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ADDITIVE FUNCTIONALS FOR DISCRETE-TIME
MARKOV CHAINS WITH APPLICATIONS
TO BIRTH–DEATH PROCESSES
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Abstract

In this paper we are interested in bounding or calculating the additive functionals of the
first return time on a set for discrete-time Markov chains on a countable state space,
which is motivated by investigating ergodic theory and central limit theorems. To do so,
we introduce the theory of the minimal nonnegative solution. This theory combined with
some other techniques is proved useful for investigating the additive functionals. This
method is used to study the functionals for discrete-time birth–death processes, and the
polynomial convergence and a central limit theorem are derived.
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1. Introduction

Let Z+ and N be the sets of all the nonnegative and positive integers, respectively. Let �n be
a discrete-time Markov chain (DTMC) on a countable state space E = Z+ with the transition
matrix P = (pij ). Throughout this paper, we assume that the chain �n is irreducible, aperiodic,
and positive recurrent with a unique invariant distribution π . For a set A, the random variables

τA := inf{n ∈ N : �n ∈ A}, σA := inf{n ∈ Z+ : �n ∈ A}
are said to be the first return and first hitting times, respectively. For any integer p ∈ N and
any sequence r(n) taking values in N, we are interested in bounding or calculating functionals
of the type Ei[(∑τA−1

k=0 r(n)f (�k))
p], which is very important in the context of ergodic theory

and central limit theorems.
Let � be the class of subgeometric rate functions from [16], which includes, for example,

the polynomial functions r(n) = (n+1)�. It is given by Theorem 2.1 of [18] that if there exists
a finite set A such that the functional Ei[∑τA−1

k=0 r(n)f (�k)] is finite for any i ∈ A, then we
have the subgeometric convergence

r(n)‖P n(i, ·) − π(·)‖f → 0 as n → ∞
for any i ∈ E, where r ∈ �, f ≥ 1, and ‖µ‖f := sup|g|≤f µ(g) is the f -norm for a signed
measure µ. An explicit expression of this functional is available only for some simple examples.
It was shown in the same paper [18] that the functional is finite if and only if there exists a
sequence of drift functions satisfying some conditions. Later, it was shown in [4], [5], and [9]
that, for a large enough subclass (including polynomial case) of subgeometric rates, we can use
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a single drift function to replace a sequence of drift functions. Although these results have been
applied successfully to many models, they seem to be difficult to apply to some models, such
as discrete-time birth–death processes (or random walks) with general birth and death rates.

Another topic, which closely relates with the type of additive functionals, is the theory
of central limit theorems (CLTs). Let f be a real-valued function f : E → R. Define
π(f ) = ∑

i∈E
πifi and f̄ = f − π(f ). The sample mean is defined by

Sn(f ) = 1

n

n∑
k=0

f (�k).

When π(|f |) < ∞, the ergodic theorem guarantees that Sn(f ) → π(f ) with probability 1 as
n → ∞. We say that a CLT holds if there exists a constant 0 ≤ σf < +∞ such that

n1/2Sn(f̄ ) ⇒ σf N(0, 1) as n → ∞, (1.1)

where N(0, 1) denotes a standard normal random variable, and ‘⇒’ denotes convergence in
distribution. In the context of CLTs two important questions are:

(i) What conditions ensure a CLT?

(ii) When a CLT holds, how is the asymptotic variance σ 2
f calculated?

To answer the first question, we need to bound the additive functional Ei[(∑τi

k=0 |f̄ (�k)|)2]
for some i ∈ E; see, e.g. [15, Chapter 17]. Many useful results have been obtained for the
bound of this functional; see [10] and [17]. To answer the second question, we need to obtain
an explicit expression for the functional Ei[∑τj

k=0 f̄ (�k)] for some j and any i ∈ E which is
connected with the solution of a Poisson equation; see, e.g. [1], [6], and [21].

