SYMMETRIC COORDINATE SPACES AND
SYMMETRIC BASES

WILLIAM RUCKLE

1. Introduction. In this paper properties of symmetric coordinate spaces
and symmetric bases are investigated. Since a space which possesses a basis
is essentially a space of sequences (12, p. 207), the interrelation of these two
concepts naturally suggests itself.

Section 2 is a summary of the terminology and methods employed, which
fall into four categories: (1) set theoretical properties of coordinate spaces
such as symmetry and dual spaces; (2) the notion of FK and BK space (12,
p. 202; 13); (3) the theory of the Schauder basis in F-space applied to the
case when € (see § 2) is a basis for a coordinate space; (4) the concept of a
sequential norm, which the author introduced in (7) to illustrate the under-
lying unity of the first three ideas.

In § 3 we examine a class of spaces which might be regarded as archetypal
perfect symmetric spaces. We note that these spaces were introduced from a
somewhat different viewpoint by W. L. C. Sargent in (8) and further studied
by her in (9).

Some properties of a perfect symmetric space are discussed in §4. The
chief result here is Theorem 4.5, which states that every perfect symmetric
BK space can be given an equivalent norm having a certain form.

In the final section we apply our work to a new proof of a result of Singer
(11) concerning symmetric bases.

2. Preliminary observations. A coordinate space is a linear space, X,
of scalar (real or complex) sequences with addition and scalar multiplication
defined coordinatewise. We designate by e the 7th coordinate vector, i.e. the
sequence with 1 in the 7th place and 0’s elsewhere. The set {et: 2 = 1,2, ...}
is denoted by @. Unless we specify otherwise we assume that € C X. The
sequence whose ith term is ¢; is written (¢;) or merely 2.

The following concepts are of long standing (6; 5, p. 427).

Definition 2.1. For X a coordinate space:
(a) Xe, the a-dual of X, is

\

{yzz lx;¥: < o for each x € X(.
i=1 J
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(b) X8, the B-dual of X, is

{yzz x;y; converges for each x € X}.
i=1

(c) X is perfect if X = X.

(d) X 1is balanced (or normal) if x € X implies that (a; x;) € X for each
a € m, the space of all bounded sequences.

(e) X is symmetric if x € X implies that x™ € X for each permutation =
on the non-negative integers where (x,)™ = (Xr(¢y).

The results summarized in the following proposition are widely known (3;

5;6).

ProprosiTION 2.2. (a) X is balanced and perfect for every coordinate space X.

(b) If X is symmetric, X* is symmetric.

(c) If X is perfect and symmelric, then X = R, the space of all finite se-
quences, or X = s, the space of all sequences or I' T X C m.

Definition 2.3. The symmetric dual, X°, of a coordinate space X is

{y:z |9 %x»] < o for each x € X and each permutation = on the
=1
positive integers} .

ProrposiTiON 2.4. If X 1s symmetric, X° = X2

Proof. For = a permutation on the positive integers, let X, = {x™: x ¢ X}.
Then X° = N{X,*: all 7}, but if X is symmetric, X, = X for each =, so
X7 = X~

Definition 2.5. A coordinate space X is an FK space if X is an F-space
(complete linear metric space) and the linear functionals defined by f;(x) = x;
are continuous.

An FK space which is a Banach space is called a BK space (12, § 11.3).

Definition 2.6. A sequential norm is a function, N, from s into R* which
satisfies the following conditions:
(1) N is an extended norm, i.e.,
(a) Nix+y) < N(x) + N(y),
(b) N(ax) = |a|N(x) for each scalar q,
(¢) N(x) >0, N(x) =0 if and only if x = 0.
(2) N(e;) < » for each 1.
(3) N(x) = sup, N(P,x), where

n
Pox =2 %6,
=1
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If in addition N satisfies
(4) 0 <inf, N(e,) < sup, N(e,) < @,
N is a proper sequential norm.

