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MIXED PERIODIC JACOBI CONTINUED FRACTIONS

YOSHIFUMI KATO

§ 1. Introduction

Let b0 be a positive real number and

ϋ —
b1 a2 b2

b2 α 3

— oo <. cti

0<bt,

+ o o ,

be a Jacobi matrix. We can associate with them a Jacobi continued frac-
tion, which will be abbreviated to a J fraction from the next section, as
follows

bl I bl I bl
φ(z) =

z — z — α 2 z — a*

»- Bn{z)

where An(z)jBn(z) is the n-th Pade approximant of φ(z). Under a suitable
condition, which is always satisfied if max̂  fle^l, |6f|} < 3 M < + oo holds,
φ(z) can be described in a Stieltjes transform

= Γ
J — O — X

for some Stieltjes measure dμ(x) on the real axis. And the denominators
Bn{x), 0 < n < + oo, constitute a system of orthogonal polynomials with
respect to dμ(x).

In the previous papers [2], [3], we investigate what kind of measures
dμ(x) gives a purely periodic Jacobi continued fraction, that is, aί+N = au

l < i < + oo, bi+N = bu 0 < £ < + oo, for some positive integer N. In
fact we succeed in showing that such a function φ(z) can be explicitly
written by means of abelian integrals on special hyperelliptic curves &
introduced by van Moerbeke P. and Mumford D. [7]. If N — 1, Bn(x) is
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130 YOSHIFUMI KATO

essentially the n-th Tschebyscheff polymonial of the second type. But in

case N > 1, we find a new phenomenon related to discrete measures.

This paper is the continuation of the preceding papers and we devote

ourselves to study mixed periodic Jacobi continued fractions. Namely we

deal with the followings

Ma) ai+N = at for ί > M and bί + N = bt for ί > M — 1

but aM_ί+N ^ aM_ί,

Mβ) ai+N = a,, bί+N = bt for i > M but bM_ι+N ^ bM^ ,

where M and N are positive integers. We refer them to be of type Ma

and Mβ respectively. Our main results are stated in Section three. See

Theorems 3.4 and 3.7. We give there complete characterizations of these

functions and concrete methods to construct them. And the Stieltjes

measures dμ(x) are explicitly described. Our work is closely related to

physical problems. Namely some diagonal elements of the Hamiltonian of

a tight binding formalism in solid physics which treat semiconductors or

alloys admit a Jacobi continued fraction. And the measure dμ{x) repre-

sents the density of energy states of electrons. The non periodic parts

of Ma) and Mβ) correspond to the effects of impurities. See, for examples,

Lambin, Ph. and Gaspard, J-P. [4] and Turchi, P., Ducastelle, F. and

Treglia, G. [11].

The author would like to express his thanks to Prof. Magnus A. for

giving useful comments to the problems which he proposed at the Interna-

tional Symposium on Orthogonal Polynomials and their Applications held

in France. The Proceedings will be published as one of the series of

Springer Lecture Notes in Mathematics.

§ 2. Purely periodic / fractions

First we recall some preliminary knowledge and notation from [2]

about purely periodic J fractions. But we slightly change the terminology.

Let

(2.1) C =

a0 b0

b0 aγ bί

oo < at

bί+N = bt,

— oo < i < + oo ,
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CONTINUED FRACTIONS 131

be a complete N periodic Jacobi matrix and / = ( ,/_i,/0, fl9 •)' be an

infinite column vector. The matrix C acts canonically on /. We denote

by D the shift operator of degree + 1 , (Df)t = fi+1 and set S = DN. The

condition that C and S admit a common eigenvector is parametrized by

the following open Riemann surface

m, = {(z, h) e C X C* I C/ - 2/, S/ - Λ/ for some / > 0 }

= {(z, h)eCxC*\ άet\zl - Ch\ = F(h, h~\ z) = 0}.

