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Homology TQFT’s and the
Alexander–Reidemeister Invariant
of 3-Manifolds via Hopf Algebras
and Skein Theory

Thomas Kerler

Abstract. We develop an explicit skein-theoretical algorithm to compute the Alexander polynomial of

a 3-manifold from a surgery presentation employing the methods used in the construction of quantum

invariants of 3-manifolds. As a prerequisite we establish and prove a rather unexpected equivalence

between the topological quantum field theory constructed by Frohman and Nicas using the homology

of U (1)-representation varieties on the one side and the combinatorially constructed Hennings TQFT

based on the quasitriangular Hopf algebra N = Z/2 n

∧
∗

R2 on the other side. We find that both

TQFT’s are SL(2,R)-equivariant functors and, as such, are isomorphic. The SL(2,R)-action in the

Hennings construction comes from the natural action on N and in the case of the Frohman–Nicas

theory from the Hard–Lefschetz decomposition of the U (1)-moduli spaces given that they are natu-

rally Kähler. The irreducible components of this TQFT, corresponding to simple representations of

SL(2, Z) and Sp(2g, Z), thus yield a large family of homological TQFT’s by taking sums and products.

We give several examples of TQFT’s and invariants that appear to fit into this family, such as Mil-

nor and Reidemeister Torsion, Seiberg–Witten theories, Casson type theories for homology circles à

la Donaldson, higher rank gauge theories following Frohman and Nicas, and the Z/pZ reductions of

Reshetikhin–Turaev theories over the cyclotomic integers Z[ζp]. We also conjecture that the Hennings

TQFT for quantum-sl2 is the product of the Reshetikhin–Turaev TQFT and such a homological TQFT.

1 Introduction

In recent years much energy has been put into finding new ways to describe and com-
pute classical invariants of 3-manifolds using the tools and structures developed in
the relatively new area of quantum topology. In this paper we will establish another
such relation between quantum and classical invariants which emerged in quite dif-

ferent guises in recent research in 3-dimensional topology.

The classical invariant of a 3-manifold M we are interested in here is its Alexander

polynomial ∆(M) ∈ Z[H1(M)]. It is closely related and in most cases identical to
the Reidemeister Milnor Torsion r(M), see [38] and [45]. More recently, Meng and
Taubes [37] show that this invariant is also equal to the Seiberg Witten invariant for

3-manifolds. Turaev [47] proves a refined version of this theorem by comparing the
behavior of both invariants under surgery.

On the side of the quantum invariants we consider the formalism used for the
Hennings invariant of 3-manifolds [14]. This invariant is motivated by and follows
the same principles as the Witten–Reshetikhin–Turaev invariant, which is developed

Received by the editors June 6, 2001; revised September 4, 2002.
AMS subject classification: Primary: 57R56; secondary: 14D20, 16W30, 17B37, 18D35, 57M27.
c©Canadian Mathematical Society 2003.

766

https://doi.org/10.4153/CJM-2003-033-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-033-5


Homology TQFT’s 767

in [50], [43] and [48], in the sense that it assigns algebraic data to a surgery presen-
tation for M. The innovation of the Hennings approach is that it starts directly from

a possibly non-semisimple Hopf algebra A rather than its semisimple representation
theory. This formalism is refined by Kauffman and Radford in [15]. Also Kuperberg
[27] gives a construction that assigns data directly from a Hopf algebra to a Heegaard
presentation of M.

In this article we discover and explain in detail the relation between the Hen-

nings theory for a certain 8-dimensional Hopf algebra N and the (reduced) Alexan-
der polynomial ∆ϕ(M) ∈ Z[t, t−1] for the cyclic covering given by an epimorphism
ϕ : π1(M) → Z. As a consequence, we have at our disposal the entire combinatorial
machinery of the Hennings formalism in order to evaluate the Alexander polyno-

mial from surgery diagrams. Particularly, we are able to develop from this an effi-
cient skein-theoretical algorithm. The method of relating these two very differently
defined theories is based itself on a quite unexpected equivalence of more refined

structures.

More precisely, it turns out that underlying both invariants is the structure of
a topological quantum field theory (TQFT). The notion of a TQFT, which can be
thought of as a fiber functor on a category of cobordisms, was first cast into a math-
ematical axiomatic framework by Atiyah [1]. Typically (or by definition) all quan-

tum invariants extend to TQFT’s on 3-manifolds with boundaries. In the case of
the semisimple theories generalizing the Witten–Reshetikhin–Turaev invariant these
TQFT’s are described in great detail in [46]. In our context we need the non-semi-
simple version as it is worked out for the Hennings invariant in [19] and in full gen-

erality in [25].

On the side of the classical invariants Frohman and Nicas [8] managed to give an
interpretation of the Alexander polynomial of knot complements in the setting of
TQFT’s. In particular, they construct a TQFT VFN , which assigns to every surface Σ

as a vector space the cohomology ring H∗
(

J(Σ)
)

of the U (1)-representation variety

J(Σ) = Hom
(
π1(Σ),U (1)

)
. The morphisms are constructed in the style of the

Casson invariant from the intersection numbers of representation varieties for a given
Heegaard splitting of a cobordism. The Alexander polynomial is thus given as the
Lefschetz trace over VFN (CΣ), where Σ is an arbitrary Seifert surface and CΣ is the 3-

dimensional cobordisms from Σ to itself, obtained by cutting away a neighborhood
of Σ.

The unexpected upshot is that this functor VFN is isomorphic to the Hennings
TQFT VN for the non-semisimple Hopf algebra N ∼= Z/2 n

∧∗
R2. The realization

of the abelian gauge field theory by a specific Hopf algebra is not at all obvious since
VFN and VN are defined in entirely different ways. In fact the isomorphism between
these functors on the vectors spaces mixes up the degrees of exteriors algebras in still
puzzling ways. For these reason the proof is rather explicit and computational.

Nonetheless, it can be seen quite easily that it is not possible to realize VFN as a

semisimple theory. Particularly, VFN represents Dehn twists by matrices of the form
1+N where N is nilpotent. Furthermore, the invariant vanishes on S1×S2. Yet, in the
semisimple theories from [46], Dehn twists are represented by semisimple matrices
D with Dn

= 1 and the invariant on S1 × S2 is never zero.
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Once VFN and thus the Alexander polynomial ∆ϕ are translated into the language
of the Hennings formalism for the Hopf algebra N we are in the position to develop

a skein theory for the computation of ∆ϕ. The skein identities reflect algebraic re-
lations in N. We derive from this a step by step recipe for the computation of the
Alexander polynomial.

Another intriguing feature of the two TQFT’s is that both of them admit natural

equivariant SL(2,R)-actions that have very different origins but are, nevertheless, in-
tertwined by the isomorphism between them. In the case of VFN the SL(2,R)-action
on H∗

(
J(Σ)

)
is given by the Hard Lefschetz decomposition of the cohomology ring

that arises from a Kähler structure on J(Σ). For VN this action is derived from an

SL(2,R)-actions on N as a Hopf algebra. As a consequence H∗
(

J(Σ)
)

carries a non-
standard ring-structure induced by that of N⊗g , which, as opposed to the standard
one, is compatible with the Hard Lefschetz SL(2,R)-action.

Let us summarize the content and the main results of this paper in better order and
detail. In Section 2 we recall relevant notions that characterize topological quantum
field theories, such as (non)semisimplicity. Section 3 reviews the construction of the

functor VFN of Frohman and Nicas and its values on basic cobordisms. In Section 4
we describe a convenient set of generators of the mapping class groups as combi-
nations of Dehn twists and tangles, and determine their actions on homology. Sec-
tion 5 introduces the basic rules for the construction of a Hennings TQFT as well as a

method that allows us to construct TQFT’s even from non-modular Hopf algebras or
categories. In Section 6 we give the precise definition of N as a quasi triangular Hopf
algebra in the sense of Drinfel’d together with the SL(2,R)-action on it. The vec-
tor spaces and the basic morphisms of the associated Hennings TQFT are computed

in Section 7 using standard tangle presentations. We prove SL(2,R)-covariance and
single out an index 2 subcategory of framed cobordisms that naturally yields a real
valued TQFT. For later applications we also determine the categorical Hopf algebra
that is canonically associated to this TQFT. The nilpotent braided structure of N is

then used in Section 8 to develop a skein theory for the evaluation of tangle dia-
grams. The pivotal equivalence of TQFT’s that relates this theory to the Alexander
polynomial is given by a natural isomorphism of functors as follows. This is proven
in Section 9 by explicit comparison of generating morphism.

Theorem 1 There is an SL(2,R)-equivariant isomorphism

ξ : V
(2)
N

•∼=−−−−→ VFN ,

where both TQFT’s are “non-semisimple”, Z/2Z-projective functors from the category

Cob•

3 of surfaces with one boundary component and relative cobordisms to the category
of real SL(2,R)-modules.

The Hard Lefschetz SL(2,R) action on the cohomology of the U (1) moduli spaces

and its covariance with VFN are described more precisely in Section 10. The fact
that ξ is an SL(2,R)-equivariant transformation is proven. Moreover, we describe
the canonical decompositions of the TQFT and the Alexander polynomial according
to their dual SL(2,R)-representations. The summands are irreducible TQFT’s for
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which the mapping class groups are represented by fundamental weight representa-
tions of the symplectic groups Sp(2g,Z). In Section 11 we use the equivalence from

Section 9 and the skein theory for tangles from Section 12 to lay out an explicit algo-
rithm, based on a skein theory that extends the Alexander–Conway calculus, for the
computation of ∆ϕ(M).

Theorem 2 Let L be a framed link and Z ⊂ L a distinguished component that has

zero framing and algebraic linking number zero with all other components. Let ML be
the 3-manifold obtained by surgery along L and ϕZ : π1(M) → Z the linking number
with Z.

Then ∆ϕZ
(ML) ∈ Z[t, t−1] can be computed systematically as follows:

• Use the skein relations from Proposition 15 to unknot the special strand Z.
• Put the new configuration into a standard form as depicted in Figure 15, yielding a

tangle T.
• Use the skein relations from Theorem 7 and framing relations from Figure 13 to de-

compose T# into elementary diagrams as described in in Theorem 8.
• Translate the elementary tangle diagrams into Hopf algebra diagrams as in (95).
• Go through the steps of Proposition 14 to assign polynomials to each component of a

diagram.
• Take products over components and sums over elementary diagrams.

The calculus described here for the evaluation of tangle diagrams is precisely the
one used to compute the morphisms for the TQFT functors from Theorem 1 via
tangle surgery presentations of cobordisms.

Another application of the equivalence established in Theorem 1 arises from the
observation that every TQFT V on Cob•

3 naturally implies a braided Hopf algebra

structure HV on N0 := V(Σ1,1). Now, the cohomology ring H∗
(

J
(
Σg ,U (1)

))
∼=

∧∗
H1(Σg) already has a canonical structure Hext of a Z/2-graded Hopf algebra in-

duced by the group structure on J
(
Σg ,U (1)

)
. It is easy to see that Hext is not com-

patible with the Lefschetz SL(2,R)-action. However, the braided Hopf algebra struc-

ture HVFN inherited from the TQFT’s in Theorem 1 is naturally SL(2,R)-variant,
and, furthermore, equivalent to Hext :

Theorem 3 For any choice of an integral Lagrangian decomposition, H1(Σg ,Z) =

Λ⊕Λ
∗, and volume forms, ωΛ ∈ ∧g

Λ andωΛ∗ ∈ ∧g
Λ
∗, the space H∗

(
J(Σg)

)
admits

a canonical structure HΛ of a Z/2-graded Hopf algebra. It coincides with the braided
Hopf algebra structure induced by VFN and is isomorphic to the canonical structure Hext .

In particular,
(

H∗
(

J(Σg)
)
,HΛ

)
is commutative and cocommutative in the graded

sense, with unit ωΛ∗ , integral ωΛ, and primitive elements given by a ∧ ωΛ∗ and i∗z ωΛ∗

for a ∈ H1(Σ) and z ∈ H1(Σ).
The structure HΛ is, furthermore, compatible with the Hard–Lefschetz SL(2,R)-

action. Specifically, this action is the Howe dual to the action of SL(g,Z) on the

Lagrangian subspace in the group of Hopf automorphisms:

SL(2,R)Lefsch. × SL(Λ) ⊂ GL(2g,R) = Aut
(

H∗
(

J(Σg)
)
,HΛ

)
.
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In Section 13 we discuss the appearance of these TQFT’s in other contexts. To this
end let us denote by V( j) the irreducible component of VFN dual to the j-dimensional

SL(2,R)-representation. A detailed description of it is given in Theorem 12. Choose
for a closed 3-manifold M with Betti number β1(M) ≥ 1 a surjectionϕ : H1(M) � Z

(which would be canonical for homology circles as given by 0-surgeries on knots). A
series of invariants for the pair (M, ϕ) can now be constructed by choosing any two-

sided, embedded surface Σ ⊂ M that is dual to ϕ, and considering the cobordism
CΣ : Σ → Σ obtained by removing an open tubular neighborhood of Σ from M. The
j-th (fundamental) Alexander Character is now defined to be the integer

(1) ∆
( j)
ϕ (M) = trace

(
V( j)(CΣ)

)
,

which is easily seen to depend only on ϕ but not the choice of Σ. Besides the Alexan-
der Polynomial also two other invariants invariant ISW and IDC depending on this
data have been constructed by Donaldson in [5] from a Seiberg–Witten Theory and
an SO(3)-Casson-type gauge theory respectively. Let us also denote by λL the Lescop

Invariant [29]. As specified in the next theorem all of these invariants are in fact
linear combinations of the (fundamental) Alexander Characters.

Theorem 4 (Mostly Corollaries to [8], [5], [29], [24])

∆ϕ(M) =

∑

j≥1

[ j]−t · ∆( j)
ϕ (M)(2)

IDC
ϕ (M) =

∑

j≥2

(
j + 1

3

)
· ∆( j)

ϕ (M)(3)

ISW
d,ϕ (M) =

∑

j≥d+2

[[( j − d

2

) 2
]]

· ∆( j)
ϕ (M)(4)

λL(M) =

∑

j≥1

(−1) j−1 j(2 j2 − 3)

12
· ∆( j)

ϕ (M).(5)

Here we denoted [ j]q =
q j−q− j

q−q−1 and by [[x]] the largest integer ≤ x. We further

review in how far the higher PSU(n) knot invariants IFN
k,n,ϕ of Frohman and Nicas

[9] turn out to be polynomial expressions in the Alexander Characters. As products
of characters are associated to tensor products of TQFT’s and their decompositions

into irreducible components, it is natural to consider the corresponding higher, irre-
ducible Alexander Characters ∆

(γ). We conjecture that the IFN
k,n,ϕ are linear combina-

tions of the ∆
(γ) with coefficients in N ∪ {0} as it is the case for IDC and ISW .

Moreover, we explain how the irreducible p-modular reductions
==

V
( j)
p over Fp =

Z/pZ of the V( j) relate to the irreducible factors of the Z[ζp] → Fp of the

Reshetikhin–Turaev TQFT’s at a p-th root of unity ζp. We finally give evidence
that the TQFT from Theorem 1 is essentially the missing tensor factor that relates
the semisimple and the non-semisimple TQFT constructions for Uq(sl2) following
Reshetikhin–Turaev and Hennings respectively.
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2 Topological Quantum Field Theory

We start with the definition of a TQFT as a functor as proposed by Atiyah [1], largely
suppressing a more detailed discussion of the tensor structures.

For every integer, g ≥ 0, choose a compact, oriented model surface, Σg , of genus
g, and to a tuple of integers g = (g1, . . . , gn) associate the ordered union Σg :=
Σg1

t · · · t Σgn
. A cobordism is a collection, M = (M, φ#,Σg#

), of the following:

A compact, oriented 3-manifold, M, whose boundary is divided into two compo-
nents ∂M = −∂inM t ∂outM, two standard surfaces Σg

in
and Σg

out
, and two orienta-

tion preserving homeomorphisms φin : Σg
in

∼−→ ∂inM and φout : Σg
out

∼−→ ∂outM.

We say two cobordisms, M and M ′, are equivalent if they have the same “in” and
“out” standard surfaces, and there is a homeomorphism h : M

∼−→ M ′, such that
h ◦ φ# = φ ′

#.

Let Cob3 be the category of cobordisms in dimension 2 + 1, which has the stan-
dard surfaces as objects and equivalence classes of cobordisms as morphism. The
composition of morphisms is defined via gluing over boundary components using
the coordinate maps to the same standard surfaces. In addition, Cob3 has a tensor

product given by disjoint unions of surfaces and cobordisms.
A Topological Quantum Field Theory (TQFT) is a functor, V : Cob3 −→ Vect(K),

from the category of cobordisms to the category of vector spaces over a field K.