For a coordinate space X on which a topology has been fixed we shall
write X for the closed linear span of € in X.

The concept of a proper sequential norm (p.s.n.) was introduced and studied
in (7). If N is a p.s.n., the set Sy of all x for which N(x) < « is a BK space
with norm N, and € is a basis for Sy° (7, Theorem 2.2). Conversely, if
¥ = {x1, X9, . . .} Is a basic sequence in a Banach space which is bounded in
norm away from 0 and «, we can find a p.s.n. N such that ¥ is equivalent
(1, 2) to the basic sequence € in Sy; namely, let

=1

|
N({) = SUpn%

Definition 2.7. The conjugate p.s.n. of a p.s.n. N is the function from s
into R* given by

N'(y) = sup{supn > xs yi‘ :N(x) < 1} .
=1
By (7, Theorem 3.2), N’ is a p.s.n. and the conjugate space of Sy° (Sy°)*
is isometric to Sy- under the correspondence of f in (Sy°)* to (f(e?)) in Sy,
and

=)

flx) =2 x:f(e") for each x in Sy’

=1
Definition 2.8. A p.s.n., N, is balanced
if N(x) = sup {N(a;, x:): |a)] < 1} for each x in s.
Definition 2.9. A p.s.n., N, is symmetric if N(x) = N(x7) for each permu-
tation 7 on the positive integers.

For N a p.s.n. we have Sy = (Sy°)#8 (7, Corollary 3.3) and if N is a
balanced p.s.n., then Sy = (Sy®)« (7, proof of Theorem 4.5).

ProposITION 2.10. (a) If {N.} is a family of p.s.n.’s and there is a K > 0
such that sup, N,(e;) < K for each 1, then supy N, is a p.s.n.

(b) If each N, is balanced (symmeiric) and supe Nu 15 @ p.s.n., then sup, N,
is balanced (symmetric).

Proof. (a) Let N = sup, N, By hypotheses sup; N(e;) < K < o and since
N is a sup, inf; N(e;) > 0. We shall verify condition (3) of Definition 2.6.
The proof of the norm condition is analogous.

N(x) = sups No(x) = supe sup, Na(P, x)
Sup, supe Ny (P, x) = sup, N(P, x).
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(b) The proof that N is balanced (symmetric) if each N, is balanced (sym-
metric) is also obtained by permuting sup operators.

3. The first and second symmetric duals of a sequence.

Definition 3.1. The symmetric dual of a sequence x is

x" = {y:Z |z ¥:! < o for each 1r}.
=1

PRroOPOSITION 3.2. (a) ¥y € x7 if and only if x € y°.
(b) x is unbounded if and only if x° = R>.

(c) x € R® if and only if x° = s.

(d) x € ' ~ R if and only if x° = m.

(e) If x € m ~ ¢y x° = %

Proof. (a) Obvious.

(b) First note that «x° is perfect and symmetric so that by 2.2(c) x° is
either s, R®, or I'! C x* C m. For every x, R® C x°. If x is not bounded, then
there is a y in /' such that Z‘:’:l |, v, does not converge since (I!)* = m.
This implies that x°C I' properly, so x* = R™. If x € m, x* Dm° = [!, so if
x* = R%, x is unbounded.

(¢) If x € R™, then 2 = s by (a) and (b). If x* =5, then x € y= for
each v € s so by (a) ¥ € R™.

d) If x € ' ~R”, we have x* C s properly, but x° D (/') = m. Thus
x7 = m. If x° = m, then 2 2, |x,| converges since (1, 1,...) is in m.

(e) If x € m ~ ¢y, there is a subsequence x’ of x such that

inf, [x/,] = ¢ > 0.

Then x° C %’ C ' and x° D m° = [.