We denote by Ch the N X N matrix

(2.2)

and hence

(2.3)

bx a2 b2

bNh - - 6jv-i aN

zI-Ch = • - b 2 •

— bNh ' - ' — b N _ 1 z — dN

An easy calculation provides

(2.4) F(h, hr\ z ) = - A(h P(z)

where A = Πf=i&* a n ( i -Pi21) i s a πionic polynomial of degree N with real
coefficients as follows

(2.5) P(z) =

From (2.4), we have

(2.6) h(z) = -A- {

— α2 — b2

-b[
-b2 z — α 3 — i

_2 z —

± - 4A2} -

The expression (2.6) implies that we can easily compactify ^ 0 by adding
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132 YOSHIFUMI KATO

two points P, whose h = oo, and Q, whose h = 0, over z = oo. The curve

^ = ̂ 0 U {P, Q} becomes a hyperelliptic curve of genus g = iV — 1 branched

at the 2iV zeroes lu λ2, , Λ2Λr of the polynomial P(z)2 — 4A2. As is ex-

plained in [2], they are all real and we can arrange them in increasing

order

(2.7) Λj <s. Λ2 \ Λ3 ^C Λ4 \ * * \ *2N-Z ^ *2N~2 ^ *2N-l ^ *2jy

The interval [Λ2fc-i, Λ*], 1 < A < JV, is called the /s-th stable band and the

interval [λ2k, λ2k+ί], I < k < N — I, called the ^-th finite unstable band. The

infinite interval (— 00,^] (resp. [λ2N, + 00)) is the left (resp. right) exterior

unstable band.

Remark 2.1. 1) Hereafter we denote by *JP(zf — 4A2 the radical of

P(z)z — 4A2 which is approximately equal to P(z) near the infinite point

corresponding to Q.

2) Assume that we choose a real positive number A and a monic

polynomial P(z) of degree N with real coefficients such that the zeroes of

P(^)2 — 4A2 are all real. Then conversely the hyperelliptic curve 0t being

defined by (2.6) comes from some complete N periodic Jacobi matrix C,

(2.1). This fact is derived from the general theory of van Moerbeke, P.

and Mumford, D. [7],

We decompose 9t into three parts

& = 01+ U @ίR U &-

where

^ + ={pe@\ \h(p)\>l},

mR = {pe@\ \h(p)\ = l},

0t. = {pe@\ \h(p)\<l}.

The point P belongs to έ%+ and Q belongs to 0t_, If we project «̂ ?+ and

«̂ _ onto the 2;-plane, both of them become biholomorphic to the domain

{2-plane} U {00} — Ufc=i[̂ 2fc-i> Λfcl Therefore for any element z0 in this

domain, we can lift it up to two points z£ e &+ and zό e 0t_.

Let / = ( ,/_i,/o,/i, Ύ be a common eigenvector of C and S under

the normalization f0 = 1. Then fu — 00 < i < + 00, become meromorphic

functions on ̂  and it follows that fN = h, fi+N = fi-fN = fi-h. If we put

f = (/L - . / ^ = (fu , Λ)4 then (zl- Ch)f = 0. So we have
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CONTINUED FRACTIONS 133

(2.8) l<ίJ,k<N,

where Δiyj denotes the (ij) cofactor of zl — Ch. The cofactor ΔNtN is a

monic polynomial in z of degree N — 1 whose zeroes are all real. If we

arrange them in increasing order μ1 < μ2 < < μN_u each μk lies on the

£-th unstable band. Hence if we denote by VP(x)2 — 4A2 the limit

(2.9)

the form

(2.10)

lim
β l O

4A2, x e ^ , x + /ε e

2πi

gives a positive measure on each stable band.

Under the same assumptions until now, we obtain the following fun-

damental lemmas. See the proof in [2].