Let us recall next some generalizations of the definition given in [1] that will be
relevant for our purposes. By Cob2 fr

3 we denote the category of 2-framed cobordisms,
where we fixed some standard framings on the model surfaces Σg , see [21]. A 2-

framed TQFT is now a functor V : Cob2 fr
3 −→ Vect(K). The category of 2-framed

cobordisms can be understood as a central extension

(6) 1 −→ Z −→ Cob2 fr
3 −→ Cob3 −→ 1

of the ordinary cobordism category, if restricted to connected cobordisms. Hence, an
irreducible 2-framed TQFT yields a projective TQFT since Z is presented as a scalar.

See [21] for further descriptions of this extension in terms of signatures of bounding
4-manifolds.

For a group G, we introduce the notion of a G-equivariant TQFT. It is a functor,

V : Cob3 −→ G-modK , from the category of cobordisms to the category of finite
dimensional G-modules over a field K. This means that the linear map associated to
any cobordism commutes with the action of G on the vector spaces of the respective
boundary components.
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Recall also from [20] that a half-projective or non-semisimple TQFT is one in
which functoriality is weakened and replaced by the composition law V(MN) =

0µ(M,N)V(M)V(N). Here µ(M,N) = b(MN) − b(M) − b(N) ∈ Z+,0, where b(M)
is the number of components of M minus half the number of components of ∂M.
Note that 00

= 1.

We often call a cobordism for which all (rational) homology comes from the ho-
mology of the boundary (rationally) homologically trivial (r.h.t). More precisely, we
mean by this that i∗ : H1(∂M,Q) → H1(M,Q) is onto. Typical examples of r.h.t.
cobordisms are the ones in (8) and (9) below and closed rational homology spheres.

Examples of cobordisms that are not r.h.t. are any connected sums with closed man-
ifolds M with β1(M) ≥ 1. We find the following vanishing property:

Lemma 1 ([20]) If V is a non-semisimple TQFT, then for any cobordism M,

if V(M) 6= 0 then M is r.h.t.

We further introduce Cob•

3 , the category of cobordisms for which the surfaces are

connected and have exactly one boundary component. As objects we thus use model
surfaces Σg,1, such that Σg+1,1 is obtained from Σg,1 by gluing in a torus, Σ1,2, with
two boundary components. Thus, we have a presentation

(7) Σg,1 = Σ1# · · · #Σ1#Σ1,1︸ ︷︷ ︸
g

with inclusions Σg,1 ⊂ Σg+1,1.

Instead of ordinary cobordisms we then consider relative ones. We finally introduce

categories of cobordisms with combinations of these properties such as Cob2 fr,•
3 , the

category of 2-framed, relative cobordisms.

For any homeomorphism, ψ ∈ Homeo+(Σg), of a surface to itself we define the
cobordism

(8) Iψ = (Σg × [0, 1], id t ψ,Σg t Σg).

The morphism [Iψ] depends only on the isotopy class {ψ} of ψ, and the resulting
map Γg → Aut(Σg) : {ψ} 7→ [Iψ] from the mapping class group to the group of

invertible cobordisms on Σg is an isomorphism, see [25]. Consequently, every TQFT

defines a representation of the mapping class group Γg → GL
(
V(Σg)

)
: {ψ} 7→

V([Iψ]).
Moreover, let us introduce special cobordisms

(9) H+
g := (H+

g , id t id,Σg t Σg+1),

where H+
g is obtained by adding a full 1-handle to the cylinder Σg ×[0, 1] at two discs

in Σg × 1. This is done in a way compatible with the choice of the model surfaces in
equation (7). Another cobordism H−

g is built by gluing a 2-handle into the thickened
surface Σg+1×[0, 1] along a curve bg+1 which lies in the added torus from (7) and has
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geometric intersection number one with the meridian of the 1-handle added by H+
g .

From this we obtain a cobordism H−
g = (H−

g ,Σg+1 t Σg) in the opposite direction,

with the property that H−
g ◦ H+

g is equivalent to the identity.
Basic Morse theory implies a Heegaard decomposition as follows for any cobor-

dism:

(10) M ∼= H−
g2
◦ H−

g2+1 ◦ · · · ◦ H−
N−1 ◦ Iψ ◦ H+

N−1 ◦ · · · ◦ H+
g1+1 ◦ H+

g1
,

where ψ ∈ Homeo+(ΣN ). Hence, a TQFT is completely determined by the induced
representations of the mapping class groups and the maps V([H+

g ]) and V([H−
g ]).

Therefore, any two TQFT’s coinciding on the basic generators from (8) and (9) have
to be equal.

3 The Frohman–Nicas TQFT for U (1)

Let us review the basic steps in the construction of the topological quantum field
theory VFN as given in [8] via intersection theory of U (1)-representation varieties.

For a compact, connected manifold X its U (1)-representation variety is defined as

(11) J(X) := Hom
(
π1(X),U (1)

) ∼= H1
(

X,U (1)
)
.

Observe that J(X) is a manifold of dimension β1(X). Specifically, it is a torus if
H1(X,Z) is torsion free, and a discrete group if β1(X) = 0.

The vector space associated to a surface Σg is given by VFN(Σg) = H∗
(

J(Σg1
) ×

· · · × J(ΣgN
),R

)
.

We consider first cobordisms, M, between surfaces, ∂inM and ∂out M, that are ra-
tionally homologically trivial in the sense of Section 2. In this case the map
j : J(M) → J(∂inM) × J(∂outM) is a half dimensional immersion. Thus the

top form ±[ J(M)] defines (up to sign) a middle dimensional homology class in
H∗

(
J(∂inM),R

)
⊗ H∗

(
J(∂outM),R

)
. Using Poincaré Duality and the coordinate

maps of the cobordism, the latter space is isomorphic to the space of linear maps
from VFN (Σg

in
) to VFN (Σg

out
). VFN (M), for a homologically trivial cobordism M, is

now the linear map associated to j∗
(
±[ J(M)]

)
.

In the general case Frohman and Nicas define VFN (M) via a Heegaard splitting of

M as in (10), and consider the intersection number of representation varieties of the
elementary thick surfaces with handles separated by the Heegaard surface. In the case
where H1(∂M,R) → H1(M,R) is not onto, i.e., M is not homologically trivial, these
varieties no longer transversely intersect so that VFN (M) = 0.

Regarding the composition structure, VFN has a couple of nonstandard proper-
ties. For one, functoriality fails to hold when M and N are homologically trivial but
M ◦ N is not. Moreover, the orientation of the classes ±[ J(M)] and cycles cannot
be chosen consistently with composition so that a sign-projectivity persists. Recall,

however, that a 2-framed TQFT is really defined on the Z-extensions of cobordisms
given in (6).

Lemma 2 VFN is a non-semisimple, Z/2Z-projective TQFT in the sense of Section 2.
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The mechanism by which the universal Z-extension is factored into a Z/2Z-exten-
sion is explained further for the quantum theory in Lemma 10 and Proposition 6 of

Section 7. At least indirectly, we have thus related the orientation ambiguities in [8]
to the usual framing ambiguities of quantum theories.

Now, in the U (1) case, J(X) has a group structure itself, which induces a coalgebra
structure on the cohomology ring so that H∗

(
J(X)

)
is endowed with a canonical

Hopf algebra structure Hext . If H1(X) is torsion free then H∗
(

J(X)
)

is connected

and we obtain a natural isomorphism H∗
(

J(X)
) ∼=

∧∗
H1(X) of Z/2-graded Hopf

algebras, and H1(X) is the space of primitive elements. Hence, we can write for the
vector spaces:

(12) VFN (Σg) =

∧∗
H1(Σg).

The representation of the mapping class group Γg on this space is given by the obvi-

ous action

(13) VFN ([Iψ]) =

∧∗
[ψ] ∀{ψ} ∈ Γg .

Here, [ψ] ∈ Sp
(

H1(Σg)
)

is the natural, induced action on homology. For a con-
nected surface Σg we have the associated short exact sequence

(14) 1 → Jg −→ Γg
ψ 7→[ψ]−−−−→ Sp(2g,Z) → 1,

where Jg is the Torelli group.

Let H+
g be the cobordism as defined in (9), and let [ag+1] be a generator of

ker
(

H1(Σg+1,Z) → H1(Hg+,Z)
)

seen as an element of H1(Σg+1,R). It is represented
by the meridian ag+1 of the added handle. In a slight variation of the Frohman–Nicas
formalism we see that the associated linear map is given as

(15) VFN (H+
g ) :

∧∗
H1(Σg) −→

∧∗
H1(Σg+1) : α 7→ i∗(α) ∧ [ag+1].

Here we use the fact that H1(Σg,1) = H1(Σg) so that the inclusion of surfaces in (7)
implies also an inclusion i∗ : H1(Σg) ⊂ H1(Σg+1).

Let H−
g be the cobordism obtained by gluing a 2-handle along bg+1 as defined

above. We note that H1(Σg+1) = H1(Σg) ⊕ 〈[ag+1], [bg+1]〉, so that
∧∗

H1(Σg+1) is
the direct sum of spaces V1 ⊕Va ⊕Vb ⊕Va∧b where Vx = [xg+1] ∧

∧∗
H1(Σg). The

linear map associated in [8] to H−
g acts on Va as

(16) VFN (H−
g ) : Va −→

∧∗
H1(Σg) : i∗(α) ∧ [ag+1] 7→ α

and is zero on all other summands.
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4 The Mapping Class Groups and their Actions on Homology

The mapping class group Γg,1 = π0

(
Homeo+(Σg,1)

)
on a model surface Σg,1 is gen-

erated by the right handed Dehn twists along oriented curves a j , b j , and c j , as de-
picted in Figure 1. We denote them by capital letters A j ,B j ,C j ∈ Γg,1 respectively. In
fact we only need the A2 of the A j ’s to generate Γg,1. A presentation of Γg,1 in these
generators is given by Wajnryb [49]. For our purposes we prefer the set {A j ,D j , S j}
of generators defined as follows:

(17) D j := A−1
j A−1

j+1C j and S j := A jB jA j for j = 1, . . . , g.

In [36] a tangle presentation of Γg,1 is given using the results in [49]. The same

presentation results from the tangle presentation of Cob
2 fr,•
3 in [21, Proposition 14],

which extends to the central extension 1 → Z → Γ
2 fr
g,1 → Γg,1 → 1 that stems

from the 2-framing of cobordisms. The framed tangles associated to our preferred
generators are given in Figures 2, 3, and 4. We use an empty circle to indicate a right

handed 2π-twist on the framing of a strand as in Figure 2, and a full circle for a left
handed one as in Figure 5. Note that the extra 1-framed circle in Figure 4 does not

change the 3-cobordism in Cob•

3 but shifts its 2-framing in Cob
2 fr,•
3 by one.

a1
a2 ag

b1 b2 bg

c1
c2 cg−1

Figure 1: Curves on Σg,1.

Γ
2 fr
g,1 can then be thought of as the sub-group of tangles generated by these di-

agrams, modulo isotopies, 2-handle slides, the σ-move and the Hopf link move;
see [21].

For later purposes we give the explicit action of these generators on H1(Σg ,Z) =

H1(Σg,1,Z) in the sense of (14). Suppose p, f ⊂ Σg,1 are two transverse, oriented
curves. We denote by P the Dehn twist along p, by [P] ∈ Sp(2g,Z) its action on
homology, and by [p] and [ f ] the respective homology classes. We have

(18) [P].[ f ] = [ f ] + ([p] · [ f ])[p].

Here ([p] · [ f ]) ∈ Z is the algebraic intersection number of p with f , counting +1
for a crossing if the tangent vectors of p, f form an oriented basis and −1 if the basis
has opposite orientation.

A basis for H1(Σg) is given by {[a1], . . . , [ag], [b1], . . . , [bg]}, and intersection

numbers can be read off Figure 1. For example a j intersects b j in only one point,
where [a j] · [b j ] = +1 since b j follows a j counter clockwise at the crossing. Hence

(19) [A j].[b j ] = [b j ] + [a j] and [A j].[x] = [x] for all other basis vectors.
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A j =

j− j+

=

j− j+

Figure 2: Tangle for A j .

D j =

j− j+ ( j + 1)− ( j + 1)+

Figure 3: Tangle for D j .

S j =

j− j+

Figure 4: Tangle for S j .

= = v = = v−1

Figure 5: Twist assignments.
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Similarly, we have that [C j] only acts on [b j ] and [b j+1] with [C j].[b j] = [b j ] + [c j]
and [C j].[b j+1] = [b j+1] − [c j]. Substituting [c j] = [a j] − [a j+1], and using the

definition of D j in (17) and (19) we compute

(20) [D j].[b j ] = [b j] − [a j+1] and [D j].[b j+1] = [b j+1] − [a j],

and, again, [D j].[x] = [x] for all other basis vectors [x] of H1(Σ1,Z). Finally, we find
[B j].[a j] = [a j] − [b j] so that

(21) [S j].[a j] = −[b j ] and [S j].[b j ] = [a j]

and [S j ].[x] = [x] otherwise.
The above action can be identified with specific generators of the Lie algebra

sp(2g,R) as follows:

[A j] = I2g + E j,− j = I2g + e2ε j
= exp(e2ε j

)

[B j] = I2g − E− j, j = I2g − f2ε j
= exp(− f2ε j

)(22)

[D j] = I2g − E j,−( j+1) − E j+1,− j = I2g − eε j +ε j+1
= exp(−eε j +ε j+1

).

The conventions and notations for the weights ε j and the matrices Ei, j are taken from
[12, Chapter 2.3]. Hence, the natural representation on Sp(2g,Z) clearly lifts to the
fundamental representation of Sp(2g,R).

Finally, there is an Sp(2g,Z)-invariant 2-form, which is unique up to signs and
given in our basis as:

(23) ωg :=

g∑

j=1

[a j] ∧ [b j ] ∈
∧2

H1(Σg) = H2
(

J(Σg)
)
.

It is identical to twice the Kähler metric form in H2
(

J(Σg)
)

, see Section 10 and [13].

5 Hennings TQFT’s

In [14] Hennings describes a calculus that allows us to compute an invariant, VH
A

(M),
for a closed 3-manifold, M, starting from a surgery presentation, M = S3

L
, by a

framed link, L ⊂ S3, and a quasitriangular Hopf algebra A. It is obtained by inserting
and moving elements of A along the strands of a projection of L and evaluating

them against integrals. This procedure was refined by Kauffman and Radford [15]
permitting unoriented links and simplifying the evaluation and proofs substantially.
VH

A
turns out to be a special case of the invariant given by Lyubashenko [31], which

is constructed from general abelian categories. In [19, Theorem 14] we generalize

the Hennings procedure to tangles and cobordisms and thus construct a topological
quantum field theory VH

A
for any modular Hopf algebra A. In turn VH

A
is derived

as a special case of the general TQFT construction by Lyubashenko and the author
in [25].
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The TQFT in [19] was formulated as a contravariant functor, V∗
A

: Cob•

3 →
Vect(K), where V∗

A
(Σg,1) = A⊗g . In this section we will give the rules for con-

struction for the covariant version, defined by VA(M) = ( f ⊗g)−1
(
V∗

A
(M)

)∗
f ⊗g ,

where f : A → A∗ : x 7→ µ
(

S(x) ·
)

. We generalize [19] further by allowing Hopf
algebras, A, that are not modular, at the expense of reducing the vector space by a
canonical projection.

Let M be a 2-framed cobordism between two model surfaces, Σg1
and Σg2

. As in
[21] we associate to the homeomorphism class of M an equivalence class of framed
tangle diagrams. The projection of a representative tangle, TM , in R × [0, 1] has

2g1 endpoints 1− < 1+ < 2− < · · · < g−1 < g+
1 in the top line R × 1 and 2g2

endpoints 1− < 1+ < 2− < · · · < g−2 < g+
2 in the bottom line R × 0. Besides closed

components (∼= S1) the tangle can have components with boundary (∼= [0, 1]). An
interval component, J, of the tangle can either run between points j− and j+ at the

top line or between j− and j+ at the bottom line. As a forth possibility we admit pairs
of components, I and J, of which each starts at the top line and ends at the bottom
line and cobords a pair { j−, j+} to a pair {k−, k+}. The equivalences of tangles are
generated by isotopies, 2-handle slides (second Kirby move) over closed components,

the addition and removal of an isolated Hopf link in which one component has 0-
framing, and additional boundary moves, called σ- and τ -Moves, see [21]. For later
purposes we also depict here the σ-Move:

(24)

j+ j− j+ j−

The next ingredient is a unimodular, ribbon Hopf algebra, A, in the sense of [42],
over a perfect field K with char(K) = 0. In particular, A is a quasitriangular Hopf
algebra as introduced by Drinfel’d [6]. This means there exists an element R =∑

j e j ⊗ f j ∈ A⊗2, called the R-matrix, which fulfills several natural conditions.