In the following we shall derive the converse of (e). In view of Proposition
3.2 we shall restrict our attention to the ¢-dual of a sequence x which is in
¢y but not in I

Definition 3.3. The reduced form of a sequence x € ¢y is the sequence
£ = (£1, Lo, £3,...) 1n which £;, £, &;,... exhaust the non-zero values
assumed by |x1], [x2], |xs], . . . allowing repeated valuesand £; > £2 > £3 > . ...

A sequence x is in reduced form if x = £.

If x € ¢, then x° = £ so that whenever we consider the space x* we may
assume x is in reduced form.

THEOREM 3.4. Given a sequence x in co ~ I' define

0@y) = sumZ] ERPEHE
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then Q is a proper, balanced, symmetric, sequential norm, Sq = So° = x°, and

(1) 00) =X 45, Joryea,
= ® for v & co.

Proof. By hypothesis Q(y) = sup. N.(y), where

N.(y) = Zl [%xcey ¥l

Note that N, is an extended seminorm for each = and has the property that
N.(y) = sup, N.(P,v). Thus Q is an extended seminorm and has the pro-
perty that Q(y) = sup, Q(P,y). It is obvious that Q is a norm and that
Q(e;) = sup, |x,| for each 4. Thus Q is a proper sequential norm.

Next we shall verify the equality (1). If ¥ ¢ ¢, y7 C ! so that x ¢ y°,
which implies that Q(y) = ». If y € ¢, then for each # there is a rearrange-
ment P51, s, - - - » Joon Of F1, P2, . . ., F, such that Jy) > b’w(z), for 2 <,
for = a given permutation. Since £1 > &2 > ... > &, and 1 > P2 > ... > F,,

n

289> 2 i Fen] > ; [ Yrco |-

i=1 i=1

Therefore,
Zl £:9:> Q).

On the other hand, for each # there are permutations = and ¢ such that
[vro] = 9: and |x4¢y] = £, for 2 < n. Given € > 0, let # be such that

n [eo]
2 EiPite>2 &9,
=1 i=1

and let 7 and ¢ correspond to this #. Then

8

n

QW) > Z [ Ye=1rn] > 2 oo Yecol

= i=1

.
-

Ms

> 9313"’1‘*‘6

1

o
I

Therefore

S}

0 > 4.9

The validity of (1) implies that Q is balanced and symmetric, and that
Se = £° = x°. In order to show that S, = Sg° we first prove the following
lemma.

Lemma 3.5. If Q is a symmetric balanced sequential norm, Sq and S,° are
symmeltric spaces.
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Proof. Since Q is symmetric, it is obvious that S, is symmetric. Since

for each n and each , e.-1(; is a basis for S,° equivalent to € so that Zf":l tie;
converges implies that Z‘;l t; ex-1(y converges. By the biorthogonality of the
coefficient functionals

@ [ee)
Z bier1(y = Z br(i) €4
i=1 i=1

so that if ¢t € S so is im. Therefore, Sy° is symmetric.
In view of Lemma 3.5 it suffices to prove that for each y € Sy, 9 € SO
By the definition of S0 § € S¢° if and only if

lim, Q(§ — P 9) = lim, 2 &; Fny1 = 0.
We conclude the proof by showing that
limnz 32‘1 yn+i =0
i=1

if ¥ € x°. Given ¢ > 0, let N; be such that

[

Z lﬁiﬁt < e/2.

i=N1+
Then
> R < 2 £ < €/2 for each .
i=N1+1 i=N1+1

Since lim, §, = 0, let N, be such that n > N, implies that

N1
=1

If n > N2
= N1 =
A A A A A
le nti = XiPnyri + Z xzyn+z
i=1 i=1 i=N1+1

Given x € ¢y~ [' we denote by (, the sequential norm defined in the
previous theorem. If no ambiguity results, we shall simply write Q for Q,.

