasting qualities.

First, we illustrated the superiority of median aggrega-

tion over mean aggregation for both point probabilities and

50% and 70% probability intervals when all other condi-

tions were fixed. This finding is consistent with Park and

Budescu’s (2015) re-analysis of the Budescu and Du (2007)

data (only 90% probability intervals). Park and Budescu

(2015) used a slightly different approach by comparing hit

rates obtained from different aggregation methods and found

that median aggregation produced hit rates that were closer

to the target confidence level than the means for all group

sizes. Similarly, Hora et al. (2013) also demonstrated that

the median aggregate is better calibrated than the mean when

the judges are independent and well-calibrated.

A second regularity uncovered was that larger groups

yield, systematically, better aggregated performance for all
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Figure 9: Aggregated point probabilities under two extremization approaches (Figure 9A for extremization based on α1 and

Figure 9B for extremization based on α2).
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Table 6: Performance of Two Extremization Methods and Median Aggregation of Raw Forecasts.

Group Size Transformation Brier Percentile Lower Bound Upper Bound

2

No Transformation 0.148 0.600 0.283 0.917

Minimizing individual Brier 0.145 0.667 0.283 0.983

Minimizing aggregated Brier 0.145 0.667 0.217 1

4

No Transformation 0.139 0.750 0.500 0.950

Minimizing individual Brier 0.135 0.767 0.517 1

Minimizing aggregated Brier 0.132 0.833 0.517 1

8

No Transformation 0.135 0.767 0.600 0.950

Minimizing individual Brier 0.130 0.883 0.700 1

Minimizing aggregated Brier 0.126 0.917 0.717 1

16

No Transformation 0.132 0.850 0.700 0.950

Minimizing individual Brier 0.127 0.900 0.750 1

Minimizing aggregated Brier 0.122 0.967 0.8 1

32

No Transformation 0.131 0.883 0.767 0.917

Minimizing individual Brier 0.125 0.917 0.867 0.983

Minimizing aggregated Brier 0.199 0.983 0.900 1

60

No Transformation 0.128 0.900 — —

Minimizing individual Brier 0.122 0.950 — —

Minimizing aggregated Brier 0.116 1 — —
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aggregation, elicitation and calibration methods.10 Typically

the gains in performance diminish as the group size increases

and, typically, there are only little gains to aggregating more

than 16 forecasters. However, we also found out an in-

teractive pattern — the impact of group size varies across

aggregation methods, suggesting that one can optimize the

process, i.e., maximize accuracy at minimal cost, by, sim-

ply, selecting the most appropriate aggregation method for a

given problem.

A comparison of forecasting quality of aggregated

probability-intervals with different confidence targets sug-

gests that performance is sensitive to the desired level of

confidence. We found that in all cases and everything else

being equal one can achieve higher benefits of aggregation

for wider intervals (90%) than for narrower ones (e.g. 50%).

The comparison of different evaluation measures of the

same forecasts by the same elicitation method and the same

group of judges, documented systematic differences between

the different evaluation measures that are based on different

scales. Aggregation of Q scores produced "higher", and

more "stable" forecasting results, than aggregating hit rate

deviances for all group sizes for 50%, 70% and 90% prob-

ability intervals. This result reaffirms that hit rate and Q

score measure slightly different aspects, but it also indicates

that the benefits of aggregation across multiple judges are

magnified for Q scores.

Lastly, a comparison of aggregation based on raw and

extremized forecasts using the same one-parameter function

proposed by Baron et al. (2014) and confirmed the benefits

of extremization (also presented by Turner et al., 2014).

The newly proposed quantile metric is flexible enough to

allow comparisons between different combinations of elic-

itation, calibration and aggregation methods. For example,

by referring to Table 2, one can find matching percentile

scores obtained from different sets of conditions (e.g., per-

centile score of mean aggregation of Q90% in groups of size

4, is equivalent to the percentile score of median Brier scores

in groups of size 16). Such comparison can help identify the

most appropriate set of forecasting conditions. For exam-

ple, for Brier scores, aggregated forecasting performance of

a group size of 8 using median method is similar to that of

a group size 32 using mean method (both yielded quantile

score of 0.767). Therefore choosing median aggregation

over mean method can reduce effort and cost of forecasting

by a factor of (32/8=) 4. Similarly, when all the other con-

ditions are fixed, the quantile method can help finding the

optimal group size. For example, the mean hit rate of 90%

intervals does not improve as group size increases beyond k

= 8, so we can conclude that k = 8 is the optimal group size

in this context.