LEMMA 2.2. Let

(2.11) φ(z) =
z

σ,

bt

bl
-a,

+ N =

+ N ~ bit

Z

bl
— a2

1 <

0 <

ί <

i <

z

: 4

: 4

bl
-az

- oo ,

- oo ,

be a purely N periodic J fraction. Then after an analytic prolongation,

φ(z) coincides with 60

#/i The analytic prolongation is possible from the

neighborhood of Q.

We denote the residue of <p(z) at μ~ e £%_ C 01 by

Γ = R e s ^ O ) = Res^&0 /i

and put

(2.12) S = S(Ψ) = {ί\Γ * 0} C {1, 2, ., N- 1}.

And we associate with it a divisor

(2.13) Σ
ίes

+ Σ μj

LEMMA 2.3. We have
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134 YOSHIFUMI KATO

(2.14) = 0 or -
jφi

0.

2) From (2.10), (2.14), by putting

(2.15) cfy(χ) = dμsjx) + dμc(x)

dμSίd(x) — 2] Γd(x — μi)dx, discrete measure,(2.16)

(2.17) aμc(x) —

continuous measure,

α e obtain a Stieltjes measure. Then φ(z) is the Stieltjes transform of it

ίθ 1SΛ ,nf<y\ I CίμyX)
yΔ.lo) ψ\Z) — —

J-°° 2: — X

LEMMA 2.4. The following three conditions are all equivalent up to a

nonzero constant factor.

1) φ(z) admits a purely N periodic J fraction expansion.

2) φ(z) is the first component fx of the common eigenvectors of C and S.

3) ψ(z) belongs to L(@s + P — Q).

For any other subset S/ C {1, 2, , N — 1}, there corresponds another

purely N periodic J fraction. We can calculate it from φ(z) by a standard

method. See Appendix. Hereafter when we want to emphasize the depend-

ence of φ(z) on S, we denote it by φs{z).

By use of Lemma 2.2 and (2.8), we can rewrite φ{z) = ψs{z) as follows

(2.19)

bl
z —

Ah

1 A

1
a,

+ bl.

bί
z — a2

z —
— b2 z

- 6 ,

*JP(zf

\ b\ 1
z — a3

a2 — b2

— a, — 6 3

bχ-2 z aN_ι

- 4 A 2

Γ0(z)
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where we put

(2.20)

(2.21) Λϋ(z) =

ΓQ(z) = ΔN,N{z),

z-ax -bx

— 6i z — α 2 — b 2

z — α 2 — b 2

— b2 z — α 3 — b3

-bΛ

— bN_1 z — aN

= zN + czN~ι + .
z — aN

Here c = ax + a2 + + aN. Notice that c coincides with the coefficient

of zN~ί in P(z), so it is fixed by the hyperelliptic curve £% and is inde-

pendent of μu 1 < i < N — 1. If we compare Lemma 2.4. 3) and (2.19),

we have

(2.22) A0(μt) =
-)2 - 4A2 if i e S

+ VP(/i*")2' - 4A2 if i e Sc.

From (2.21), (2.22), Λo(2) is uniquely determined by use of Lagrange's in-

terpolation. The importance of the following fact is pointed out by Prof.

A. Magnus.

COROLLARY 2.5. Γ0(z) divides the polynomial Λ0(z)2 — P(z)2 + 4A2.

§ 3. Mixed periodic / fractions

In this section we study mixed periodic J fractions. We represent

them as follows

(3.1) ψM(z) =
B{

Z

bl \

Bl !
\z — A 0 \z-aγ

\z- <h z —

where aί+N = au bt+N = bu 1 < i < + co. According to the number Bo,

we distinguish them into two types

(3.2) Ma) Bo = b0 but Ao ^ aN,

(3.3) Mβ) B0*b0.

If we denote the purely N periodic part by
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(3.4) Ψ(z) =

we can write

(3.5) fM{z) =

YOSHIFUMI KATO

b\h2 '
#0

z — \z — α2 z — a.