As in [6] we define the element u =
∑

j S( f j )e j , which implements the square of

the antipode S by S2(x) = uxu−1. A ribbon Hopf algebra is now a quasitriangular
Hopf algebra with a group-like element, G, such that G also implements S2 and G2

=

uS(u)−1. From this we define the ribbon element v := u−1G, which is central in A.

Furthermore, it satisfies the equation

(25) M = R†R = ∆(v−1)v ⊗ v,

where (a ⊗ b)† = b ⊗ a is the transposition of tensor factors.

Now, any finite dimensional Hopf algebra contains a right integral, which is an
element µ ∈ A∗ characterized by the equation:

(26) (µ⊗ idA)
(
∆(x)

)
= 1 · µ(x).
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Its existence and uniqueness (up to scalar multiplication) has been proven in [28].
The adjective “unimodular” implies that

(27) µ(xy) = µ
(

S2(y)x
)

and µ
(

S(x)
)

= µ(G2x),

see [42]. For the remainder of this article we will also assume the following normal-
izations:

(28) µ⊗ µ(M) = 1 and µ(v)µ(v−1) = 1.

The next step in the Hennings procedure is to replace the tangle projection TM

with distinguished over and under crossings by a formal linear combination of copies
of the projection TM in which we do not distinguish between over and under cross-
ings but decorate segments of the resulting planar curve with elements of A. Specif-
ically, we replace an over crossing by an indefinite crossing and insert at the two

incoming pieces the elements occurring in the R-matrix, and similarly for an under
crossing, as indicated in the following diagrams.

(29)
�

�
�@@

@@
-

∑

j

@
@

@@�
�

��e jt t f j

��

��

@
@

@ -
∑

j

@
@

@@�
�

��

tS(e j ) tf j

The elements on the segments of the planar diagram can then be moved along the
connected components according to the following rules.

(30) tx
ty

= txy ��
tS(x)

= ��
tx @

@
@�

�
�tx =

@
@

@�
�

�tx

Finally, every diagram can be untangled using the local moves given below, and
the usual planar third Reidemeister move. In particular, undoing a closed curve in the

diagram yields an extra overall factor Gd, where G is the group-like element defined
above and d the Whitney number of the curve.

(31)

���� LL
�

��
@

@@

=

��
tG �� LL

LL ��

�
�

@
@

@
@

�
�

=

The assignments that result from this for the left and right ribbon 2π-twists are
summarized in Figure 5. Note that in the assignment on the right hand side the full
circle on the left side stands for a left handed twist for the framing, while the fat dot
on the right hand side indicates a decoration of the strand by the element v−1.
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It is clear that after application of these types of manipulations to any decorated
diagram we eventually obtain a set of disjoint, planar curves which can be one of four

types. For each of these types we describe next the evaluation rule that leads to the
definition of a linear map V#(TM):

Components of the first type are closed circles decorated with one element ai ∈ A

on the right side. To this we associate the number µ(ai) ∈ K.

Next, we may have an arc at the bottom line of the diagram connecting points p ′
k

and q ′
k with one decoration bk ∈ A at the left strand. To this we associate the vector

bk ∈ A(k) in the k-th copy of the tensor product A⊗g2 .

Thirdly, for an arc at the top line between points p j and q j with decoration c j ∈ A

on the right we assign the linear form lc j
: A( j) → K given by lc j

(x) = µ
(

S(x)c j

)
on

the j-th copy of the tensor product A⊗g1 .

Finally, we may have pairs of straight strands that connect a pair {p j , q j} to the
pair {p ′

k, q
′
k}, carrying decorations, a and b. In case the strands are parallel, that is,

one connects p j to p ′
k and the other q j to q ′

k, we assign a linear map Ta,b : A( j) → A(k)

between the j-th copy of A⊗g1 to the k-th copy of A⊗g2 , by Ta,b(x) = axS(b).

If the connecting strands cross over we apply in addition the endomorphism
K(x) = G−1S(x) on the k-th copy A(k) for a crossing right at the bottom line. It
is quite useful to summarize these rules also pictorially as follows:

"!
# tai - µ(ai)(32)

p ′
k q ′

k

��
tbk

- b : K −→ A(k) : x 7→ bk(33)

p j q j

��
tc j

-
lc j

: A( j) −→ K : x 7→ µ
(

S(x)c j

)
(34)

ta
p j q j

p ′
k q ′

k

tb - Ta,b : A( j) −→ A(k) : x 7→ axS(b)
(35)
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p ′
k q ′

k

@
@
@

�
�

�
- K : A(k) −→ A(k) : x 7→ G−1S(x)

From these rules for evaluating diagrams we obtain a linear map A⊗g1 → A⊗g2

for any decorated planar tangle. For a given tangle TM we denote by V#(TM) the sum
of all of these maps associated to the sum of decorated diagrams for TM . Thus, if
we consider, for simplicity, a tangle TM without components of the fourth type, and

denote by aνi , bνj and cνk the respective elements of the ν-th summand of the same
untangled curve of TM , this linear map can be expressed as

V#(TM) :=
∑

ν

µ(aν1 ) · · ·µ(aνN )bν1 ⊗ · · · ⊗ bνg2
laν1 ⊗ · · · ⊗ laνg1

.

For tangles with strand pairs that connect top and bottom pairs we insert the opera-
tors Ta,b in the respective positions.

Lemma 3 The linear maps V#(TM) are well defined, (covariantly) functorial under
the composition of tangles, and they commute with the adjoint action of A on A⊗g . They
are also invariant under isotopies and the following moves:

(1) 2-handle slides of any type of strand over a closed component of TM ;
(2) adding/removing an isolated Hopf link for which one component has 0-framing and

the other framing 0 or 1.

Proof The fact that the construction procedure for a given diagram is unambiguous
is almost straight forward, except that one has to pay attention to the positioning
of the resulting elements. Details for closed links can be found in [16]. Functori-
ality is easily checked from the rules of construction. The fact that the maps are A-

equivariant follows from the fact that it is a special case of the categorical construction
in [25] and the fact that f : A → A∗ intertwines the adjoint with the coadjoint ac-
tion. Invariance under isotopies follows, as in [14] or [15], from the properties of the
R-matrix of a quasitriangular Hopf algebra. In the same articles the 2-handle slide

is directly related to the defining equation (26) of the right integral, see also [31] for
the categorical version of the argument. Invariance under the Hopf link moves is a
direct consequence of the normalizations in (28), since they imply that the Hennings
invariants on the Hopf links are all one.

In order to describe the reduction procedure that allows us to define a TQFT also
for non-modular Hopf algebras we introduce the operators associated to the dia-
grams in Figure 6, the left being isotopic to the one in Figure 4. The double crossing

is replaced by the elements m+
j , n

+
j from M =

∑
j m+

j ⊗ n+
j , as defined in (25). The

transformation S+ : A → A is readily worked out to be

(36) S+(x) =

∑

j

µ
(

S(x)m+
j

)
n+

j .
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S+
= S−

=

Figure 6: S±-transformations.

The formula for S− follows analogously, substituting M for M−1
=

∑
j m−

j ⊗ n−
j .

We consider next the result Π of stacking the two tangles in Figure 6 on top of each
other:

Lemma 4 Let Π := S+◦S− = S−◦S+, and denote Π
( j)

= 1⊗· · ·⊗1⊗Π⊗1⊗· · ·⊗1,
with Π occurring in the j-th tensor position.

(1) Π is an idempotent that commutes with the adjoint action of A.
(2) V#(TM)Π( j)

= V#(TM) if the j-th top index pair in TM is attached to a top ribbon
in TM . (Analogously for bottom ribbons).

(3) Π
(k)V#(TM) = V#(TM)Π( j) if TM has a through pair connecting the j-th top pair

to the k-th bottom pair.

Proof For (1) note that the picture for Π consists of two arcs that are connected by

a circle. Stacking Π on top of itself we obtain the picture for Π
2 by functoriality in

Lemma 3. The resulting tangle is the chain of circles C j and arcs At/b depicted on the
left of Figure 7. By (1) of Lemma 3 we may use 2-handle slides to manipulate this
picture. We first slide C1 over C3, and then Ab over C2. The result is the tangle for

Π and a separate Hopf link. The value of the latter, however, is 1 by (28). Hence,
Π

2
= Π.

Figure 7: Π is idempotent.

C1

C3

At

C2

Ab

C1

Ab

At

C3

C2

At

C1

Ab

C3

C2

Equivariance with respect to the action of A is immediate from Lemma 3.

For (2), we repeat an argument from [25]. Suppose τ is a top component and
η any band connecting two intervals Ii in τ in an orientation-preserving way. To
this we associated the surgered diagram in which the component τ is replaced by
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the union τη of three components. They are obtained by cutting away the intervals
Ii from τ and inserting the other two edges of η at the endpoints ∂Ii as indicated

in Figure 8. Furthermore, we insert a 0-framed annulus A around η. Sliding any

Figure 8: η-surgery.

I1 I2

τ τ

η

A

τη

other component over A at an arbitrary point along η has the effect of just moving

it through η at this point. Moreover, we can slide a ±1-framed annulus K over A so
that it surrounds the two parallel strands in τη, and then slide the two strands over K.
The effect is the same as putting a 2π-twist into η. These two operations allow us to
move any band η to any other band η ′ such that τη and τη ′ are related by a sequence

of two handle slides.
Now, adding the picture of Π to the top-component τ of a tangle TM is the same

as surgering τ along a straight band parallel and close to the interval between the
attaching points of τ at the top line. We replace this η by a small planar arc at τ
separate from the rest of the tangle. Surgery along this corresponds to linking a Hopf
link to τ , as C2 ∪C3 is linked to Ab in the middle of Figure 7, and consequently can be
removed by the same argument. The proofs for the formulas for bottom and through
strands are entirely analogous.

Set Π
#

= Π
⊗g when acting on A⊗g . It follows now easily from Lemma 4 that

V#(TM)Π#
= Π

#V#(TM) for all TM . Thus each V#(TM) maps the image of Π
# to itself

so that we can define the restriction

(37) V(TM) := V#(TM)|im(Π#) : VA(Σg1,1) −→ VA(Σg2,1),

where the vector spaces are given as

(38) VA(Σg,1) = Π
#
(
V#(Σg)

)
= A

⊗g
0 with A0 = Π(A).

Theorem 5 The assignment V as given in (37) yields a well defined, 2-framed, relative,
A-equivariant topological quantum field theory

VA : Cob
2 fr,•
3 −→ A- modK ⊂ Vect(K).

Using the invariance functor Inv = Hom(1, ) : A-mod → Vect(K) we obtain an
ordinary 2-framed TQFT for closed surfaces as

V0
A := Inv ◦VA : Cob2 fr

3 −→ Vect(K).
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Proof We recall from [21, Proposition 12] that two presentations, TM and T ′
M , of

a framed, relative cobordism M ∈ Cob
2 fr,•
3 are related by the moves described in

Lemma 3 and the so called σ-moves, which consist of adding the picture of Π to
a pair of points at the top or bottom line of the diagram. From V(TM)Π( j)

=

V#(TM)Π#
Π

( j)
= V#(TM)Π# we see that V(TM) is invariant under this move. Hence,

V(TM) only depends on the cobordism represented by TM and we can write
VA(M) := V(TM).

Due to the equivariance of Π also A0 from (38) is invariant under the adjoint
action of A, and the restricted maps commute with the action of A as well. Functo-

riality of V follows from functoriality of V# and the fact that Π
# commutes with V#.

Since each V(M) commutes with the action of A they also map the A-invariant
subspaces V0(Σg) := Inv

(
V(Σg,1)

)
to themselves. This implements the additional

τ -move [21] needed to represent cobordisms between closed surfaces.

6 The Algebra N

The Hopf algebra N we will define in this section is the same as the algebra A2 de-

scribed by Radford in Example 1 of Section 4.1 in [41]. The quasitriangular structure
that we endow N with is essentially distilled from the one of U−1(sl2).

Let E ∼= R2 be the Euclidean plane, and consider the 8-dimensional algebra

(39) N := Z/2 n

∧∗
E.

The generator of Z/2 is denoted by K, with K2
= 1, and we write xK

= KxK for

any x ∈ N. We thus have relations w ′w = −ww ′ and wK := KwK = −w for all
w,w ′ ∈ E.

Lemma 5 N is a Hopf algebra with coproducts

(40) ∆(K) = K ⊗ K and ∆(w) = w ⊗ 1 + K ⊗ w ∀w ∈ E.

Proof The fact that ∆ : N → N⊗2 is a coassociative homomorphism is readily veri-
fied. The antipode is given by

(41) S(K) = K and S(w) = −Kw, ∀w ∈ E.

We note the following formulas for the adjoint action and antipode:

(42) ad(w)(x) = wx − xK w, S2(x) = xK ∀x ∈ N,w ∈ E.

Let us pick a non-zero element ρ ∈ ∧2
E ⊂ N, and for this define a form µ0 ∈ N∗

as follows:

(43)

µ0(ρ) = 1, µ0(Kρ) = 0,

and µ0(Kδx) = 0 ∀x ∈
∧ j

E, whenever j, δ ∈ {0, 1}.

https://doi.org/10.4153/CJM-2003-033-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-033-5


Homology TQFT’s 785

Lemma 6 µ0 is a right (and left) integral on N. Moreover,

(44) λ0 := (1 + K)ρ with µ0(λ0) = 1

is a two sided integral in N.

Proof Straightforward verification of (26). The defining equation for a two sided

integral in N is xλ0 = λ0x = ε(x)λ0, which is also readily found.

Next, we fix a basis {θ, θ̄} for E. We define an R-matrix, R ∈ N ⊗ N, by the
formula

(45) R := (1 ⊗ 1 + θ ⊗ K θ̄) · Z, where Z :=
1

2

1∑

i, j=0

(−1)i j K i ⊗ K j .

Lemma 7 The element R makes N into a quasitriangular Hopf algebra.

Moreover, N is a ribbon Hopf algebra with unique balancing element G = K.

Proof Quasitriangularity follows from a straightforward verification of the axioms
in [6]. We compute the special element u−1

=
∑

j f jS
2(e j) = K(1 + θ̄θ) for which

uS(u)−1
= uu−1

= 1, so that G = K is a valid and unique choice. The ribbon
element is then given by

(46) v := 1 + ρ with ρ := θ̄θ.

For the monodromy matrix, as defined in (25), we obtain:

(47) M = 1 + K θ̄ ⊗ θ + θK ⊗ θ̄ − ρ⊗ ρ.

Setting T = K θ̄ ⊗ θ + θK ⊗ θ̄ we compute T2
= −2ρ ⊗ ρ and T3

= 0 so that
M = exp(T). Hence we can also compute p-th powers of the monodromy matrix:

(48) Mp
= exp(pT) = 1 + pT +

p2

2
T2.

With µ0 as defined in (43), and for ρ as in (46) we find µ0 ⊗ µ0(M) =

µ0(v)µ0(v−1) = −1. Hence, in order to fulfill (28) we need to use the renormal-

ized integrals

(49) µ = iµ0, λ =
1

i
λ0, with i =

√
−1.

For these choices we compute the S±-transformations assigned to (36) as follows:

(50)

1

i
S±(w) = ∓w ∀w ∈ E,

1

i
S±(ρ) = 1

1

i
S±(Kx) = 0 ∀x ∈

∧∗
E,

1

i
S±(1) = −ρ.
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This implies that the projector Π from Lemma 4 has kernel ker(Π) = {Kw : w ∈∧∗
E} and image

(51) N0 = im(Π) =

∧∗
E.

From (42) we see that N0 acts trivially on itself so that the action of N factors through

the obvious Z/2Z = N/N0-action.

Finally, we note that SL(2,R) acts on E and, hence, also on N, assuming K is
SL(2,R)-invariant.

Lemma 8 SL(2,R) acts on N by Hopf algebra automorphisms.

The ribbon element v, the monodromy M, and the two integrals are invariant under
this action.

Proof The fact that SL(2,R) yields algebra automorphisms is obvious by construc-
tion. Linearity of coproduct and antipode in w in (40) and (41) imply that this is,

in fact, a Hopf algebra homomorphism. v and λ are invariant since SL(2,R) acts
trivially on E ∧ E. Invariance of M follows then from (25).

Note that R itself is not SL(2,R)-invariant.

7 The Hennings TQFT for N

From (51) and (37) we see that the vector spaces of the Hennings TQFT for the alge-
bra from (39) are given as

(52) VN(Σg) :=
(∧∗

E

)⊗g

with dim
(
VN(Σg)

)
= 4g .

We now compute the action of the mapping class group generators from the tangles

in Figures 2, 3, and 4. From the extended Hennings rules it is clear that the pictures
for both A j and S j result in actions only on the j-th factor in the tensor product in
(52). For A j we use the presentation from Figure 2 and the rules from Figure 5 and
(35) to obtain the linear map A(x) := x · v.