Interpretation of quantile score is more meaningful com-

pared to direct interpretation of calibration measures, espe-

10Only one exception is mean aggregation of hit rates of 50% probability

intervals where dyads (k = 2) ≥ groups of size (k=4, 8, 16 and 32).

cially for evaluation measures do not have meaningful units,

such as Brier score and others that have scale-dependent

measures, such as the Q scores. When we compare directly

aggregated performance using raw scores of calibration mea-

sures (e.g., Q score), we can easily determine the magnitude,

however, no further interpretation of the numerical difference

is available because these measures do not necessarily have

meaningful units. For example, Table 2 shows that when

k = 32, the median aggregation obtained a Q50% score of

−2.400 which is clearly closer to 0 than a Q50% score of

−2.568 obtained from the mean aggregation, suggesting that

the median yields better forecasts that the mean. Yet it is

hard to determine the meaning of this difference of 0.168

in the Q-scale. However if we convert them into quantiles

(Q50% score of −2.400 is converted to quantile score of

0.817 and Q50% score of −2.568 is converted to quantile

score of 0.683), it is easy and meaningful to interpret the dif-

ference between the two aggregation methods: the median

forecasts is as good, or better, than 81.7% individual fore-

casters and the mean aggregate outperforms 68.3% of the

individual forecasters. Thus using the median beats 13.4%

more individual forecasters than the mean.

Next, we list some recommendations for the future use of

the new metric. The quantile metric is not an absolute mea-

sure, but relies on the individual cumulative distribution, so

in order to make valid comparisons, it is important to map

aggregated performance obtained from different forecasting

conditions on the same, or equivalent, cumulative distribu-

tions. Thus, the quantile scores used to compare aggregated

performance of different forecasting conditions should be

obtained from (1) cumulative distributions from the within-

subject design, using the same individuals (each forecaster

reports multiple forecasts under different forecasting condi-

tions) or (2) cumulative distributions from equivalent groups

of individuals which are based on either random assignment

or matched assignment of judges to different forecasting con-

ditions.

Second, this method should not be used when the sample

size is too small. The quantile metric is based on individual

cumulative distributions and a small number of data points

will lead to relatively crude, and possibly, misleading, re-

sults.

Third, a high percentile score does not necessarily imply

high forecasting performance thus interpretation of quantile

score should be careful. The quantile score is a relative

measure, indicating the position of a forecasting result in

the individual cumulative distribution. Consider a situation

where all forecasters provided extremely poor forecasts, say

they are all biased in one direction (either all severely over-

confident or underconfident). Some aggregates will yield

a high percentile score, indicating that they are better than

most individuals. However, this percentile score should not

be interpreted as high forecasting performance because the

aggregated estimate itself is also biased. We recommend
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that the quantile score should be interpreted in conjunction

with raw calibration measures that can provide information

about absolute magnitude of forecasting quality.

Lastly, we list some directions for future research and ex-

tensions. The first, and most natural, direction is to apply

the new methodology to more aggregation methods and var-

ious calibration measures in distinct domains to obtain more

comprehensive conclusions about the relative merit of var-

ious aggregation methods and calibration measures on the

overall quality of the aggregates. One interesting case is

the surveys of expert forecasters collected by the European

Central Bank (ECB; Garcia, 2003) and the Federal Reserve

Bank of Philadelphia (Croushore, 1993). They involve (1)

multiple macroeconomic indicators, such as inflation, unem-

ployment and GDP growth rate and (2) pertain to multiple

time horizons, e.g., next quarter, next year, etc.), so it may be

useful to use our metric to identify the single best approach

across all indicators and time horizons.

The method can be extended by using cumulative distri-

bution functions of certain parametric forms, such as the

normal distribution, as an alternative mode to obtain per-

centile scores, possibly in cases where the available samples

are small. Another interesting direction is to re-analyze pre-

vious comparison studies that used method-specific metrics

to verify that their conclusions about the quality of different

aggregation methods and forecasting conditions are repli-

cated using this new universal method.
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