In this paper we aim to bound or calculate the additive functionals by using the theory of
the minimal nonnegative solution and some other techniques. This theory, which is presented
in Theorem 2.1 and is essentially from Chapter 6 of [8], makes it feasible to deal with the
functionals for some specific models. Some remarks and one corollary are given in Section 2
to show the power of this theory.

Discrete-time birth–death (DTBD) processes are a class of important Markov chains, which
has caused much research interest. For the ergodicity of DTBD processes, Mao [13] and Van
Doorn and Schrijner [20] obtained criteria for the geometric ergodicity and uniform ergodicity
in terms of the weaker total variation norm. For CLTs, explicit expressions for the asymptotic
variance have been obtained for continuous-time birth–death processes on a finite state space;
see, e.g. [7] and [21]. In Section 3, for a DTBD process, we derive a CLT and the polynomial
convergence in terms of the stronger f -norm, by investigating their additive functionals through
Theorem 2.1.

2. Additive functionals for DTMC processes

The following proposition about moments of additive functionals, which is copied from
Theorem 6.7.4 of [8], is crucial for the subsequent analysis.

Proposition 2.1. ([8, Theorem 6.7.4].) Let V be a nonnegative function on E, and let A ⊂ E be
a nonempty set. Define ξA = ∑τA−1

k=0 V (�k) and T
(p)
iA = Ei[ξp

A], p ≥ 1. The (p) superscript
will be deleted when p = 1. Then {T (p)

iA , i ∈ E} is the minimal nonnegative solution of the
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equation

xi =
∑
k /∈A

pikxk +
p∑

l=1

(
p

�

)
(−1)l−1V (i)lT

(p−l)
iA , i ∈ E, (2.1)

where
(
p
�

) = p!/�! (p − �)!.
Using Proposition 2.1, the localization theorem (see Theorem A.1 in Appendix A), and the

comparison theorem (see Theorem A.2 in Appendix A), we obtain the following result.

Theorem 2.1. Let V ≥ 0, and let A ⊂ E be a nonempty set.

(i) For any i ∈ A,

∑
k /∈A

pikT
(p)
kA = T

(p)
iA −

p∑
l=1

(
p

�

)
(−1)l−1V (i)lT

(p−l)
iA .

(ii) The sequence {x∗
i , i ∈ E} given by ∗

i = T
(p)
iA , i /∈ A, x∗

i = 0, i ∈ A, is the minimal
nonnegative solution of the equations

xi ≥
∑
k∈E

pikxk +
p∑

l=1

(
p

�

)
(−1)l−1V (i)lT

(p−l)
iA , i /∈ A, xi = 0, i ∈ A,

and the sequence {x∗
i , i ∈ E} satisfies the system with equality.

Proof. Part (i) follows from Proposition 2.1 directly.
Now we prove (ii). From Proposition 2.1 we know that {T (p)

iA , i ∈ E} is the minimal
nonnegative solution of (2.1). For any i ∈ E, define P̃ = (p̃ij ) by

p̃ij =
{

pij , j /∈ A,

0, j ∈ A.

Then {T (p)
iA , i ∈ E} is the minimal nonnegative solution of the equations

xi =
∑
k∈E

p̃ikxk +
p∑

l=1

(
p

�

)
(−1)l−1V (i)lT

(p−l)
iA , i ∈ E.

Let G = E \ A in Theorem A.1 (the localization theorem) in Appendix A. The sequence
{T (p)

iA , i ∈ G} is the minimal nonnegative solution of the equations

xi =
∑
k∈G

pikxk +
p∑

l=1

(
p

�

)
(−1)l−1V (i)lT

(p−l)
iA , i ∈ G.

By the comparison theorem we know that the sequence {T (p)
iA , i /∈ A} is the minimal nonnegative

solution of the equations

xi ≥
∑
k /∈A

pikxk +
p∑

l=1

(
p

�

)
(−1)l−1V (i)lT

(p−l)
iA , i /∈ A,

and satisfies the equation with equality, completing the proof of (ii).
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Remark 2.1. As will be shown later in this section and in the next section, Theorem 2.1
combined with (2.3) below is very useful to bound or calculate the additive functionals of the
first hitting time. The key point of Theorem 2.1 is that the additive functional is the minimal
nonnegative solution of a systems of equations.