The extra 1-framed circle in Figure 4 results in an extra factor µ(v) = i, since an
empty circle corresponds to an insertion of v. The action on the j-th factor is thus
given by an application of S := iS+|N0

so that

(53) S(ρ) = −1, S(1) = ρ, and S(w) = w, ∀w ∈ E.

Similarly, D j acts only on the j-th and the ( j + 1)-st factors of N
⊗g
0 . From (35)

and the formula for M−1 in (47) we compute for the action on these two factors

(54) D : N
⊗2
0 → N

⊗2
0 , x ⊗ y 7→ x ⊗ y + xθ ⊗ θ̄y − xθ̄ ⊗ θy − xρ⊗ ρy.
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The generators of the mapping class group Γg are thus represented as follows:

(55)
VN(IA j

) = I⊗ j−1 ⊗ A ⊗ I⊗g− j , VN(IS j
) = I⊗ j−1 ⊗ S ⊗ I⊗g− j

and VN(ID j
) = I⊗ j−1 ⊗ D ⊗ I⊗g− j−1.

Let us also compute the linear maps associated to the cobordisms H±
g from (9). Their

tangle presentations follow from [21] and have the forms given in Figure 9.

Figure 9: Tangles for Handle additions.

Hg+

. . .

1− g+
(g + 1)− (g + 1)+

Hg−

. . .

1− g+

(g + 1)− (g + 1)+

We included ±1-framed circles to adjust the 2-framings of H±
g . A 0-framed circle

around a strand has the effect of inserting λ = S+(1) =
1
i
ρ. In this normalization we

find with ρ = iΠλ and (33) that

(56) VN(H+
g ) : α 7→ α⊗ ρ ∀α ∈ N

⊗g
0 .

Similarly, we obtain from (34) that

(57) VN(H−
g ) : α⊗ x 7→ µ0(x)α ∀α ∈ N

⊗g
0 , x ∈ N0,

where µ0 is as in (43). We note the following:

Lemma 9 The generators in (55), (56), and (57) intertwine the SL(2,R)-action on
N

⊗g
0 .

Proof The fact that A and D commute with the SL(2,R)-action follows from invari-
ance of v and M. From (50) we see that S is scalar on the non-invariant part, and
thus commutes as well. Finally, ρ and µ0 are clearly invariant.

For g ≥ 0 set χg := Sg ◦· · ·◦S1, h+
g := H+

g−1◦· · ·◦H+
0 , and h−

g := H−
0 ◦· · ·◦H−

g−1.
We define a standard closure of a 2-framed 3-cobordism as the closed 3-manifold

(58) 〈M〉 := h−
g2
◦ χg2

◦ M ◦ χ−1
g1

◦ h+
g1
∪ D3.
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If M is represented by a tangle T we obtain, similarly, a link 〈T〉. We introduce the
following function from the class of 2-framed cobordisms into Z/2:

(59) ϕ(M) := β1(〈M〉) + sign(〈T〉) mod 2,

where β j denotes the j-th Betti number. We further denote by Cob
22 fr,∗
3 ⊂ Cob

2 fr,∗
3

the subset of all cobordisms M with ϕ(M) = 0, which we will call evenly 2-framed.

Lemma 10

(1) ϕ(M) = |〈T〉|mod 2, where |〈T〉| := # components of 〈T〉.
(2) ϕ(M) = # components of T not connected to the bottom line.
(3) VN(M) is real if ϕ(M) = 0 and imaginary for ϕ(M) = 1.

(4) Cob
22 fr,∗
3 is a subcategory.

Proof Let W be the 4-manifold given by adding 2-handles to D4 along 〈T〉 ⊂ S3

so that 〈M〉 = ∂W , and let LT be the linking matrix of 〈T〉. We have β2(W ) =

|〈T〉| = d+ + d− + d0, where d+, d−, and d0 are the number of eigenvalues of LT

that are > 0, < 0, and = 0 respectively. From the exact sequence 0 → H2(〈M〉) →
H2(W )

LT−→ H2(W ) → H1(〈M〉) → 0 we find that β1(〈M〉) = d0, which implies
(1) using sign(W ) = d+ − d−. (2) follows immediately from the respective tangle

compositions.

The possible components not connected to the bottom line are strands connecting
point pairs at the top line or closed components. From the rules (32) through (35)

we see that these are just the types of components that involve an evaluation against
µ = iµ0. All other parts of the Hennings procedure involve only real maps. Finally,
(4) follows from counting tangle components under composition.

Proposition 6 The Hennings procedure yields a relative, 2-framed, SL(2,R)-equivar-
iant, half-projective TQFT

VN : Cob
2 fr,•
3 −→ SL(2,R)-modC,

which is Z/4-projective on Cob•

3 . We have a restriction

V
(2)
N

: Cob
22 fr,•
3 −→ SL(2,R)-modR,

which is Z/2-projective on Cob•

3 .

Proof From Lemma 9 we know that the generators of Γg are represented SL(2,R)-
equivariantly, hence also Γg itself. The decomposition in (10) and equivariance of the

maps in (56) and (57) implies the same for general cobordisms. That this TQFT is
half-projective follows from the fact that N is non-semisimple, or, equivalently, that
VN(S1 × S2) = µ(1) = ε(λ) = 0, see [20]. The projective phase of the TQFT is
determined by the value µ(v) = i on the 1-framed circle.
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Lemma 10 (3) implies that V
(2)
N

maps into the real SL(2,R)-equivariant maps and
modules. This reduces the ambiguity of multiplication with i to a sign ambiguity.

An important point of view in the TQFT constructions in [25] is the existence of
a categorical Hopf algebra, which can be understood as the TQFT image of a topo-

logical Hopf algebra given as an object in Cob•

3 .
To be more precise, in [51] and [19] Cob•

3 is described as a braided tensor cate-
gory, and it is found that the object Σ1,1 ∈ Cob•

3 is naturally identified as a braided
Hopf algebra in this category in the sense of [33] and [32]. Particularly, Σ2,1 is iden-

tified with Σ1,1 ⊗ Σ1,1 since the tensor product on Cob•

3 is defined by sewing two
surfaces together along a pair of pants. The multiplication and comultiplication are
thus given by elementary cobordisms M : Σ2,1 → Σ1,1 and ∆ : Σ1,1 → Σ2,1. Their
tangle diagrams are worked out explicitly in [3], and depicted in Figure 10 with mi-

nor modifications in the conventions:

Figure 10: Tangles for multiplications.

M = ∆ = Γ = c =

Here c : Σ2,1 → Σ2,1 is the braid isomorphism. The braided antipode is given by

the tangle Γ = (S+)2, with S+ as in Figure 6.

Lemma 11 The cobordisms M and ∆ have the following Heegaard decompositions.

M = H−
2 ◦ ID1◦S2

and ∆ = IS1◦D−1
1 ◦S−1

1 ◦S−1
2

◦ H+
2 .

Proof Verification by composition of the associated tangles.

The explicit formulas for the linear maps associated to the generators of the map-
ping class group and the handle attachments in Section 7 allow us now to com-
pute the braided Hopf algebra structure induced on N0 = VN(Σ1,1). We write
M0 := VN(M), ∆0 := VN(∆), S0 := VN(S2

1), and c0 := VN(c) for the braided

multiplication, comultiplication, antipode and braid isomorphism respectively.

Lemma 12 The induced braided Hopf algebra structure on N0 is the canonical Z/2-
graded Hopf algebra with:

M0(x ⊗ y) = xy c0(x ⊗ y) = (−1)d(x)d(y) y ⊗ x ∀x, y ∈ N0

and ∆0(w) = w ⊗ 1 + 1 ⊗ w Γ0(w) = −w ∀w ∈ E.
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In particular, N0 is commutative and cocommutative in the graded and braided sense,
N0

∼= N∗
0 is self dual, SL(2,R) still acts by Hopf automorphisms on N0, and S0 is an

involutory homomorphism on N0.

Proof For M and ∆ insert the morphism associated to the generators in Lemma 11.
The braid isomorphism is given via the Hennings rules by acting with the operator
ad ⊗ ad(R) on N

⊗2
0 and then permuting the factors. It is easy to see that ad ⊗ ad(Z)

acts on x ⊗ y by multiplying (−1)d(x)d(y), where d(x) is the Z/2-degree of x in N0.
Moreover, we we know that the adjoint action of N0 on itself is trivial so that the
term θ ⊗ Kθ̄ in the second factor of R in (45) does not contribute.

8 Skein Theory for VN

The skein theory of the Hennings calculus over N is mostly a consequence of the form
v = 1 + ρ of the ribbon element as in (46). In the Hennings procedure we substitute
a strand with decoration 1

i
ρ by a dotted strand (with possibly more decorations) as

shown on the left of Figure 11. Observe from (47) that

M±1(1 ⊗ ρ) = (1 ⊗ ρ) and M±1(ρ⊗ 1) = (ρ⊗ 1).

This means that for a dotted strand we do not have to distinguish between over and
undercrossing with other strands as indicated on the right of Figure 11. As a result
such a strand can be disentangled from the rest of the diagram.

1

i
ρ = = = =

Figure 11: Transparent ρ-decorated strand.

The next additional ingredient in the calculus are symbols for 1-handles. They are
used in the bridged link calculus as described in [21] and [25]. We indicate a pair of

1-surgery balls by pairs of coupons. The defining relation is the modification move
depicted on the left of Figure 12. The move indicated on the right of Figure 12 and
its reflections is a standard consequence of the boundary move from (24).

. . . . . .

Figure 12: Coupons for 1-handles.
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Since vk
= 1 + kρ for k ∈ Z we find that the framing of any component can be

changed at the expense of introducing dotted lines. This translates to the diagrams

in Figure 13.

k = + ik k = − ik = 1

Figure 13: Framing shift.

The skein relation is now obtained by applying Figure 13 to the Fenn–Rourke
move as in Figure 14, see also [36].

. . .

. . .

. . .

. . .

Figure 14: Fenn–Rourke move.

Lemma 13 For two strands belonging to two different components of a tangle diagram
we have the relation

− =
1

i
+ i + i −

=
1

i
+ i + i +

For strands belonging to the same component of the tangle the relation is

− =
1

i + 2i =
1

i
+ 2i
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At this point it is convenient to extend the tangle presentations to general dia-
grams, dropping the condition that a strand starting at a point j− has to end at a

point j+ (or the corresponding condition for through strands). From such a general
tangle diagram we can get to an admissible one by applying boundary moves (24) at
all intervals [ j−, j+]. (This is in fact the original definition used in [21].) We shall
allow the occurrence of coupons but restrict ourselves to the cases where exactly two

strands enter (or exit) a coupon as in Lemma 13.
We also introduce two notions of components: The first is that of a diagram com-

ponent X of a generalized tangle diagram. It is given by a concatenation of curve
segments, coupons that have two strands going in on one side, and intervals [ j−, j+]

connecting a strand ending in j− with the one ending in j+.
The second is a strand component, which is also a collection of curves that can

be joined in two ways. As before curves that end in two sides of the same interval
[ j−, j+] belong to the same strand component, as well as curves exiting and entering

a coupon pair that would be connected under application of Figure 12.
We have the following rules for manipulating the coupons:

Lemma 14 In the following equivalences the labels A,B, . . . indicate which coupons
form a pair.

(1) 1-handles can be slid over other 1-handles, through a boundary interval, and hence
anywhere along a strand component.

(60)

B A
. . .

A

A
. . .

A B

(2) If in a diagram the coupons of a pair belong to different diagram components the
entire diagram does not contribute, i.e., is evaluated as zero. Hence only diagrams
contribute in which the diagram components coincide with strand components.

(61)

1

Ai

2

3

Ai

4

different components

=

1

2 Di

3

4

=

1

T

2

3

4

= 0

(3) Direct 1-handle cancellation: If coupons with the same label are adjacent on the
same side of a strand they can be canceled:

(62)
A A

= =
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(4) Opposite 1-handle cancellation: If coupons with the same label are adjacent on
opposite sides of a strand the strand is replaced by a dotted strand and the evaluation

gains a factor of 4.

(63)
A

A
= = 4

(5) If a generalized tangle diagram contains a coupon configuration as indicated the
entire diagram is evaluated as zero.

(64)

A B A B
= = 0

Proof The slide of B over the pair A in (60) translates to a simple isotopy if we apply
the move in Figure 12 to the A-pair. Similarly, the slide through a boundary interval
is given by an isotopy conjugated by a σ-move as in (24).

For (2) let X be a diagram component that contains coupons A1, . . . ,An whose

partners lie on different diagram components. Performing boundary moves we can
make X a true inner component. Furthermore, we can eliminate the other coupons
on X that occur in pairs by undoing the modification from Figure 12. The compo-
nent X is now a closed curve interrupted only by coupons A1, . . . ,An. We undo the

modification also for these and the corresponding annuli added in the move bound
discs that we denote by D1, . . . ,Dn. Note that the arcs of X all end in only one side of
a disc D j since the strands emerging from the other side belong to a different com-

ponent. We can thus surger the discs along the arcs, as shown in (61), so that we
obtain a torus T with n holes ∂T = ∂D1 t · · · t ∂Dn which misses all other parts of
the tangle. After surgery along the annuli the torus T can be capped off so that we
have found a non-separating surface inside the represented cobordism. Since we are

dealing with a non-semisimple TQFT this implies that the associated linear map is
zero.

The direct cancellation in (62) follows by applying Figure 12. In the resulting
configuration in the middle of (62) the Hopf link can be slid off and removed.

The opposite cancellation in (63) and the remodification from Figure 12 give the
tangle in the middle. Now consider in general a straight strand that is entangled with
an annulus with 2p positive crossings as in (65).

(65)

. . .

2p

= p2
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Using the formula in (48) we find by applying the Hennings procedure and evaluating
the elements on the annulus against the integral that the resulting element on the

open strand is

µ⊗ id(Mp) =
p2

i
ρ

which with Figure 11 implies the claim.

Finally, we also reexpress the coupons in (64) by a tangle. As before, non-semi-

simplicity of the TQFT implies that a diagram containing such a subdiagram is always
zero. For example, the 0-framed annulus clearly bounds a surface disjoint from the
rest of the link so that the cobordism contains a non-separating surface.

We now combine the previous two lemmas in the following skein relations with-
out coupons.

Theorem 7 For generalized tangle diagrams we have the following skein relations:

For crossings of strands of different components:

(66)

− = −1 + i + i

= i − i − i

For crossing of strands of the same component we need to introduce an orientation on
the component.

(67) − = −2i

Proof The proof is given by moving the coupons in the skein relations of Lemma 13
through the components using Lemma 14.

Note that relation (67) implies the relation for the Kauffman polynomial for
z =

1
2
. However, the framing relations are quite different.

Let B̂g be the group of tangles in 2g strands generated by the braidings c of double
strands and the braided antipodes Γ as in Figure 10 acting in different positions. It is
thus the image of the abelian extension Bg n (Z/2)g of the braid group.

Moreover, let us introduce a few elementary generalized tangles Mk : k → 0,
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ε : 1 → 0 and Xn : 0 → 2n as depicted below.

(68)

Mk =

Xp =

. . .

. . . . . .

ε =

= 1

= 0

Theorem 8 Every tangle T : G → 0 with 2G starting (top) points and no endpoints
can be resolved via the skein relations in Theorem 7 into a combination of tangles of the
form

T = (Mk1
⊗ · · · ⊗ Mkr

⊗ ε⊗N ) ◦ B,

with B ∈ B̂G and
∑r

i=1 ki = G − N.

Proof We consider generalized tangles without coupons. We proceed by induction
on the number m of connected components of T. We only count components that

involve solid lines; those with dotted lines reduce to a collection of ε-diagrams at the
intervals belonging to that component or closed dotted circles that do not contribute.
Suppose now T has only one component, which we equip with some orientation. Ap-
plying Γ’s to the intervals we can arrange it that the strands enter an interval [ j−, j+]

at the left point j− and leave at the right one j+. Furthermore, we can find a per-
mutation of intervals so that the strand exiting j+ enters at ( j + 1)−, except for G+,

which is connected to 1−. Hence, by multiplying an element of B̂G to T we can as-
sume that the endpoints of the intervals are connected to each other by strands as
they are for MG.

Next we note that the skein relation (67) from Theorem 7 does not change this
connectivity property for the solid lines and any diagram with dotted lines collapses
to ε-diagrams.

For diagrams where equally labeled coupons are on the same components there

are three planar moves that allow us to manipulate the arrangement of coupons.
They are the 1-handle slide and the 1-handle cancellation depicted below, and the
boundary flip as in Figure 12. In fact it is easy to see that we have the skein relation
T = MG + iw(T)ε⊗G, where w(T) is the generalization of the writhe number of the

diagram as defined, for example, in [30]. In case G = 0 the diagram M0 is a closed
solid circle which therefore makes the entire diagram zero.