THEOREM 3.6. For x € ¢o ~ I}

0. = supn(i 5’)/ ( =x> '
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Proof. By definition

I

Q') sup{supnz}é1 a;y:: Qa) < 1}

sup{supnz aiyi), 4% < 1}
=1

i=1

= sup{Z G:9:2.d:%8: < 1}.

i=1 i=1

The last equality holds since

n
D ay:
=1

If m is so large that 91, §», . . ., 3, are included in {[yi], [y2|, ..., [ya]}, let
7 be any permutation such that §; = |yz(»| 7 < n. Let b; = (sgn y,)dr-1(5.
Then b = ¢ and

m
Zlbiyi> Z br(iy Yr(o)
P

T()<m

>, baciy Yr(o)

i<n
n

=Zdi]3’r(i>| = i
i=1 7

Now
n n—1 1 n
A A A A a A Y
a:9: =2, (@:i— di1) 9i) +dn 2.5
n=1 i=1 j=1 j=1
n—1 i i i

A A A A A

= @ — dur) Vi Xj Xj

i=1 j=1 j=1 j=1
n n n
A A A A
+adi| 2.9, £ 20 4
j=1 Jj=1 j=1
n n n—1 i n
a A A A a A A

< sup, 3 X4 (@: — dir) £; + dy X
=1 =1 i=1 j=1 Jj=1
n n n

= sup, i £:) D 4%y
i=1 =1 i=1

n n
A A
< sup, X 9 £
i=1 i=1
if
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On the other hand, if # is such that

n n n n
;ﬁz/ ;£i> Supn;f’i/;ﬁi— €,

then let
;=1 i £
so that =
> b= 1
while -

n n n
Zlbiﬁz>supnzlyz/zl9ei-
i= i= =

In view of Theorems 5 and 7 we conclude that x* = .S, is the space n¢
and x°7 = Sq is the space m¢ studied by W. L. C. Sargent in (8) and (9),
where

¢ = ;ﬁi

The norm given by Sargent for n¢ coincides with Q, but the norm she gave
for m¢ does not necessarily coincide with Q’.

The following proposition is Lemma 10 of (8) with a different proof.

PropPoSITION 3.7. y° D x° if and only if
suanyAi/Zﬁl< .,
i=1 i=1
Proof. 1f
w3 9:/ Bt <
i=1 i=1

then y € Sg = x°. Thus y° D x77 = «°,
If y» D «°, then y € y° C S, so that

wp, 39/ 3 ki= 00) < .

PROPOSITION 3.8. x¢°° # x7°. (By x°° we mean the closed Linear span of €
m x°°.)

Proof. Define f on x°¢ by
fo) = lingyi/ 2k, m=12....
i=1 i=1

Then ||f]| < 1 and f(e:) = 0 for each 7. Since f(£) € x," although & € x°°,
In view of the previous statement and Theorem 5.5 of (7) (see also (4,
Lemmas 1 and 2)) we arrive at the following.
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ProposITION 3.9. (a) There is a closed subspace of x°° topologically isomor-
phic to m. (b) There is a closed subspace of x,°° topologically isomorphic to c,.
(c) There is a closed subspace of x° topologically isomorhphc to I'. (d) The
spaces x°, x°°, and x°° are not reflexive.

In connection with the above proposition see (9, Theorems 8 and 9).
ProrosITION 3.10. (converse of 3(e)). If x” = 1!, x € m ~ c,.

Proof. If x* =11, x € 2 =m. If x € ¢,

inf, > x/n — lim, =3 %, = 0
i=1 =1
so that x* = (1,1, 1,...)° = ! by Proposition 3.7.
4. Symmetric coordinate spaces. The following proposition is a gen-
eralization of (8, Lemma 12d).
ProrosiTION 4.1. If X s any perfect symmelric space, then
X = Ufa: x € X} = Ufxrr: X0 D X7}
= Nfx": x € X°}.

Proof. If x € X, then x* D X7, and if x* D X7, then x* C X = X so
that x € X if and only if ¥ C X and x € X if and only if x* D X°. This
yields the first two equalities.