The following definition is based on the definition and remark given on pages 778 and 779,
respectively, of [18].

Definition 2.1. Let f ≥ 1 and r ∈ �. The Markov chain �n is said to be (f, r)-ergodic
if, for some (then for all) finite nonempty A, Ei[∑τA−1

k=0 r(k)f (�k)] < ∞ for all i ∈ A, or,

equivalently, for some (then for all) k ∈ E, Ek[∑τk−1
k=0 r(k)f (�k)] < ∞. In particular, it is

called (f, �)-ergodic if r(k) = (k + 1)�, � ∈ N, and f -ergodic if r(k) ≡ 1.

Corollary 2.1. Let r ∈ �. Define r(−1) = 0 and �(r(k)) = r(k) − r(k − 1), k ∈ Z+. The
following statements are equivalent.

(i) For some finite nonempty set A, Ei[∑τA−1
k=0 r(k)f (�k)] < ∞ for all i ∈ A.

(ii) For some finite nonempty set A, there exist a finite constant b and finite nonnegative
functions x and h such that, for all i ∈ E, h(i) ≥ Ei[∑τA−1

k=0 �(r(k))f (�k)] and∑
k∈E

pikxk ≤ xi − h(i) + b 1A(i). (2.2)

Proof. Let V (i) = Ei[∑τA−1
k=0 �(r(k))f (�k)] for any i ∈ E. It follows from the proof of

Theorem 3.5 of [18] that

Ei

[τA−1∑
k=0

V (�k)

]
= Ei

[τA−1∑
k=0

r(k)f (�k)

]
, i ∈ E. (2.3)

First, we prove that (i) implies (ii). Suppose that Ei[∑τA−1
k=0 r(k)f (�k)] < ∞ for all

i ∈ A. Then it follows from (i) of Propositions 3.1 and 3.2 of [18] that, for any finite set B,
Ei[∑τB−1

k=0 r(k)f (�k)] < ∞ for all i ∈ E. Define {xi, i ∈ E} by xi = Ei[∑τA−1
k=0 r(k)f (�k)],

i /∈ A, and xi = 0, i ∈ A. From (2.3) and Theorem 2.1(ii), {xi, i ∈ E} is a finite nonnegative
solution to (2.2) with b = maxi∈A{Ei[∑τA−1

k=0 r(k)f (�k) + Ei[∑τA−1
k=0 �(r(k))f (�k)]} < ∞.

Now we prove that (ii) implies (i). Suppose that {xi, i ∈ E} is a finite nonnegative solution
to (2.2). For i /∈ A, we have

∑
k /∈A pikxk ≤ xi − h(i). From the comparison theorem,

Theorem 2.1(ii), and (2.3), we see that Ei[∑τA−1
k=0 r(k)f (�k)] ≤ xi for all i /∈ A. Hence,

for all i /∈ A, we have

∑
k /∈A

pik Ek

[ τA−1∑
k=0

r(k)f (�k)

]
≤

∑
k /∈A

pikxk ≤ xi + b < ∞,

from which, together with Theorem 2.1(i), we obtain

Ei

[τA−1∑
k=0

r(k)f (�k)

]
=

∑
k /∈A

pik Ek

[τA−1∑
k=0

r(k)f (�k)

]
+ Ei

[τA−1∑
k=0

�(r(k))f (�k)

]
< ∞.

Remark 2.2. From Corollary 2.1 we can obtain some known results. (i) When f ≡ 1, we
easily deduce (iii) of Theorem 3 of [19]. (ii) When {A} = {0} and r(k) = k�, � ∈ N, we
immediately obtain Theorem 1.3 of [14].
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Remark 2.3. When r(k) = (k + 1)�, � ∈ N, the drift condition (2.2) can be changed to
finitely many drift functions. Using Theorem 2.1 and similar arguments to those in the proof
of Corollary 2.1 of [12], we can show that the following statements are equivalent.