Assume now T has m components and the claim is true for all diagrams with m−1

components. Pick one component C and apply an element of B̂G such that the in-
tervals included in this component are all to the left of the other intervals. Note that

the set of intervals that belongs to C may also be empty. Next apply the skein rela-
tions (66) from Theorem 7 to untangle C from the other components. In each step
of changing crossings of a strand of C with the strand of another component D, we
can choose the relation for which the tangle that belongs to the first local diagram on
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the right side of the equation has one component less, since C and D are connected.
The other diagrams on the right side also have one less component since we do not

count dotted lines. Hence, by induction, the error of changing a crossing between C
and another component can be resolved into elementary diagrams as claimed. Af-
ter C is untangled we have expressed T, modulo elementary diagrams, in the form
C ⊗T ′ (juxtaposition) where T ′ has m−1 components. Again each factor can be re-

solved independently by induction, and hence the whole diagram, since ⊗-products
of elementary diagrams are again elementary.

Next note that every tangle R : g1 → g2 is in fact of the form

(69) R = (T ⊗ idg2
) ◦ (idg1

⊗ Xg2
)

for some T : g1 + g2 → 0. Thus, in order to evaluate a general tangle diagram it

suffices by Theorem 8 to specify the evaluations of the elementary tangles in (68). To
this end we define the tensor

(70) A =
1

i
S ⊗ 1∆(ρ) =

1

i
(ρ⊗ 1 + 1 ⊗ ρ− θ̄ ⊗ θ + θ ⊗ θ̄) ∈ N

⊗2
0 .

Corollary 9 Every diagram can be resolved into a sum of composites of diagrams in
(68). The linear maps associated to them are

VN(X1) : C → N
⊗2
0 : 1 7→ A =

∑

ν

xν ⊗ yν(71)

VN(Xn) =
(

1⊗(n−1) ⊗ VN(X1) ⊗ 1⊗(n−1)
)
◦ VN(Xn−1) : C → N

⊗2n
0

: 1 7→ A{n} =

∑

ν1,...,νn

xν1
⊗ xν2

⊗ · · · ⊗ xνn
⊗ yνn

⊗ · · · ⊗ yν2
⊗ yν1

(72)

VN(Mn) : N
⊗n
0 → C : a1 ⊗ · · · ⊗ an 7→ µ(a1 · · · · · an).(73)

Dotted circles can be removed and diagrams with solid circles do not contribute.

Proof The formulas follow easily from the pictures in Figure 10 to which we assigned
linear maps in Lemma 12. Particularly, we find that the upside down reflection of the
multiplication tangle M is mapped to the S-conjugate coproduct

(74) ∆̃ = iS
−1 ⊗ S

−1
∆0S : N0 ⊗ N0 → N0.

The tangle X1 is obtained by capping this off with an arc at the top, which corresponds

to the insertion of the unit. Hence, A = ∆̃(1). The diagrams Mp are easily identified
as composites M p

= (M ⊗ 1⊗(p−1)) ◦ M p−1 capped off with an arc at the bottom,
which is hence assigned to the p-fold multiplication followed by an evaluation against
the integral µ ∈ N∗.
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Let us consider a few examples. One useful case is when the braid B ∈ B̂n can be
chosen trivially. Hence the contribution to the linear map for a tangle R : g1 → g2 is

given by a union of planar diagrams as depicted in (75):

(75)

i−1 i+
1 . . . i−2 i+

2 i−3 i+
3

X

= µ

= 1

=
1
i
ρj−1 j+

1

. . .

j−2 j+
2

Define the map

(76) C
q
p = ∆̃

q−1 ◦ M
p−1
0 : N

⊗p
0 −→ N

⊗q
0 ,

where the exponents denote the usual multiple products and coproducts. The linear

map associated to a planar diagram is now the tensor product of maps associated to
the individual components of the diagram. For example, if we want to evaluate the
linear map on a homogeneous vector x1⊗· · ·⊗xg1

and the diagram has a component
with solid lines as in (75) containing top intervals [i−1 , i

+
1 ], . . . , [i−p , i

+
p] and bottom

intervals [ j−1 , j+
1 ], . . . , [ j−q , j+

q ], we compute the vector C
q
p(xi1

⊗ · · · ⊗ xi p
) ∈ N

⊗q
0

and insert the entries in order into the positions j1, . . . , jq in N
⊗g2

0 .

With these rules the computation of the maps associated to the generators of the
mapping class group are readily carried out. For example we can evaluate the diagram
for the S-transformation from Figure 4. We resolve the rightmost crossing by taking
the skein relation in the first row in Proposition 7 but with every diagram rotated

clockwise by π
2

. The result is

S = id − ρ⊗ µ0 − 1 ⊗ ε− 1 ⊗ µ0 + ρ⊗ ε.

This yields exactly the formula from (53).

As another example we may consider the C1 waist cycle in Σ2. The diagram con-
sists of four parallel strands with a 1-framed annulus around the second and third.
We apply Figure 13 and then Figure 12 to this annulus. The resulting coupons can be

canceled. We find

VN(IC1
) = id − iC1

1.

This implies the formula for the D-transformation from (54).

Finally, let us show how to use the skein calculus to find the precise formula for the
invariant of a 2-framed closed 3-manifold presented by a link L ⊂ S3. It is basically

given by the order of the first integral homology. More precisely, let

(77) η(M) :=

{
|H1(M,Z)| for β1(M) = 0

0 for β1(M) > 0.
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Lemma 15 For a given framed link L ⊂ S3 and η as in (77) we have

VN(ML) = i|L| det(L · L) = ±i|L|η(M).

Proof By 2-handle slides we can move L into a link Lδ so that the linking form
Lδ ·Lδ is diagonal and equivalent to the original one L ·L. Suppose f j is the framing

number of the j-th component Lδ
j . From Figure 13 we see that

VN(Lδ) = VN(Lδ,− f j ) + i f jVN(Lδ − Lδ
j ).

Here, Lδ,− f j is the link in which the framing of the j-th component is shifted to zero.

As a result the manifold represented by this link has non-trivial rational homology.
Since VN is a non-semisimple theory this implies that VN(Lδ,− f j ) = 0. Iterating

the above identity we find VN(Lδ) =
∏|L|

j=1(i f j)VN(∅). Clearly,
∏|L|

j=1( f j) is the

determinant of the linking form of Lδ and hence also the one of L.

9 Equivalence of V
(2)
N

and VFN

In this section we compare the two topological quantum field theories VFN described
in Section 3 and V

(2)
N

constructed in Section 7. We already found a number of general

properties that are shared by both theories:
By Lemma 2 and Proposition 6 both theories are Z/2-projective on Cob•

3 and non-
semisimple, fulfilling the property of Lemma 1. The Z/2-projectivity is due to am-

biguities of even 2-framings in the case of V
(2)
N

and ambiguities of orientations in the
case of VFN . The non-semisimple half-projective property results in the case of VFN

from representation varieties that are transversely disjoint, and in the case of V
(2)
N

from the nilpotency of the integral λ ∈ N. Further common features are the dimen-

sions of vector spaces (= 4g), actions of SL(2,R), see Sections 7 and 10, and the fact
that Jg lies in the kernel of the mapping class group representations.

We construct now an explicit isomorphism between VFN and V
(2)
N

. Let Q =∧∗〈a, b〉 be the exterior algebra over R2 with basis a, b ∈ R2. We obtain a canon-

ical isomorphism, which is defined on monomial elements as follows:

(78) i∗ : Q⊗g ∼−→
∧∗

H1(Σg) : q1 ⊗ · · · ⊗ qg 7→ i1(q1) ∧ · · · ∧ ig(qg),

where i j : Q
∼−→

∧∗〈[a j], [b j ]〉 is the canonical map sending a and b to [a j] and
[b j] respectively. Next, we define an isomorphism between Q and N0, seen as linear
spaces, by the following assignment of basis vectors:

(79) φ : N0
∼−→ Q with

φ(1) = b, φ(θ̄θ) = a,
φ(θ) = a ∧ b, φ(θ̄) = 1.

Note that this map has odd Z/2-degree and is, in particular, not an algebra homo-
morphism. From (79) we infer directly the following identities:

φ(θx) = −φ(x) ∧ a, φ(xθ) = a ∧ φ(x),(80)

φ(Ax) = [A1]φ(x), φ(Sx) = [S1]φ(x).(81)
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Here, A and S are as in (55), and [A1] and [S1] are the maps on H1(Σ1) as in (19) and
(21).

Moreover, let us introduce a sign-operator (−1)Λ on Q⊗g defined on monomials
by

(82) (−1)Λg (q1 ⊗ · · · ⊗ qg) = (−1)λg (d1,...,dg )q1 ⊗ · · · ⊗ qg .

The function λN is defined in the N-fold product of Z/2’s as follows:

(83) λN : (Z/2)N → Z/2 with λN(d1, . . . , dN) =

∑

i< j

di(1 − d j),

where d j = deg(q j) mod 2. Consider now the following isomorphism of vector
spaces:

(84) ξg := i∗ ◦ (−1)Λg ◦ φ⊗g : N
⊗g
0

∼−→
∧∗

H1.

Given a linear map, F : N⊗g1 → N⊗g2 , we write (F)ξ := ξg2
◦F ◦ξ−1

g1
for the respective

map on homology. Moreover, we denote by L(k)
x the operator on N⊗g that multiplies

the k-th factor in the tensor product by x from the left, and by R(k)
x the respective

operator for multiplication from the right. We compute:

(85)
(L(k)
θ )ξ(α ∧ uk ∧ β) = (−1)g−k+s+1α ∧ ak ∧ uk ∧ β,

and (R(k)
θ )ξ(α ∧ uk ∧ β) = (−1)g−k+sα ∧ uk ∧ ak ∧ β,

where s =
∑g

j=1 d j is the total degree of α ∧ uk ∧ β, α ∈
∧∗〈a1, . . . , bk−1〉, and

β ∈
∧∗〈ak+1, . . . , bg〉.

Lemma 16 For every standard generator G ∈ {A j ,D j , S j}, we have

(
VN(IG)

) ξ
=

∧∗
[G],

where [G] denotes as before the action on homology.

Proof For the A j and S j this follows readily from (81), and the fact that [A j] and [S j]
do not change the degrees d j and hence commute with (−1)Λg .

The operator in (54) decomposes into D = D0 + D1, where D0
= id−Rρ⊗Lρ and

D1
= Rθ ⊗ Lθ̄ − Rθ̄ ⊗ Lθ. Now D0 does not change the Z/2-degree of both factors,

and D1 flips the degree of both factors. One readily verifies that

λg(. . . , 1 − d j , 1 − d j+1, . . . ) − λg(. . . , d j , d j+1, . . . ) = d j + d j+1 mod 2

so that

VN(ID j
)ξ =

(
V0

N(ID j
)
) ζ

+ (−1)d j +d j+1
(
V1

N(ID j
)
) ζ

=
(

I⊗ j−1 ⊗ (D
0)φ

⊗2 ⊗ I⊗g− j−1
) i∗

+ (−1)d j +d j+1
(

I⊗ j−1 ⊗ (D
1)φ

⊗2 ⊗ I⊗g− j−1
) i∗
.
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Here, ζg = i∗ ◦ φ⊗g and Vi
N

(ID j
) is the operator with Di in j-th position. Since

ζg = ζ
⊗g
1 , the ζ-conjugate maps only act on the generators {a j , b j , a j+1, b j+1}; the

action is the same for all positions j. Observe that also [D j] acts only on the homol-
ogy generators {a j , b j , a j+1, b j+1}. It is, therefore, enough to prove the relation for
g = 2 and VN(ID1

) = D.

Now, from (54) it is obvious that VN(ID j
) commutes with L

( j)
θ and R

( j+1)
θ . More-

over, it is easy to see that
∧∗

[D j], as given in (20), commutes with (L
( j)
θ )ξ and

(R
( j+1)
θ )ξ from (85). Specifically, we use that

∧∗
[D j] does not change the total de-

gree, and acts trivially on a j and a j+1. It thus suffices to check

(86)
∧2

[D1] ◦ ζ2(x1 ⊗ x2) = ζ2 ◦ D
0(x1 ⊗ x2) + (−1)d1+d2ζ2 ◦ D

1(x1 ⊗ x2)

with di = deg
(
φ(xi)

)
, and only for xi ∈ {1, θ̄}. For example, for x1 = x2 = 1, with

d1 + d2 = 0, we find from (54) and (20) that

ζ2 ◦ D(1 ⊗ 1) = ζ2(1 ⊗ 1 + θ ⊗ θ̄ − θ̄ ⊗ θ − ρ⊗ ρ)

= b1 ∧ b2 + a1 ∧ b1 − a2 ∧ b2 − a1 ∧ a2

= (b1 − a2) ∧ (b2 − a1) =

∧2
[D1](b1 ∧ b2) =

∧2
[D1]

(
ζ2(1 ⊗ 1)

)
.

We also compute, for the case x1 = θ̄ and x2 = 1, with d1 + d2 = 1:

ζ2 ◦ (D
0 − D

1)(θ̄ ⊗ 1) = ζ2(θ̄ ⊗ 1 − θ̄θ ⊗ θ̄) = b2 − a1

=

∧2
[D1](b2) =

∧2
[D1]

(
ζ2(θ̄ ⊗ 1)

)
.

The other two cases follow similarly.

As the {A j ,D j , S j} generate Γg we conclude from Lemma 16 and (13) that
(
VN(Iψ)

) ξ
= VFN (Iψ) for all ψ ∈ Γg . Let us also consider the maps associated

by both functors to the handle additions H±
g . We note that

λg+1(d1, . . . , dg , 1) = λg(d1, . . . , dg)

so that we find from (56), (15) and (79) that
(
VN(H+

g )
) ξ

= VFN (H+
g ). Similarly,

(57), (16) and (43) imply
(
VN(H−

g )
) ξ

= VFN (H−
g ). Using the Heegaard decompo-

sition (10) we finally infer equivalence:

Proposition 10 The maps ξg defined in (84) give rise to an isomorphism

ξ : VN

•∼=−−−−→ VFN

of relative, non-semisimple, Z/2-projective functors from Cob•

3 to Vect(K).
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10 Hard–Lefschetz Decomposition and Invariants

The tangent bundle over the moduli space J(Σg) is trivial with fiber H∗(Σg ,R) so that
its cohomology ring is naturally

∧∗
H1(Σg ,R). There is an almost complex structure

on J(Σg) given by a map J with J2
= −1 in the cohomology. It is given by J.[a j] =

−[b j ] and J.[b j] = [a j]. With the Kähler form ωg ∈ H2
(

J(Σg)
)

defined in (23)
it is also a Kähler manifold. The dual Kähler metric provides us with a Hodge star

? :
∧ j

H1(Σg) →
∧2g− j

H1(Σg) for a given volume form Ω ∈
∧2g

H1(Σg) by the
equation α ∧ ?β = 〈α, β〉Ω. Specifically, for the 2g generators {[a1], . . . , [bg]} of

H1(Σg) with volume form Ω = [a1]∧ · · · ∧ [bg], the Hodge star is given by ?(a1−ε1

1 ∧
· · · ∧ b

1−ε2g
g ) = (−1)λ2g (ε1,...,ε2g )aε1

1 ∧ · · · ∧ b
ε2g
g , where λ2g is as in (83).

As a Kähler manifold, H∗
(

J(Σg)
)

admits an SL(2,R)-action, see for example
[13], given for the standard generators E, F,H ∈ sl2(R) by

(87) Hα := ( j − g)α ∀α ∈
∧ j

H1(Σg), Eα := α ∧ ωg , F := ? ◦ E ◦ ?−1.

Lemma 17 The functor VFN is SL(2,R)-equivariant with respect to the action in (87).

Proof Commutation with H follows from counting degrees. Since ωg is invariant
under the Sp(2g,R)-action, E commutes with the maps in (13), and since ωg ∧
[ag+1] = [ag+1] ∧ ωg+1, also with the ones in (15) and (16). Finally, as all maps

VFN (M) are isometries with respect to 〈 . , . 〉 they also commute with F.

In order to finish the proof of Theorem 1 we still need to show that the ξg are
SL(2,R)-equivariant as well. The fact that H commutes with ξg is again a matter

of counting degrees. We have E =
∑

(E(i)
1 )i∗ , where E(i)

1 acts on the i-th factor of

Q⊗g by q 7→ E1(q) = q ∧ a ∧ b. Since E does not change degrees we find that

Eξ =
∑

(E(i))φ
(i)

, where (E(i))φ
(i)

acts on the i-th factor by E
φ
1 . We find E

φ
1 (θ̄) = θ,

and E
φ
1 (1) = E

φ
1 (θ) = E

φ
1 (θ̄θ) = 0, which yields precisely the desired action of E on

N0. The conjugate action of ? on N
g
0 is as follows:

(88) ?ξ : x1 ⊗ · · · ⊗ xg 7→ (−1)
∑

i< j di d j (?x1) ⊗ · · · ⊗ (?xg) ∀x j ∈ N0,

where ?θ = θ̄, ?θ̄ = θ, ?θ̄θ = 1, and ?1 = −θ̄θ. From this we see that Fξ acts on
each factor by Fφ1 (θ) = θ̄, and Fφ1 (1) = Fφ1 (θ̄) = Fφ1 (θ̄θ) = 0, as required.