B\
ΛM_1

For 1 < Z < Λf — 1, we use the notation

Z Άfi I ——

(3.6)
D2
•Pjf-1

From the expression (3.5), ψM(z) is also a meromorphic function on the

hyperelliptic curve 01 and the J fraction expansion is significant in the

neighborhood of Q e &.

Let Γ(z) be a monic polynomial with real coefBcients and decompose

it into

(3.7) Γ(Z) = Π (2 - V4) Π (2 - «

r + 2s = deg Γ(z).

Here vγ < v2 < < vr denote real zeroes and ζjy Im ζ̂  > 0, ζj9 1 < j < s,

denote the others. Since the case of multiple zeroes can be considered

as limit case, for the sake of simplicity, we take the assumption that they

are all distinct.

DEFINITION 3.1. For a polynomial Γ(z), (3.7), we put the set of zeroes

as follows

Z(Γ) = U U ZIm(Π

where

1 < i < r),

Zlm(Γ) = {ζj\ Imζ, > 0, 1 < ; < s},

Zlm(Γ) = {ζ,| Imζ, < 0, 1 <j < s}.

LEMMA 3.2. Let us take a polynomial Γ{z), (3.7), and a non zero real

constant c. For any x e (Jf-i fe-i, 4 J ,

lim V

VP(x)2 - 4A2

- 4A 2, ie 6
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Then if

2πι Γ(x) *=i

holds, we have

1) Pi e ZR e (JΓ) cannot belong to the interior of any stable band.

2) At least one of the elements pt e ZRe (Γ) must belong to each finite

unstable band. Especially r > N — 1.

Proof If we note that the sign of Λ/P(X)2 — 4A2 changes on the real

axis as follows

N: even + —i — +i
ΛT n . •- + -i - +i +
N: odd — +ι + — i

&////Λ Y//S//A YS//////\ Y///SCΛ >

yyyy>y\ : stable band,

these statements are bvoious.

Remark 3.3. Under the same assumptions as in Lemma 3.2, if the

integrals are finite

Σ km -7Γ-- 7 ^ d x

fc = l ε i O 2πl J ^ I (X)

the form

(3.8) « d x

2πi Γ(x)

gives a positive Radon measure on each stable band [λzk_u λΆ], 1 < k < N.

DEFINITION 3.3. For a pair c, Γ(z), we put

,3.9) 1) He, Γ) = - c

Π (»* - vt) Π (v, - O Π (w - ζ

^ e ZRe(Γ),

(3.10) 2) ^(c,Γ) =

EXAMPLE 3.4. Let N = 3 and degΓ(e) = 6. And the pair c ̂  0, Γ(2)

satisfy the condition in Lemma 3.2. Then the following cases occur. Here

the circles colored black represent the points pi9 ie £?(c, Γ).
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I) c > 0 .
1) r = 6.

YOSHIPUMI KATO

2) r = 4.
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3) r = 2.

Π) c < 0.

1) r = 6.

2) r = 4.

LEMMA 3.3. Let Φ(z), Ψ(z) be meromorphίc functions on & which satisfy

the relation

(3.11)
B2

2 - A - Φ{Z) '
0 <

Then we have

1) Let P and Q be zeroes of Ψ(z) of first order. Then Ψ(z) has I + 2

poles in 9t — {P, Q} if and only if Φ(z) has I poles in 0t — {P, Q}.

2) Let Q be a zero of Ψ(z) of first order and P be neither a zero nor

a pole of it. Then Ψ(z) has I + 1 poles in & — {P, Q} if and only if Φ(z)

has I poles in & — {P, Q}.