(i) For some finite nonempty set A, Ei[∑τA−1
k=0 (k + 1)�f (�k)] < ∞ for all i ∈ A.

(ii) For some nonempty finite set A, there exist �+1 finite nonnegative functions V (n)(i), 0 ≤
n ≤ � + 1, and a constant b such that V (0)(i) ≥ f (i), and, for all m, 0 ≤ m ≤ �,∑

k∈E

pikV
(m+1)(k) ≤ V (m+1)(i) − V (m)(i) + b 1A(i).

This result was first shown in Corollary 1 of [5] using different arguments.

3. Additive functionals for DTBD processes

Let �n be a DTBD process with transition matrix P = (pij ), where

pij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bi, j = i + 1, i ≥ 0,

ai, j = i − 1, i ≥ 1,

1 − b0, j = i, i = 0,

1 − (ai + bi), j = i, i ≥ 1,

0, otherwise.

Define µ0 = 1 and µi = b0b1 · · · bi−1/a1a2 · · · ai, i ≥ 1. Suppose that �n is irreducible and
aperiodic. It is well known that �n is recurrent if and only if

∑∞
i=0 1/µibi = ∞, and that �n

is positive recurrent if and only if
∑∞

i=0 µi < ∞. If �n is positive recurrent then the invariant
probability measure π such that πP = π can be computed as

πi = µi

µ
, µ =

∞∑
i=0

µi. (3.1)

Lemma 3.1. Suppose that �n is a recurrent DTBD process. Let V ≥ 0. Then we have

Ei

[τj −1∑
k=0

V (�k)

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j−1∑
n=i

1

bnµn

n∑
k=0

V (k)µk if i < j,

i−1∑
n=j

1

bnµn

∞∑
k=n+1

V (k)µk if i > j,

1

µi

∞∑
k=0

V (k)µk if i = j.

Proof. Let A = {j} and p = 1. Then Theorem 2.1(ii) becomes

xi =
∑
k∈E

pikxk + V (i), i �= j, xj = 0.
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First, we consider the case when i < j . Substituting the value of pij and using induction
on n gives

xn − xn+1 = an

bn

(xn−1 − xn) + V (n)

bn

= anan−1

bnbn−1
(xn−2 − xn−1) + an

bnbn−1
V (n − 1) + V (n)

bn

= · · ·

= 1

bnµn

n∑
k=0

V (k)µk

for any n, 0 ≤ n ≤ j − 1, where x−1 = 0. Summing over n from i to j − 1 yields

xi =
j−1∑
n=i

1

bnµn

n∑
k=0

V (k)µk, i < j.

Now we consider the case when i > j . Substituting the value of pij and using induction on
n gives, for n ≥ j + 1,

xn+1 − xn = an

bn

(xn − xn−1) − V (n)

bn

= anan−1

bnbn−1
(xn−1 − xn−2) − an

bnbn−1
V (n − 1) − V (n)

bn

= · · ·

= 1

bnµn

(
µjbjxj+1 −

n∑
k=j+1

V (k)µk

)
.

Summing over n from j + 1 to i − 1 yields

xi = xj+1 +
i−1∑

n=j+1

1

bnµn

(
µjbjxj+1 −

n∑
k=j+1

V (k)µk

)

=
i−1∑
n=j

1

bnµn

(
µjbjxj+1 −

n∑
k=j+1

V (k)µk

)
.

Since
∑∞

i=1 1/biµi = ∞, to ensure that xi is nonnegative, we must have

µjbjxj+1 ≥
∞∑

k=j+1

V (k)µk.

Also, considering thatxi is the minimal solution, we further haveµjbjxj+1 = ∑∞
k=j+1 V (k)µk .