With Lemma 17 and equivariance of ξg we have thus completed the proof of The-
orem 1. Henceforth, we will use the simpler notation V = VFN

= VN.

The SL(2,R)-action implies a Hard–Lefschetz decomposition [13] as follows:

(89) H∗
(

J(Σg)
) ∼=

g+1⊕

j=1

V j ⊗Wg, j .

Here, V j is the irreducible sl2-module with dim(V j) = j, and

(90) Wg, j := {u ∈
∧g− j+1

H1(Σg) : F.u = 0}
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is the space of Ω-harmonic vectors of degree (g − j + 1), or, equivalently, the space
of sl2-highest weight vectors of weight ( j − 1). On each of these spaces we have an

action of the mapping class groups from (13) factoring through Sp(2g,R).

Theorem 11 ([12, Theorem 5.1.8]) Each Wg, j is an irreducible Sp(2g,R)-module
with fundamental highest weight $g− j+1 and dimension

dim(Wg, j) =

(
2g

g − j + 1

)
−

(
2g

g − j − 1

)
.

In particular, the pair of subgroups

SL(2,R) × Sp(2g,R) ⊂ GL
(

H∗
(

J(Σg)
))

forms a Howe pair, that is, the two subgroups are exact commutants of each other.

The fundamental weights are given as in [12] by $k = ε1 + · · · + εk with ε j as
in (22).

In the decomposition into irreducible TQFT’s the one for j = 1 associated to the
trivial SL(2,C) representation plays a special role for invariants of closed manifolds.

For any invariant, τ , of closed 3-manifolds there is a standard “reconstruction” of
TQFT vector spaces as follows. We take the formal K-linear span C+

g of cobordisms

M : ∅ → Σg and C−
g of cobordisms N : Σg → ∅. We obtain a pairing C−

g × C+
g →

K : (N,M) → τ (N ◦ M). If N+
g ⊂ C+

g is the null space of this pairing we define
Vτ -rec(Σg) = C+

g /N+
g . For generic τ these vector spaces are infinite dimensional. The

exception is when τ stems from a TQFT. In this case Vτ -rec(Σg)∗ = C−
g /N−

g , and
the linear map Vτ -rec(P) associated to a cobordism P is reconstructed from its matrix
elements τ (N◦P◦M). This construction, which basically imitates the GNS construc-

tion of operator algebras, is folklore since the emergence of TQFT’s and appears, for
example, in [46].

Theorem 12

(1) The TQFT functor from Theorem 1 decomposes into a direct sum

V =

⊕
R

j ⊗ V( j)
= V(1) ⊕ R

2 ⊗ V(2) ⊕ R
3 ⊗ V(3) · · ·

of irreducible TQFT’s with multiplicities.
(2) The associated vector space for each TQFT is V( j)(Σg) = Wg, j so that V( j)(Σg) = 0

whenever j > g + 1. In particular, for any closed 3-manifold M and j > 1 we have
V( j)(M) = 0 so that V(M) = V(1)(M).

(3) The vector spaces associated to the invariant ±η from (77) are finite dimensional.
The reconstructed Z/2-projective TQFT is Vη-rec

= V(1) with dimensions
dim

(
Vη-rec(Σg)

)
= dim(Wg,1) =

2
g+2

(
2g+1

g

)
.
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Proof The fact that the TQFT’s decompose in the prescribed manner follows from
the SL(2,R)-covariance. Irreducibility of each V( j), meaning there are no proper sub-

TQFT’s, results from the fact that each Sp(2g,Z) representation is irreducible so that
in a sub-TQFT the vector spaces for each g are either V( j)(Σg) or 0. Since the handle
maps yield non-zero maps between these vector spaces if one space is non-zero none
of them can be. The reconstructed TQFT must be a quotient TQFT of V(1), which is,

however, irreducible. Hence, they are equal.

Let us finally give an alternative proof of Lemma 15 using the language in which
the Frohman–Nicas invariant is constructed.

We present M by a Heegaard splitting Mψ = h−
g ◦ Iψ ◦ h+

g , as defined in (10) and

(58). The invariant is given as the matrix coefficient of
∧g

[ψ] for the basis vector
V(h+

g ) = [a1] ∧ [a2] ∧ · · · ∧ [ag]. If we denote by [ψ]aa the g × g-block of [ψ] acting

on the Lagrangian subspace spanned by the [ai]’s this number is just det([ψ]aa). At
the same time, the Mayer–Vietoris sequence for Mψ shows that [ψ]aa is a presentation
matrix for the group H1(Mψ,Z) so that the order of H1(Mψ,Z) is, indeed, given by
± det([ψ]aa).

11 Alexander–Conway Calculus for 3-Manifolds

Let M be a 3-manifold with an epimorphism ϕ : H1(M,Z) � Z. We recall the defi-

nition of the (reduced) Alexander polynomial ∆ϕ(M), as it is given in the case of knot
and link complements for example in [4].

Let M̃ → M be the cyclic cover associated to ϕ and view H1(M̃) as a Z[t, t−1]-
module with t acting by Decktransformation. Let E1 ⊂ Z[t, t−1] be the first elemen-

tary ideal generated by the n × n minors of an n × m presentation matrix A(t) of
H1(M̃). Then ∆ϕ(M) is the generator of the smallest principal idea containing E1,
or, equivalently, the g.c.d. of the n × n minors of a presentation matrix. Particularly,
if A(t) is a square matrix ∆ϕ(M) = det

(
A(t)

)
and if n > m, i.e., there are more rows

than columns, ∆ϕ(M) = 0.
Another important invariant of a 3-manifold is its Reidemeister Torsion, which

is obtained as the torsion of a chain complex over Q[t, t−1] obtained from a cell
decomposition of M̃. The Alexander polynomial turns out to be almost the same as

the Reidemeister Torsion of a 3-manifold. The relation described in the next theorem
was first proven for homology circles by Milnor and in the general case by Turaev.

Theorem 13 ([38], [45]) Let M be a compact, oriented 3-manifold, ϕ : H1(M) → Z

an epimorphism as above, rϕ(M) its Reidemeister Torsion, and ∆ϕ(M) its Alexander
polynomial.

(1) If ∂M 6= ∅ then rϕ(M) =
1

(t−1)
∆ϕ(M).

(2) If ∂M = ∅ then rϕ(M) =
1

(t−1)2 ∆ϕ(M).

For a 3-manifold given by surgery along a framed link we will now give a proce-
dure to compute the Alexander polynomial (and thus also Reidemeister Torsion).

Let ZtL ⊂ S3 be a framed link consisting of a framed link L and a curve Z which
has trivial linking number of all components of L, i.e., with L ·Z = 0. We denote by
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M•

Z,L the manifold obtained by cutting out a tubular neighborhood of Z and doing

surgery along L. Hence, ∂M•

Z,L = S1 × S1, with canonical meridian and longitude
(given by 0-framing). Also let MZ,L be the closed manifold obtained by doing 0-
surgery along Z so that MZ,L = M•

Z,L ∪ D2 × S1. The special component Z defines

an epimorphism ϕZ : H1(M(•)) → Z, for example via intersection numbers with a
Seifert surface. We write ∆Z,L = ∆ϕZ

(MZ,L) = ∆ϕZ
(M•

Z,L) for the associated

reduced Alexander polynomial, which is the same in both cases.

Consider a general Seifert surface Σ
• ⊂ S3 with ∂Σ

•
= Z and Σ

• ∩ L = ∅.
By removing a neighborhood of the surface we obtain a relative cobordism C•

Σ
=

M•

Z,L − Σ
• × (−ε, ε) from Σ

• to itself. Similarly, CΣ = MZ,L − Σ × (−ε, ε), where

Σ is the closed, capped-off surface Σ
• ∪ D2. The cobordism CΣ is obtained from C•

Σ

by gluing in a full cylinder D2 × [0, 1].

Denote by ψ(•)

± : Σ
•

± ↪→ CΣ the inclusion maps of the bounding surfaces, and by

A± = H1(ψ(•)

± ) : H1(Σ) → H1(C(•)

Σ
) → Hfree

1 (C(•)

Σ
),

the maps on the free part of homology, where the free part is Gfree
=

G
Tors(G)

. As

H1(M̃) ∼= Hfree
1 (M̃)⊕Tors

(
H1(M)

)
⊗Z[t, t−1], we will consider the first elementary

ideal for the free part, which differs only by a factor of
∣∣Tors

(
H1(M)

) ∣∣ .

Suppose first that C does not have interior homology. This means the A± can be

presented as square matrices, and A+ − tA− is a presentation matrix. Consequently
∆Z,L = ±t p det(A+ − tA−). By some linear algebra [8] this is the same as the
Lefschetz polynomial

det(A+ − tA−) =

2g∑

k=0

(−t)2g−k trace
((∧k

A+

)
◦ ?−1 ◦

(∧2g−k
A∗
−

)
◦ ?

)
.

In [8] it is also shown that the expression inside the trace is the same as VFN (C•

Σ
)k or

VFN (CΣ)k depending on context. Hence, we have (multiplying by a unit (−t)−g) that

∆Z,L =

2g∑

k=0

(−t)g−k trace
(
VFN (CΣ)k

)
(91)

= trace
(

(−t)−HVFN (CΣ)
)

(92)

=

∑

j=1

[ j]−t trace
(
V( j)(CΣ)

)
=

∑

j=1

[ j]−t∆
( j)
Z,L,(93)

where [n]q =
qn−q−n

q−q−1 . In (92) we used the generator H of the SL(2,R)-Lefschetz ac-

tion. Formula (93) is a consequence of the Hard–Lefschetz decomposition from (89).

We call the invariant ∆
( j)
Z,L the j-th Alexander Character of the Alexander polynomial.

In case C does have interior rational homology, the dimension of H free
1 (C(•)

Σ
) is

bigger than H1(Σ) so that H1(M̃) has Z[t, t−1] as a direct summand. Consequently,
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the Alexander polynomial vanishes. At the same time VFN (CΣ) is zero since it is a
non-semisimple TQFT. Hence, (93) holds for all cases.

Suppose that in our presentation Z ⊂ S3 is the unknot. In this case we can isotop
the diagram LtZ ⊂ S3 into the form shown on the left side of Figure 15. Specifically,

we arrange it that the strands of one link component alternate orientations as we go
from left to right. By application of the connecting annulus moves, see for example
[21], we can modify the link further such that the resulting tangle T in the indicated
box is admissible without through pairs as described in the beginning of Section 5

or, again, [21]. There is a canonical Seifert surface ΣT associated to a diagram as in
Figure 15 obtained by surgering the disc bounded by Z along the framed components
of L emerging at the bottom side. By construction T is then a tangle presentation of
CΣT

.

Z
. . .

T γ γ γ γ T

Figure 15: Standard presentation.

For the evaluation of this diagram it is convenient to introduce an extension of
N over Z[t, t−1], given by Z[γ±1] n N. The extra generator γ is group-like with

S(γ) = γ−1 and it acts on N by γxγ−1
= tHx = tdeg(x)x for x ∈ N and deg(x) the

degree for homogenous elements.

In order to evaluate the diagram we apply the Hennings substitutions for cross-
ing (29) and rules (30) through (32) to the T part to obtain a combination of N-
decorated arcs as in (33) and (34). Furthermore, we remove the circle Z at the ex-
pense of introducing a γ-decoration on each strand. The Hennings procedure is

continued with the extended algebra over Z[t, t−1]. It is easy to see that the elements
that have to be evaluated against the integral all lie in Z[t, t−1]⊗N and that µ is cyclic
also with respect to γ. Hence, the evaluation is well defined.

Lemma 18 The evaluation procedure for a diagram as in Figure 15 yields the Alexan-
der polynomial.
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Proof The standard evaluation of T yields a sum of diagrams with top and bot-
tom arcs, where the j-th bottom arc is decorated by b j and the j-th top arc by c j

as in (33) and (34). Hence, VN(CΣ) is the sum over all diagrams of linear maps⊗g
j

(
b j ⊗ µ

(
S( )c j

))
. The extended evaluation yields closed curves, each of which

is decorated with four elements b j , c j , γ, and γ−1. Using the antipodal sliding rule
from (32) we collect them at one side of a circle so that the evaluation becomes

µ
(

S−1(b j)γc jγ
−1

)
= (−1)deg(b j )tdeg(c j )µ

(
S(b j)c j

)

= (−t)− deg(b j ) trace
(

b j ⊗ µ
(

S( )c j

))
.

Note here that S2(b j) = (−1)deg(b j ) and that the evaluation is non-zero only if
deg(c j) + deg(b j) = 0. The sum (over all decorations) of the products (over j) of
these individual traces is thus just the trace of (−t)−HVN(CΣ). Since this is (up to

sign) identical with (−t)−HVFN (CΣ), it follows from (92) that the evaluation gives
the Alexander polynomial.

The evaluation of a standard diagram can be described also more explicitly with-
out the use of the Z[γ] extension. Let T# : 2g → 0 be the diagram consisting of

the tangle T : g → g and the lower arcs. That is, T = (1g ⊗ T#) ◦ (Xg ⊗ 1g) and
T#

= (X†
g ) ◦ (1g ⊗ T), where X†

g is the upside-down reflection of Xg . We define

Aγ ∈ N
⊗2
0 ⊗ Z[t, t−1] as

(94) Aγ
= (γ ⊗ 1)A(γ−1 ⊗ 1) =

1

i
(ρ⊗ 1 + 1 ⊗ ρ− t−1θ̄ ⊗ θ + tθ ⊗ θ̄).

Moreover, we define A
γ
{g} ∈ N

⊗2g
0 ⊗Z[t, t−1] from Aγ as A{g} in (72) is defined from

A in (70) and (71), or, equivalently, by

Aγ
g = (γ⊗g ⊗ 1⊗g) ◦ A{g} ◦

(
(γ−1)⊗g ⊗ 1⊗g

)
.

This tensor is assigned to the upper arcs and the γ elements in the standard diagram.
Hence, by the extended Hennings evaluation procedure the Alexander polynomial is
given by the composition

∆Z,L = VFN (T#)(Aγ
g ),

where we think of VFN (T#) : N
⊗2g
0 → C as being naturally extended to a Z[t, t−1]-

map from N
⊗2g
0 ⊗ Z[t, t−1] → C[t, t−1].

For further evaluation we use Theorem 8 to write VFN (T#) =
∑

ν VFN (Eν) as
a combination of elementary tangles Eν = (Mk1

⊗ · · · ⊗ Mkr
⊗ ε⊗N ) ◦ B, so that

the Alexander polynomial is the sum of polynomials Eν(Aγ
g ). For the computation of

these elementary polynomials it is convenient to use the following graphical notation.
As shown in (95) we indicate the morphism Mk by a tree with k incoming branches.
The morphism X1 is drawn as an arc and Xg as g concentric arcs.
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(95)

ε Mk

. . .

X

Ξ

B

For E = (M⊗3
1 ⊗ M2 ⊗ M4 ⊗ ε) ◦ B we obtain the composite shown on the right of

(95). Using relations (µ⊗ 1)Aγ
= (1⊗µ)Aγ

= 1, (ε⊗ 1)Aγ
= (1⊗ ε)Aγ

=
1
i
ρ, and

µ(x 1
i
ρ) = ε(x), we find the graphical relations depicted in (96).

(96)

. . .

=

. . .

= 1

. . .

= = 0

. . .

Now, to each of the arcs the tensor Aγ is associated, containing the four terms ρ⊗ 1,
1⊗ρ, θ̄⊗θ, and θ⊗θ̄ with coefficients of the form±itm. We represent the elementary
polynomial thus as a sum over all combinations of these terms, i.e., 4g terms for Aγ

{g}.

We indicate a combination in a diagram by drawing a line with a down arrow for θ̄,
a line with an up arrow for θ, a line with arrows for ρ and a dashed line for 1. Hence,
(94) becomes the first line in (97).

(97)

1

i

(
+ + t − t−1

)

= −i = i = i = 1

The tensors associated to the Mk are non-zero only in two cases. Namely, if one
element is θ, another θ̄ and all others 1, or if one element is ρ and all others 1. In

diagrams we obtain the evaluation rules as depicted. All other configurations are
evaluated to zero.

For an elementary diagram let Nx(= g) be the number of arcs at the top, N0 the
number of ε’s, and Nk the number of Mk’s at the bottom of the diagram for k ≥ 1.
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Let us also call an elementary diagram reduced if N0 = N1 = 0. We can now give the
recipe for evaluating elementary diagrams:

Proposition 14

(1) We have the relations

2Nx = N0 +
∑

k≥1

kNk, and Nx =

∑

k≥1

Nk.