THEOREM 4.2. If X is a perfect symmetric BK space, there is a balanced,
symmetric sequential norm N of the form

N(x) = supsp £: 9,
=1
for which Sy = X.

Proof. By 4.1, X = N{y>:y € X°}. For each y € X7, y D X so there is
an m, > 0 such that

My Qy(x) < |[x||, x € X,
where || || is the norm on X (12, p. 203). Note that

= AN L
my Q,(x) = Zlmyyixi-
Let
N = sup{m, Qy: y € X°}.

Then N is a balanced symmetric p.s.n. by 2.10 and N(x) < |||| for x € X
so that Sy D X. In order to apply 2.10 we observe that

my Qyle;) = my Qyer) < |led] for each 1.
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On the other hand, Sy C «x° for each x € X7 so that Sy C X. Finally

\

N(x) = sup{;moﬁi:yé)(’;.

5. Applications to symmetric bases. Recall the definition by Singer
(10) that a basis {x,} of a Banach space X is symmetric if

[ee]

25 f (x)xﬂ'(l)

=1

(SB,) sup sup
T€P |8;1<1
1<n<eo

for all x € X where P denotes the set of all permutations on the positive
integers and {f,} is the sequence of continuous linear functionals biorthogonal
to {x.}.

PROPOSITION 5.1. The basts X = x,, of @« Banach space X is symmetric if and
only if Sx = Sy° for N a balanced, symmetric p.s.n., where

J

= lt:i t;x; converges in X}'.
=1

Proof. 1f X is symmetric, define

Z 5 tx.,(,)

N(t) = sup sup
TEP |8;]1L1
1<n<®

Then N is a balanced, symmetric p.s.n. and by (SB;) Sz C Sy. However, for
t €Sy, N() > ||tl], so Sx is a closed subspace of Sy (12, p. 203), which im-
plies that Sx = Sy°.

If N is a balanced, symmetric p.s.n. and Sy® = S, then the norm || || defined
on X by

= N@)

yields the original topology on X and has the property indicated in (SBj).
In (11), Singer proved that the following is equivalent to (SBi):

(SB;) Every permutation {x.;} of the basis {x,} is a basis of X equivalent
to the basis {x,}.

We shall offer an alternative proof of the equivalence of (SB;) and (SB3).
THEOREM 5.2. (SB,) is equivalent to (SBj).

Proof. (SB1) = (SB;). Let ¥ = {x,} be a basis for a Banach space X
which satisfies (SB;). Define a new norm || ||" on X by

; 81 fi(x)%r(o| -

[lx[|" = sup sup
T€P |8;|<1

1<n<co
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Then || ||" is equivalent to || || and

n
Ztixi

i=1

’ ’

n
2 bi%acy
i=1

for every n and every permutation w. Therefore, {x,} is an equivalent basis
to {%.(»} for every permutation .

(SB;) = (SBy). If ¥ satisfies (SB;), then Sy is symmetric. To see this assume
that ¢t € Sz and = is any permutation on the positive integers. Then Z;"’:l £
converges so that Z‘;l t; X--1(;) converges necessarily to Z‘:’:l br(sy) %4 sO that
i € Sx.

Since ¥ is an unconditional basis for X, there is a balanced sequential norm
such that Sy® = Sy. In fact, define N(¢) to be

sup{ Sastixd): e < 1}.
=1

Since Sy? is symmetric, so is (Sy%)* = Sy. By Theorem 4.5 there is a balanced
symmetric p.s.n. M such that Sy, = Sy. Thus Sy,° = Sy® = Sy, which implies
that ¥ satisfies (SB;) by Proposition 5.1.

Added November 10, 1966. The author wishes to point out that many of the
results in § 3 or generalizations thereof appear in the related work of D. J. H.
Garling (14) of which he was unaware at the time of writing this paper.
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