Proof First let us prove 1). From (3.11), besides at the two points

P and Q, Ψ(z) takes zeroes at the points in Θt — {P, Q} where Φ(z) takes

poles and vice versa. Therefore if Φ(z) has / poles in 0t — {P, Q}, Ψ(z)

has 1 + 2 zeroes. Hence ¥(z) must have 1+2 poles being contained in

0t — {P, Q}. We obtain the proof of 1). We can prove 2) similarly.
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THEOREM 3.4. Up to a nonzero scalar factor, the conditions I. l.M) +

2.Ma), (resp. +2.Mβ)) and II. l.M) + 3.M) + 4.M) + 2.Ma), (resp. +2.M/3)),

1 < M < + oo, are equivalent, where the conditions I and II are

I. l.M) ψM(z) can be expanded into a mixed N periodic J fraction as

follows

/o-|o\ . t~\ __ BM I B2M-I I . JBJ I _ J3J I
Z z - A M _ 2 z —

b\

z — a z — a.

where aί+N = αί? 6ί+iV = 6ί? 1 < ί < + oo.

2.M/3) Bo^fco

II. l.M) ψM(z) c a n be described as follows

(3.13),
2 Γu{z)

where cM is a non zero real number and both ΓM{z) and ΛM(z)

are polynomials with real coeficients. Further ΓM(z) is monίc.

2 Ma)
[deg At(z) = N and Λ^z) is monic.

\άegAM(z) = 2M+N-3, 2<

(
[degΛM{z) = 2M+ N- 2, 1 < M < + oo.

3.M) ΓΛe form

(3.14)
. 2πi ΓM(x)

gives a positive measure on each stable band [λu_lt λlk\, 1 <

k<N.

4.M) If we decompose

(3.15)^ Γx(z) =U(z- vM,() Π (z - ζ*.,) Π (^ - CM,,)
i=l ί=l ^=1

for some subset S C Sf(cM, ΓM) C {1, 2, , r^}, we
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J~=4Ai if ίeS

1+ VP(VMΛ)
2 - 4A2 if i € Sc = {1, 2, , rM] - S

and

(3.17)* ΛΛC*,,) - VP(ζΐ f"y7"4A* for ζMJ e ZIm (Γ*),

Λ*(CJΓ.,) = S ^ 7 ) = SP(ZΪJ*"~ΪA2 for ζMJ e ZIm (Γ*).

Remark 3.5. From II. 2M), (3.16)* and (3.17)*, AM(z) is uniquely de-

termined by Lagrange's interpolation. Therefore if we fix the pair c*,

ΓM(Z)> there still exist 2χ, where X is the number of the elements in

«̂ (cjf, Z7*), ambiguities to fix JΓ*(2;). Indeed if we know the J fraction

expansion of ^*(e), (3.12)7ιf, which corresponds to S, we can calculate all

the other expansions. See Appendix.

Proof. Let us divide the proof from I to II into two steps.

Step 1. We prove the following assertions.

( * )*: I. l.M), 2.M) = > II. l.M), 2.M),

( * ) * : I l.M), 2.M) = Φ Γ*(2;) divides the polynomial

AM(zY - P(zf + 4A\

by induction on M. Let M = 1. Then we have

(3.18)

- 4A

(z - A 0)T 0(*) 2 - (Bo/δ,)^ - A0)Γa(z)Λ0(z) + ^BJbo)\Ao(zY - P(zf + 4A2)

By virtue of Corollary 2.5, (2.5) and (2.21), we can decompose as

Λ0(z)2 - P(zf + 4A2 = Γ0(z)r°0(z),

degn(z)<N-l.

Therefore we obtain the expression

Γ[(z)
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where we put

c[ —

\b0/ 4 v u0.

= . . 6Lτ_^L 2^ + i _|_ {terms of lower degree},

= •—°—--~°-2-v + {terms of lower degree}.

According to £ 0 = b0 or Bo ^ b0 we put

where c?! is the coefficient of zN in Γ[(z), and

fc — c' b2° — B2QB*
I '-I ^ 1 " .'„ " •"•'-•"" ~

we get the assertion (*)ί Notice that if Bo = 60 and dt = 0 then it is the

special case Ao = aN being excluded. Next let us prove (*)". Let Bo ^ 60.