(2) Every elementary diagram is zero or equivalent to a reduced one by application of
the moves in (96).

(3) A reduced diagram is non-zero only of N j = 0 for j ≥ 3. That is, if the diagram is

of the form D = M
⊗g
2 ◦ B ◦ Xg .

(4) A contributing reduced diagram D = P1 t · · · t Pn is the union of closed paths P j ,

and the polynomial ∆D =
∏

j ∆P j
assigned to D is the product of the polynomials

assigned to the the components P j .
(5) The polynomial associated to a connected component is

∆P = 2 − (−1)b(t p + t−p),

where p is the algebraic intersection number of the closed path P with a radial line
segment Ξ as in (95), and b is the total number of half twists (or antipode insertions)

in B.

Proof (1) In a diagram as in (95) the number of strands entering from the top

is 2Nx, two for each arc, and the number of strands entering from the bottom is
N0 +

∑
k≥1 kNk. Obviously, both numbers have to be equal. For an admissible config-

uration of a contributing diagram we can also call weighted edges, where the dashed
ones are weighted 0, the ones with one arrow as 1, and those with double arrows as 2.

The top part of the diagram shows that the total weight has to be 2Nx since every
admissible arc has weight 2. Also every tree has weight 2 and the ε’s have weight 0 so
that the total weight must also be given by

∑
k≥1 2Nk.

(2) This is clear since every non-reduced one allows the application of a move
that reduces the number of edges.

(3) If we subtract twice the second identity in (1) from the first we find 0 =

N0 −N1 + N3 + 2N4 + 3N5 + · · · . In the reduced case with N0 = N1 = 0, this implies
0 = N3 = N4 = N5 = · · · , since these are all non-negative integers.

(4) Any graph where all vertices have valency 2 is the union of closed paths. Since
we have a symmetric commutativity constraint we can untangle components from

each other and move them apart. The evaluation of disjoint unions of diagrams is
given by their products.

(5) There are four configurations that contribute to ∆P for a closed path. Two of
them are given by dashed lines alternating with double arrow lines. This corresponds
to paring factors 1

i
ρ with integrals µ in two different ways, each evaluated as 1. Thus

these two cases contribute the 2 in the expression. The other two configurations are
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given by two orientations of P with single arrows everywhere. For one given orienta-
tion we get from (97) a factor 1

i
t if P crosses Ξ left to right and a factor 1

i
(−t−1) if P

crosses right to left. Thus the arcs yield a tensor ±( 1
i
)gtb(x1 ⊗ · · · ⊗ x2g), where each

xi is either θ or θ̄. Application of B yields a tensor ±( 1
i
)gtb(y1 ⊗ · · · ⊗ yg) where each

y j is either θ ⊗ θ̄ or θ̄ ⊗ θ depending on which way the path runs through the M2

piece. The pairwise multiplication thus yields the tensor ±t b( 1
i
ρ)⊗g and evaluation

against µ yields the factor ±tb. For the opposite orientation the tensor for the arcs

is obtained by exchanging t for t−1 and multiplying by a factor (−1)g . The factor
picked up by application of B is unchanged, and in the evaluation against the µ we
pick up a factor (−1)g because the orders of θ and θ̄ are exchanged, canceling the one
from the top. Hence the contribution for the opposite orientation is the same with t

and t−1 exchanged. Thus ∆P = 2 ± (tb + t−b). The sign can be determined by eval-
uating the polynomial at t = 1. This is identical with the usual Hennings invariant
of the 3-manifold given by surgery along a link associated to the connected diagram
P as follows.

First choose over and under crossing for P pushing it slightly outside the plane of
projection into a knot P∗. This knot is thickened to a band N(P∗), which is parallel to
the plane of projection except for half twists that are introduced at the points where

B ⊂ P has antipodes inserted.
Consider the link ∂N(P∗) given by the edges of the band. Generically this link

consists of parallel strands that double cross as in Figure 10 at simple crossings of
P∗ and has Γ-diagram also as in Figure 10 for every half twist. We further modify

this link at some generic point in the band by replacing the parallel strands by a
configuration with a connecting annulus as in the σ-Move of (24). We obtain a two
component link LP = AP t CP, where AP is the 0-framed annulus. The other part
CP bounds the disc obtained by removing the small piece from the band where we

applied the σ-Move, and thus carries a natural framing. We have by construction
that ∆P(1) = ±η(MLP

) with η as in (77). For self-intersection numbers we clearly
have AP · AP = 0 and CP · CP = 0. For an even number of twists in the band N(P∗)
we obtain also AP · CP = 0 and for an odd number of twists we have AP · CP = ±2.

Hence η(MLP
) = 0 in the first case and η(MLP

) = 4 in the second.

Note that the form of the ∆P implies again the symmetry ∆(t) = ∆(t−1) of the
Alexander polynomial. In order to instill some confidence in our procedure let us

recalculate the familiar formula for the left-handed trefoil in this setting. Using the
Fenn–Rourke move from Figure 14 we present the trefoil as an unknotted curve Z in
a surgery diagram of Borromean rings as in (98).

(98)

Z

=

Z

The standard form is obtained by moving C1 to the right off Z and letting C2 follow
at the ends. The tangle T# is then as depicted on the left of (99) below. Using the
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framing moves from Figure 13 we expand it into elementary diagrams as on the right
of (99).

(99)

T#
= − C2 C1 =

− + i

+ i

The translation into Hopf algebra diagrams and subsequently polynomials is indi-
cated next in (100).

(100)
T#

− + i + i +

−(2 − t − t−1) + 0 + 0 + 1

Thus the polynomial comes out to be t + t−1 −1 as it had to be. The same calculation
carries through if we change the framings f j of the components C j in (98). The
difference is the sign of the first summand, that is ∆Z = f1 f2(t + t−1 − 2) + 1. Thus,

if we flip both framings we obtain the right-handed trefoil with the same polynomial.
If we flip only one framing so that f1 = − f2, we obtain one of two figure-eight knots
with polynomial −t − t−1 + 3. Many other Alexander polynomials with multiple
twists, as for example (p, q, r)-pretzel knots, can be computed quite conveniently

in this fashion using Fenn–Rourke moves and the nilpotency of the ribbon element
vk

= 1 + kρ. Thus, our method proves to be quite useful in the calculation of the
Alexander Polynomial for knots although its primary application is the generalization
to 3-manifolds.

We describe next a more systematic way to unknot the special strand Z in a general
diagram more akin the traditional skein theory. The additional relations that allow
us to put any diagram L t Z into a standard form are as follows.

Proposition 15 We have the following two skein relations for the special strand Z

(101) − =
1

i

and

(102)
A B A B

= −(t
1
2
− t−

1
2 )2

as well as the slide and cancellations moves analogous to (60), and a vanishing property
as in (61).

These equivalences allow us to express the Alexander polynomial of any diagram
Z t L ⊂ S3 as a combination of the evaluations of diagrams in standard form.
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Proof As before we change a self-crossing of Z by sliding a 1-framed annulus A

over the crossing. Note that we do not have to keep track of the framing of Z as

it is unchanged and by convention zero. Using the orientation of Z we can do this
such that the linking numbers of Z and A remain zero. It is easy to see that we can
bring a diagram into the standard position as in Figure 15 without ever sliding a
strand over the new component A. The evaluation is obtained as the weighted trace

over the linear map associated by VN to the cobordism represented by the tangle,
which contains A. Inserting the relation from Figure 13 we see that this linear map,
and hence the associated polynomial, is the combination of the one for which A has
been removed and the one for which the framing of A has been shifted by one. In

both cases the unknotting procedure can be reversed so that we obtain the original
pictures with A removed or its framing shifted by one. The situation in which A is
removed corresponds to the opposite crossing. In the other contribution we have a
0-framed annulus around the crossing which can be rewritten as an index-1 surgery

represented by a pair of coupons. This yields (101).
The coupon combination in (102) can be reexpressed by a tangle as in (64); it can

be isotoped into the position shown in (103).

(103)

Z

Q

The extra tangle piece Q maps to the identity on a torus block. More precisely,

VN(Q t T) = idN0
⊗ VN(T). The weighted traces thus differ by a factor

traceN0

(
(−t)−H

)
= −t + 2 − t−1

= −(t
1
2 − t−

1
2 )2.

For ordinary link and knot complements there are well known skein relations that

uniquely characterize the Alexander–Conway polynomial of the knot, see for example
[4, Chapter 12.C].

Corollary 16 For ordinary knot complements (that is if L = ∅) the relations in
Proposition 15 reduce to the ordinary Alexander–Conway skein relations.

Proof It is clear that with Proposition 15 we can resolve every diagram into dis-
joint circles in the plane with coupons on them in exactly the same way as for the

Alexander–Conway polynomial. The difference is that wherever we pick up a factor
(t

1
2 − t−

1
2 ) from the smoothening in the traditional calculus we obtain a factor 1

i
and

a pair of coupons in our case, but all other numbers are the same.
Suppose now after resolving the crossings we have more than one circle. Since the

strand Z has to run though all of these components we must have coupons that are
paired but on different circles. By (61) of Lemma 14 it follows that such a config-
uration must vanish. In the Alexander–Conway calculus we also have the rule that
the link invariant for the unlinked union of an unknot with a non-trivial link is zero.
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Hence we only need to compare the contributions that come from single circles. If in
the process of applying the skein relations we carried out N smoothenings of cross-

ings the circle will carry 2N coupons.

Next we claim that it is not possible to slide two paired coupons in adjacent po-
sition. To this end note that the coupons in the resolution of Proposition 15 stay all

on one side of the special strand, i.e., in the depicted orientation of Z the coupons
are always on the left of Z. Thus, if they become adjacent we would have a situation
as in (62) of Lemma 14. This is not possible since then Z would have at least two
components. Thus the number 2N of coupons will remain the same under handle

slides.

We next observe that a circle with edges that are labeled in pairs and subject to

handle slides also occurs in the classification of compact, oriented surfaces via their
triangulations as in [34, Chapter 1]. It is shown there that any such configuration is,
under application of handle slides and cancellation moves as in (62), equivalent to a
sequence of blocks as in (102). As before we may assume that all coupons lie on one

side of the circle. In fact, as Z is connected we see from [34] that we can move to the
configuration in standard block form without the use of cancellations.

Thus, we have N
2

4-coupon (torus) blocks as in (102) contributing a factor of
(
−(t

1
2 − t−

1
2 )2

)N/2
= (i)N (t

1
2 − t−

1
2 )N . Recall that in each resolution we also had a

factor 1
i
, so that the total factor for the circle is just (t

1
2 − t−

1
2 )N and N is the number

of smoothenings. But (t
1
2 − t−

1
2 ) is precisely the factor assigned to each smoothening

by the usual Alexander–Conway calculus.

Although we now have a systematic procedure for computing the Alexander poly-
nomial of a 3-manifold, it is often efficient to use the skein relations leading up to it
directly. We illustrate this by computing ∆Ck,l ,Z, where Ck,l is the component depicted
in (104):

(104)
Z

q blobs
. . .

. . .

k full twists
(2k crossings)

Cq,k

The two middle strands are twisted with each other k times generating 2k crossings,
and we have q full circles on the upper strand indicating shifts in the framing by −1.
The definition for k < 0 or q < 0 is given by choosing the opposite twistings.

Lemma 19 The Alexander Polynomial of MCk,l ,Z is given by the ordinary Alexander
polynomial of the knot as follows:

∆Ck,l ,Z = i
(

k(t + t−1) − q
)
∆Z.
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Proof We combine every twist with two circles so that we have k twist configurations
as in Figure 14 and l = q − 2k remaining circles. Applying the Fenn–Rourke move

to each of these, we obtain a configuration in which we have a parallel instead of
twisted pair of strands in the middle, surrounded by k annuli with an empty circle
on them. In addition, we have k separate annuli with full circles. Denote by ∆k,l

the associated Alexander Polynomial. For k > 0 we choose one of the first annuli

and apply the framing shift relation (13) to the empty circle on it. In the second
contribution we omit the dotted line so that we obtain the same configuration with
one less annulus around the double strands. The factor i in (13) is canceled against
one of the separate annuli with a full circle so that the second contribution is exactly

∆l,k−1. In the first contribution we have a 0-framed annulus which, by Figure 12,
can be turned into a pair of coupons. The other k − 1 coupons can thus be slid
off and canceled against k − 1 annuli with full circles. Moreover, the remaining l
full circles on the upper strand can be removed, since inserting a dotted line leaves

two isolated coupons, which yields zero. The resulting configuration is the knot Z

with a tangle piece Q as in (103), contributing an extra factor −(t
1
2 − t−

1
2 )2, and an

extra annulus with full circle with a factor −i. We thus obtain the recursion relation
Pk,l = i(t

1
2 −t−

1
2 )2 +Pk−1,l so that Pk,l = ik(t

1
2 −t−

1
2 )2

∆Z+P0,l. But the configuration

for k = 0 is the separate union of Z and an annulus with l full circles. The latter yields
a factor −il so that Pk,l = i

(
k(t

1
2 − t−

1
2 )2 − l

)
∆Z, which computes to the desired

formula.

12 Lefschetz Compatible Hopf Algebra Structures on H∗
(

J(Σ)
)

It is easy to see that the natural ring structure on the cohomology H∗
(

J(Σ)
) ∼=∧∗

H1(Σ) is not compatible with the SL(2,R) Lefschetz action as described in Sec-
tion 10. For example E(x ∧ y) = x ∧ y ∧ ω but (Ex) ∧ y + x ∧ (Ey) = 2x ∧ y ∧ ω.

The isomorphism with N
⊗g
0 however induces another multiplication structure com-

patible with the SL(2,R) action. In this section we will describe it explicitly.

The Z/2-graded Hopf algebra structure on N0 given in Lemma 12 extends to a
Z/2-graded Hopf algebra structure HN on N

⊗g
0 with

(x1 ⊗ · · · ⊗ xg)(y1 ⊗ · · · ⊗ yg) = (−1)
∑

i< j d(x j )d(yi )x1 y1 ⊗ · · · ⊗ xg yg .

The formula for ∆ is the dual analog. The precise form of HN is given as follows:

Lemma 20 For a choice of basis of Rg there is a natural isomorphism of Hopf algebras

% :
∧∗

(E ⊗ R
g)

∼−→ N
⊗g
0

so that Aut(N
⊗g
0 ,HN) ∼= GL(E ⊗ Rg).

Proof Let {e j} be a basis of Rg . The generating set of primitive vectors of
∧∗

(E⊗Rg)
is given by E⊗Rg . On this subspace we set %(w⊗e j) = 1⊗· · ·⊗1⊗w⊗1⊗· · ·⊗1, with
w in j-th position. We easily see that the vectors in %(E⊗Rg) form again a generating
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set of anticommuting, primitive vectors of N
⊗g
0 , so that % extends to a Hopf algebra

epimorphism. Equality of dimensions thus implies that % is an isomorphism.

The canonical SL(2,R)-action on N
⊗g
0 is still compatible with HN since it pre-

serves the degrees and factors. Under the isomorphism in Lemma 20 it is readily
identified as the SL(2,R)-action on the E-factor. The remaining action on the Rg-

part can be understood geometrically. Specifically, Sp(2g,Z) acts on N
⊗g
0 , since the

V-representation of the mapping class group factors through the symplectic group
with representation VSp : Sp(2g,Z) → GL(N

⊗g
0 ) : [ψ] 7→ VSp ([ψ]) := V(Iψ). For a

given decomposition into Lagrangian subspaces we denote the standard inclusion

(105) κ : SL(g,Z) ↪→ GL(g,Z) ↪→ Sp(2g,Z) : A 7→ κ(A) := A ⊕ (A−1)T .

Lemma 21 The action of SL(g,Z) on N
⊗g
0 induced by VSp ◦κ is compatible with HN,

and under the isomorphism % from Lemma 20 it is identical with the SL(g,Z)-action on

Rg for the given basis. In particular, it commutes with the SL(2,R)-action so that we
have the following natural inclusion of the Howe pairs:

SL(2,R) × SL(g,Z) ⊂ GL(E ⊗ R
g) = Aut(N

⊗g
0 ,HN).