Then if we use Lemma 3.3. 1), we can show that ψ^z) must have N + 1

poles in 0t — {P, Q}. But from the expression (3.13)1? for any zero z0 e

Z(Γ^), at least one of the two lifted points z£, 20~ has to become a pole

of ψi(z). Since the degree of Γx{z) is equal to N + 1, this means that

or

holds. Hence (*)ί7 follows. In case Bo = b0 but Ao ^ αiV, Lemma 3.3. 2) is

applicable and we can prove (*)ί' similarly.

By use of induction, since we can rewrite
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(3.19)

the rest we must do is to show that (*)',/ follows from (*)'v and (-cX,/.!.

For M > 2, we can write

(3.20)

2

and use Lemma 3.3. 1). The number of poles in 01 — {P, Q] of ψχ(z) is

equal to

(3.21) 2M + N - 1 if Bo = b0,

2M + N - 2 if JB0 - b0 but Λo ^ αv ,

and it coincides with the degree of ΓM{z). But (3.20) implies that for any

zero zoeZ(Γχ), at least one of the two lifted points z;}, z^ must be a pole

of ΨM(Z). Therefore

(3.22) yiv(Zo) = VP(^) 2 - 4A2

or

holds and we obtain the assertion (*)',/•

Step 2. Let us prove 3.M) and 4.M). Since ψu(z) admits the J frac-

tion expansion, (3.12)v, it is expressible in a Stieltjes transform

(3.23) ψu(z) =- f""" d μ ^

for some Stieltjes measure dμ{x). In particular, ψ.v(2;) is holomorphic in

the domain 0ί_ — {real axis}, so (3.17),/ must be satisfied.
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LEMMA 3.6. Any real zero vMiί e ZRe (ΓM) cannot belong to the interior

of stable bands [λn_u λ2k], 1 < k < N.

Proof of Lemma 3.6. If vMΛ lies there, it follows that

4A2

or

Then the left hand side is real but the right hand sides are both pure

imaginary This is a contradiction.

Let C and Ck, 1 < k < N, be anti-clockwise contours in ^L as below

where the contour C contains all stable bands and all zeroes of

side. Then for any element 2 in the outside of C, we can write

(3.24)

where

(3.25)

And we put

(3.26)

2πi JC z — x

Z — Z — X

j-i (z — x)ΓM(x)

cM, ΓM) if ΛM(vMJ) = - VP(vi,/ - 4A2,

0 if iί^Kj,,,) = + VPivijY - 4A2.

= {7 I

Since the Stieltjes measure dμ(x) is uniquely determined, we have

in-
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(3.27) dμ(x) = dμd(x) + dμc(x)

where we put

dμd(x) = Σΐv j'δ(χ — VM j)dx, discrete measure,

j e s

Clμc{X) — /-i 2πί λ2J U/"2J ΓM(x)

continuous measure.

Then the positivity of dμ(x) implies II. 3.M) and 4.M).

Now let us prove the converse II to I. If we assume II then ψχ(z)

can be expressed in the Stieltjes transform of the measure defined by (3.27)

for some subset S C ^(cM, 7\). Therefore it admits a J fraction expansion

l!r (z) = cM AAzy
2

(3.28) = - ΞJL - a*-i *>
z — . 0

z — ax z — a2

At this stage, we do not know the periodicity. But since we can de-

compose as

CM-1

Γχ-ι{z) is monic ,

we have

(3.30)

Here we draw the linear part az + b so that d e g / ^ ^ z ) satisfies the con-

dition 2.M-1). If we compare (3.28) and (3.30), we have

https://doi.org/10.1017/S0027763000022716 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022716


146 YOSHIFUMI KATO

B - λ A - - b

V a a

and

(3.31) =- A l f - 1 ! - " " - ' _ - . . - β ϊ
- AM_2

z — αt i 2 — α2

If we use Lemma 3.3 and note the J fraction expansion (3.31), the con-

dition 3. M-ΐ) and 4. M-ϊ) are also satisfied for this function. Since the

conditions of the case M = 0 coincide with those of purely periodic J

fractions, we can obtain the proof from II to I by induction on M.