Proof Consider the elements P j := S j ◦ D−1
j ◦ S−1

j and Q j := S j+1 ◦ D−1
j ◦ S−1

j+1 of
Γg,1. From (20) and (21) we compute the homological action as [R j] = κ(Ig + E j+1, j )
and [Q j] = κ(Ig + E j, j+1), with conventions again as in [12]. The matrices Ig + E j+1, j

and Ig + E j, j+1 generate SL(g,Z), and hence [P j] and [Q j] generate κ
(

SL(g,Z)
)
⊂

Sp(2g,Z). The actions of V(IP j
) and V(IQ j

) on N
⊗g
0 are given by placing the maps

P := (S ⊗ 1)D−1(S−1 ⊗ 1) and Q := (1 ⊗ S)D−1(1 ⊗ S−1) in the j-th and j + 1-st
tensor positions. In order to show that the actions of P j and Q j on N

⊗g
0 yield Hopf

algebra automorphisms it thus suffices to prove this for the maps P and Q in the case
g = 2. From the tangle presentations we find identities IQ1

= (M⊗ 1) ◦ (1⊗∆) and

IP1
= (1 ⊗ M) ◦ (∆ ⊗ 1). It follows that P(x ⊗ y) = ∆0(x)(1 ⊗ y) and Q(x ⊗ y) =

(x ⊗ 1)∆0(y). The fact that these are Hopf automorphisms on N0 ⊗ N0 can be
verified by direct computations. For the multiplication this amounts to verification of
equations such as ∆(w)1⊗v = −1⊗v∆(w), ∀v,w ∈ E, and for the comultiplication

we use the fact that N0 is self dual.
From the above identities we have that V(IQ1

) = (M0 ⊗ 1) ◦ (1 ⊗ ∆0), so that
V(IQ j

) is given on a monomial by taking the coproduct of the element in the ( j + 1)-
st position, multiplying the first factor of that to the element in the j-th position and

placing the second factor into the ( j + 1)-st position. We readily infer for every w ∈ E

that V(IQ j
)
(
%(w ⊗ ek)

)
= %(w ⊗ ek + δ j+1,kw ⊗ e j) = %

(
w ⊗ (Ig + E j+1, j)ek

)
. The

analogous relation holds for [P j] so that

VSp
(
κ(A)

)
(w ⊗ x) = w ⊗ (Ax) ∀A ∈ SL(g,Z).

This is precisely the claim made in Lemma 21.

The structure HN is mapped by the isomorphism ξg from (84) to a Z/2-graded

Hopf algebra structure HΛ on H∗
(

J(Σg)
)

. A priori the isomorphism ξg and thus
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also HΛ depend on the choice of a basis of H1(Σg). However, the SL(g,Z)-invariance
determined in Lemma 21 translates to the SL(g,Z)-invariance of HΛ, where

κ
(

SL(g,Z)
)

⊂ Sp(2g,Z) acts in the canonical way on H∗
(

J(Σg)
)

. Hence, HΛ

only depends on the oriented subspaces Λ = 〈[a1], . . . , [ag]〉 ⊂ H1(Σg ,Z) and
Λ
∗

= 〈[b1], . . . , [bg]〉 ⊂ H1(Σg ,Z), but not the specific choice of basis within
them. The orientations can be given by volume forms ωΛ := [a1] ∧ · · · ∧ [ag] and

ωΛ∗ := [b1] ∧ · · · ∧ [bg]. The primitive elements %(θ ⊗ e j) and %(θ̄ ⊗ e j) of N
⊗g
g are

mapped by ξg to

(106) ±[a j] ∧ ωΛ∗ ∈
∧g+1

H1(Σg) and ± i∗z j
(ωΛ∗)

∧g−1
H1(Σg)

respectively, where [a j] ∈ H1(Σg) and z j ∈ H1(Σg), with z j([b j ]) = 1 and z j([x]) =

0 on all other basis vectors. We also have ξg(1) = ωΛ∗ and ξg(ρ⊗g) = ωΛ.
This completes the proof of Theorem 3.

In the remainder of this section we give a more explicit description of the structure
HΛ on H∗

(
J(Σg)

)
, and relate it to an involution, τ , on H∗

(
J(Σg)

)
, which acts as

identity on the Λ-factor and, modulo signs, as a Hodge star on the opposite Λ
∗-factor.

The product � on
(

H∗
(

J(Σg)
)
,HΛ

)
is given on a genus one block,

∧∗〈[a], [b]〉,
as follows:

(107)

Table for u � t := φ
(
φ−1(u)φ−1(t)

)

u \ t 1 [a] [b] [a] ∧ [b]

1 0 0 1 [a]

[a] 0 0 a 0

[b] 1 [a] [b] [a] ∧ [b]

[a] ∧ [b] −[a] 0 [a] ∧ [b] 0

It extends to
∧∗

H1(Σg) via the formula

(108) (u1 ∧ · · · ∧ ug) � (t1 ∧ · · · ∧ tg) = (−1)
∑

i< j di l j (u1 � t1) ∧ · · · ∧ (ug � tg),

where ui , ti ∈
∧∗〈[ai], [bi]〉, di = 1− deg(ui) and l j = 1− deg(t j ). In particular, we

have u � t = (−1)dlt � u, with d =
∑

i di = g − deg(u) and l =
∑

i li = g − deg(t),

which reflects the Z/2-commutativity of H∗
(

J(Σg)
)

.

The product structure and another proof of Lemma 21 can be also found from an
involution, τ , defined as follows:

Every cohomology class x ∈ H∗
(

J(Σg)
)

is uniquely written as x = α ∧ β, where
α ∈ ∧∗

Λ and β ∈ ∧∗
Λ
∗. For x in this form the map τ is uniquely determined by

the relations

(109) τ (α ∧ β) = α ∧ τ (β) and τ (bε1

1 ∧ · · · ∧ b
εg
g ) = b1−ε1

1 ∧ · · · ∧ b
1−εg
g .

From the formulas in (107) and (108) we find that τ 2
= 1, and

(110) τ (u � t) = τ (t) ∧ τ (u),
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and that τ maps
∧∗

Λ as well as
∧∗

Λ
∗ to itself. It is clear from (109) and (110)

that SL(g,Z)-variance of � on H∗
(

J(Σg)
)

is equivalent to SL(g,Z)-variance of � on∧∗
Λ
∗. Now, for any A ∈ SL(Λ∗) the following identity holds:

(111) τ ◦
(∧∗

A
)
◦ τ =

∧∗
ι(A),

where ι is the involution on SL(Λ∗) defined by

ι(A) := D ◦ (A−1)T ◦ D, with D[b j] = (−1) j[b j].

This can be proven either by considering again generators of SL(Λ∗), or by applying
the generalized Leibniz formula for the expansion of the determinant of a g × g-
matrix into products of determinants of k× k and (g − k)× (g − k)-submatrices. See

also Lemma 5.2 in [9]. Now (110) together with (111) implies that � depends only
on the decomposition H1(Σg ,Z) = Λ ⊕ Λ

∗.
In summary, we have the following isomorphism of Z/2-graded Hopf algebras:

τ ′ :=
∧∗

D ◦ τ :
(

H∗
(

J(Σg)
)
,HΛ

)
∼−→

(
H∗

(
J(Σg)

)
,Hext

)
,

The Howe pair SL(2,R) × SL(g,R) ⊂ GL
(

H1(Σg)
)

= Aut
(

H∗
(

J(Σg)
)
,Hext

)
,

with H1(Σg) = E⊗Λ, is conjugated by τ ′ to the pair SL(2,R)Lefsch.×κ
(

SL(g,R)
)
⊂

Aut
(

H∗
(

J(Σg)
)
,HΛ

)
.

13 More Examples of Homological TQFT’s and Open Questions

A Relations to Gauge Theories and the TQFT-Ring Q Generated by V

We begin by collecting the ingredients that imply Theorem 4. The first identity (2)
has already been computed in (93).

The invariants IDC and ISW
d are obtained by Donaldson in [5] from TQFT’s VDC

and VSW
d respectively. For both TQFT’s the vector spaces associated to a surface Σ are

the homologies of natural moduli spaces. In the case of VDC this is the moduli space
M(Σ) of flat connections on a non-trivial SO(3) bundle. For VSW

d the moduli space
of solutions to certain vortex equations is considered, which is in turn identified with

the symmetric products of the surface. The action of the mapping class group on
the resulting homologies also factors through the symplectic groups (with the fa-
miliar F2-ambiguity). Donaldson thus derives the following isomorphisms between
Sp(2g,Z)-modules.

(112)

VDC(Σg) = H∗

(
M(Σg)

) ∼=
g⊕

j=0

Q
j2 ⊗

∧g− j
H1(Σg) and

VSW
d (Σg) = H∗

(
Symk(Σg)

) ∼=
g−d⊕

j=1

Q
j ⊗

∧g−d− j
H1(Σg),
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where k = g −1−d is the degree of the holomorphic line bundle of which the vortex
solutions are sections. The Sp(2g,Z)-representations can be further identified with

the irreducible parts, which in our notation takes the form

(113)
∧g− j

H1(Σg) = V( j+1)(Σ) ⊕ V( j+3)(Σ) ⊕ V( j+5)(Σ) ⊕ · · · .

Inserting (113) into the isomorphisms in (112) we find that the VDC (Σg) and
VSW (Σg) are direct sums of the V( j)(Σg) with g-independent multiplicities given by
precisely the non-negative coefficients in (3) and (4). In Chapter 5 of [5] Donaldson
exploits this fact to show that the decomposition thus extends to the entire TQFT’s,

meaning that cobordisms act trivially on the mulitiplicity spaces and have block-wise
actions on the V( j) components equivalent to those in the VFN case. In summary, we
have the following isomorphisms of TQFT’s:

(114)

VDC ∼=
⊕

j≥2

Q( j+1
3 ) ⊗ V( j)

VSW
d

∼=
⊕

j≥d+2

Q
[[(

j−d
2

)2]] ⊗ V( j).

Identities (3) and (4) are now immediate. For the last equation (5) in Theorem 4 we
refer to [24].

In an effort to find new knot invariants Frohman and Nicas generalized their ap-
proach in [9] to higher rank Lie algebras. They construct a TQFT V

PSU(n)
k , whose

vector spaces are given as intersection homology groups of certain restricted moduli
spaces of PSU(n)-representations. Further they derived from these via similar trace

formulas invariants λn,k depending on the rank n and weight k. In [7] Frohman finds
a recursive procedure to compute the invariants λn,k and shows that they are deter-
mined by the polynomial expressions in the coefficients of the Alexander polynomial.
Consequently, they are also polynomial in the Alexander Characters, so that we can

write

(115) λn,k = Rn,k(∆(1),∆(2), . . . ),

with Rn,k ∈ Z[x1, x2, . . . ]. A general closed formula and some integrality issues for

the Rn,k are still unresolved though, see also [2]. This relation in (115) is more general
than those expressed in Theorem 4 as it is no longer linear.

More precisely, define the space of invariants Q [0]
= {n1∆

(1) + n2∆
(2) + · · · |

ni ∈ Z+,0}. Then it is clear that any invariant that descends from a TQFT that is

homological must be in Q [0], where the ni ≥ 0 are the multiplicities of the irreducible
summands. Thus IDC , ISW

d ∈ Q [0], but we also have λL /∈ Q [0] since some of the
coefficients are negative. λL is, nevertheless, related to the quantum TQFT’s, but the
derivations use slightly more subtle p-modular interpretations, see [24].

Similar to sums we can derive the invariant given by the product of two Alexander
Characters, say ∆

(i) · ∆
( j), from the tensor product of the corresponding TQFT’s,

https://doi.org/10.4153/CJM-2003-033-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-033-5


818 Thomas Kerler

namely V(i) ⊗ V( j). Thus, if the coefficients of all the Rn,k were non-negative integers
we could easily produce a homological TQFT by taking corresponding direct sums

and tensor products of the V(i) in order to reproduce λn,k. This invariant, indeed,

descends from the TQFT V
PSU (n)
k , however, the coefficients of the Rn,k can be nega-

tive. The point to observe here is that, for example, V(i) ⊗ V( j) is generally not an
irreducible TQFT and can be decomposed.

Denote by V(~λ) the irreducible TQFT’s obtained as summands of quotients of mul-

tiple tensor products of the V(i). The superscript label, ~λ ∈ ~Λ, may be roughly
thought of as a semi-infinite branching path for Sp(2) ⊂ Sp(4) ⊂ Sp(6) ⊂ · · · .
The space of TQFT’s

(116) Q
[+]

=

{⊕

~λ∈~Λ

Q
n~λ ⊗ V(~λ)

∣∣∣ n~λ ∈ N ∪ {0}
}

thus has a natural ring structure with operations ⊕ and ⊗ and can be thought of as a
type of Grothendieck K0-ring for a homological subquotient of Cob3. We denote the

corresponding set of higher Alexander Characters abusively in the same way, since it
possesses the same ring structure under usual addition and multiplication. Clearly,
Q [0] ⊂ Q [+]. The following conjecture together with an understanding of the ring
structure of Q [+] should shed light on the general structure of the polynomials Rn,k.

Conjecture 17

V
PSU(n)
k ∈ Q

[+].

B Homology TQFT’s from the Reshetikhin–Turaev Theory

Recall that the TQFT V( j) is in fact a functor to the category of free Z-modules rather
than just the category of vector spaces over Q . Now for any prime p ≥ 3, by taking
all lattices modulo p, this in turn maps to the category of vector spaces over the finite

field Fp = Z/pZ. The resulting TQFT V
( j)
p over Fp is now no longer irreducible, but

it has a unique irreducible subquotient, which we denote by
==

V
( j)
p , see [22].

Another way of generating TQFT’s over Fp is to consider the Reshetikhin–Turaev
Theory for quantum-SO(3) at a primitive p-th root of unity ζp. As shown in [11]

this can be regarded as a TQFT over the ring of cyclotomic integers Z[ζp]. The TQFT
obtained from the ring reduction Z[ζp] � Fp : ζp 7→ 1 is denoted VRT

p . The example
p = 5, which is in some sense a fundamental case, is analyzed in [23]. We obtain an
exact, but non-split sequence of TQFT’s as follows:

(117) 0 → ==

V
(4)
5 −→ VRT

5 −→ ==

V
(1)
5 → 0.

As an extension of the mapping class group Γg (117) involves a Johnson–Morita sub-

quotient of Γg . The precise modular structure of the V
( j)
p and

==

V
( j)
p TQFT’s is un-

raveled in [22]. There we find resolutions of the
==

V
( j)
p in terms of the V

( j)
p , which

lead to important identities between the p-modular versions of the invariants from
Theorem 4 and the Reshetikhin–Turaev Invariants.
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It is easy to see that the irreducible factors of VRT
p for p ≥ 7 can no longer be

reductions of the V( j). There is, however, evidence that suggests that the irreducible
factors are reductions of summands in the symmetric powers of the fundamental
ones. That is, TQFT’s of the form

(118) V
~λ ⊆ S

p−3
2 VFN ∈ Q

[+].

This is closely related to the conjecture that the Lescop invariant for a closed 3-
manifold M with β1(M) ≥ 1 relates to the Reshetikhin–Turaev Invariant as follows.

(119) VRT
ζp

(M) = C p ·
(

(ζp − 1)λL(M)
) p−3

2 + O
(

(ζp − 1)
p−1

2

)
.

This has been verified for p = 5 in [24].

C Relation of Reshetikhin–Turaev and Hennings Theory

Given a quasitriangular Hopf algebra, A, we have described in Section 5 a procedure
to construct a topological quantum field theory, VH

A
. In [43] and [46], Reshetikhin

and Turaev give another procedure to construct a TQFT, VRT
S

, from a semisimple
modular category, S. A more general construction in [25] allows us to construct a

TQFT, VKL
C

, also for modular categories, C, that are not semisimple, and we show in
[19] that VH

A
= VKL

A-mod and VRT
S

= VKL
S

for semisimple S. For a non-semisimple,
quasitriangular algebra, A, the semisimple category used in [43] and [46] is given as
the semisimple trace-quotient S(A) = A-mod of the representation category of A.

The relation between VH
A

and VRT
S(A) is generally unknown. We make the following

conjecture in the case of quantum sl2.

Conjecture 18 Let A = Uq(sl2)red , with q an odd p-th root of unity, and relations
Ep

= Fp
= 0 and K2p

= 1 for the standard generators. Then there is a monomorphic,
natural transformation

(120) VFN ⊗ VRT
S(A) ↪→ VH

A.

In the genus one case we have shown in [18] and [19] that the mapping class

group representations and invariants of lens spaces of both theories in (120) are in
fact equal. The above inclusion of TQFT functors can also be phrased in the form
VKL

C# ↪→ VKL
C

, where C := Uq(sl2)red -mod and C# := (N-mod) ⊗ C. The categories C

and C# are in fact rather similar as linear abelian categories. From [20] it follows that

there an isomorphism of abelian categories

(121) H : C# ⊕ 2 · Vect(C)
∼=−→ C,

where the two extra Vect(C)’s account for the two p-dimensional, irreducible Stein-
berg modules. This, however, is not a monoidal functor. Instead we have a natural
set of monomorphisms of the form H(X) ⊗ H(Y ) ↪→ H(X ⊗ Y ). As a result the

braidings, integrals, and coends that enter in a crucial way the construction of the
TQFT’s [25] can no longer be naı̈vely identified. Strategies of proof would include a
basis of A as worked out in [18] and the use of the special central, nilpotent element
Q defined in [19].
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