We have already given the proof of the following theorem.

THEOREM 3.7. Let ψM(z) = ψM,s(z) be a mixed N periodic J fraction

(3.12)^ in Theorem 3.4 corresponding to some subset S C S?(cM9 ΓM). Then

1) ΨM,S(Z)
 c a n be described in the Stieltjes transform of the measure

dμs(x) = dμs,d(x) + dμc(x)

where

dμs d(x) = Ύ\ϊM Mx — vM Ί)dx,
jes '

dμc(x) =

2) For any two subsets S, S' c ^(c, v, Γ3/), we have the relation as

follows

(d.zd; Ψi,?¥) = fi/,sw T ZJ 2_ι —

§ 4. Appendix

We take an arbitrary J fraction φ(z) and expand it at the infinity

φ(z) = i ?—! - ΐ -
2 — ax \ z — a2 z — a3
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Then the coefficients al} bt are calculated from the moments cΊ by the

following formulae

« = 172

with

Hn =

Cn Cn+1

H' =
* Cn + 2 i

and by definition Hί2 = 0, fl7^ = £r_t = 1.

If we expand the right hand side of (3.32) at the infinity and use

these formulae, we can calculate the J fraction expansion of ψ3I,s,(z) from

that of ψM,s(z) a t finite steps.

REFERENCES

[ 1 ] Jones, W. B. and Thron, W. J., Continued Fractions, Addison-Wesley, 1980.
[ 2 ] Kato, Y., On the spectral density of periodic Jacobi matrices, Proceedings of RIMS

Symposium on Non-Linear Integrable Systems-Classical Theory and Quantum
Theory, Kyoto Japan, 1981, 153-181, World Science Publishing Co., 1983.

[ 3 ] , Periodic Jacobi continued fractions, International Symposium on Orthogonal
Polynomials and their Applications, Bar-le-Duc France, 1984, Springer Lecture
Notes in Math.

[ 4 ] Lambin, Ph. and Gaspard, J.-P., Continued fraction technique for tight-binding
systems, A generalized-moments method, Phys. Rev. B, .26 (1982), 4356-4368.

[ 5 ] Magnus, A., Recurrence coefficients for orthogonal polynomials on connected and
non connected sets, Springer Lecture Notes in Math., 765 (1979), 150-171.

[ 6 ] van Moerbeke, P., The spectrum of Jacobi matrices, Invent. Math., 37 (1976), 45-81.
[ 7 ] and Mumford, D., The spectrum of difference operators and algebraic curves,

Acta Math., 143 (1979), 93-154.
[ 8 ] Moser, J., Finitely many mass points on the line under the influence of an ex-

ponential potential—an integrable system, in Battelle Recontres Summer Lectures,
Springer Lecture Notes in Phys., 1974, 467-497.

[ 9 ] Nuttall, J. and Singh, S. R., Orthogonal polynomials and Pade approximants as-
sociated with a system of arcs, J. Approx. Theory, 21 (1977), 1-42.

[10] Szegδ, G., Orthogonal Polynomials, A.M.S. Colloq. XXIII, 1939.
[11] Turchi, P., Ducastelle, F. and Treglia, G., Band gaps and asymptotic behaviour

of continued fraction coefficients, J. Phys. C, 15 (1982), 2891-2924.

https://doi.org/10.1017/S0027763000022716 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022716


148 YOSHIFUMI KATO

[12] Woess, W., Random walks and periodic continued fractions, preprint, 1984, to
appear in Adv. in Appl. Probab.

Department of Engineering Mathematics
Faculty of Engineering
Nagoya University
Chikusa-ku, Nagoya, U6U> JAPAN

https://doi.org/10.1017/S0027763000022716 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022716