Thus, the second assertion is established.
Finally, we consider i = j . Applying Theorem 2.1(i), and using the just proved two

assertions and the fact that ai+1µi+1 = biµi , we have

Ei

[τi−1∑
k=0

V (�k)

]
= bi Ei+1

[τi−1∑
k=0

V (�k)

]
+ ai Ei−1

[τi−1∑
k=0

V (�k)

]
+ V (i) = 1

µi

∞∑
k=0

V (k)µk.
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Remark 3.1. (i) Since
∞∑

j=1

Vjµj = π(V ) − π0V0

µ
,

we know that, for any i ≥ j , Ei[∑τj −1
k=0 V (�k)] < ∞ if and only if µ(V ) < ∞, or, equivalently,

π(V ) < ∞.

(ii) Let f ≡ 1. Then we obtain the expression for Ei[τj ], which is well known in the literature;
see, e.g. [3, Part I, Section 12].

3.1. (f, �)-ergodicity for DTBD processes

Theorem 3.1. Let f ≥ 1, and let �n be an f -ergodic DTBD process. Then �n is (f, �)-ergodic
if and only if

∑∞
j=1 g

(�−1)
j (f )µj < ∞, where

g
(p)
n (f ) =

n−1∑
i=0

1

biµi

∞∑
j=i+1

g
(p−1)
j (f )µj , p, n ∈ N,

and

g(0)
n (f ) = En

[τ0−1∑
k=0

f (�k)

]
=

n−1∑
i=0

1

biµi

∞∑
j=i+1

f (j)µj .

Proof. Define V (p)(i) = Ei[∑τ0−1
k=0 �((k + 1)p)f (�k)] for any 1 ≤ p ≤ �. Using (2.3),

we obtain

Ei

[τ0−1∑
k=0

V (p)(�k)

]
= Ei

[τ0−1∑
k=0

(k + 1)pf (�k)

]
, i ∈ E. (3.2)

Now we consider the lower bound and upper bound on Ei[∑τ0−1
k=0 V (p)(�k)].

On the one hand, using (3.2), Lemma 3.1, and the fact that, for any p, k ∈ N,

�((k + 1)p) = (k + 1)p − kp = p

∫ k+1

k

xp−1 dx ≤ p(k + 1)p−1,

we have, for any n ∈ N,

En

[τ0−1∑
k=0

(k + 1)pf (�k)

]
=

n−1∑
i=0

1

biµi

∞∑
j=i+1

V (p)(j)µj

≤ p

n−1∑
i=0

1

biµi

∞∑
j=i+1

Ej

[τ0−1∑
k=0

(k + 1)p−1f (�k)

]
µj

≤ ppg
(p)
n (f ). (3.3)

On the other hand, we have
(k + 1)p−1k ≥ kp−1k

for any k ∈ Z+ and 1 ≤ p ≤ �, which is equivalent to

�((k + 1)p) = (k + 1)p − kp ≥ (k + 1)p−1. (3.4)
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Using (3.2), (3.4), and Lemma 3.1, we have, for any n ∈ N+,

En

[τ0−1∑
k=0

(k + 1)pf (�k)

]
≥

n−1∑
i=0

1

biµi

∞∑
j=i+1

Ej

[τ0−1∑
k=0

(k + 1)p−1f (�k)

]
µj ≥ g

(p)
n (f ). (3.5)

If follows from (3.3) and (3.5) that, for any n ∈ N+, we have En[∑τ0−1
k=0 (k + 1)pf (�k)] < ∞

if and only if g
(p)
n (f ) < ∞. Using Theorem 2.1(i), we obtain

E0

[τ0−1∑
k=0

(k + 1)�f (�k)

]
= b0 E1

[τ0−1∑
k=0

(k + 1)�f (�k)

]
+ V (�)(0). (3.6)

We are now ready to complete the proof of this theorem. For the sufficiency, if

∞∑
j=1

g
(�−1)
j (f )µj < ∞

then g
(�)
1 (f ) < ∞, and, hence, E1[∑τ0−1

k=0 (k + 1)�f (�k)] < ∞. Owing to the assumption that
the chain �n is f -ergodic (i.e. E0[∑τ0−1

k=0 f (�k)] < ∞), we obtain, by induction,

E0

[τ0−1∑
k=0

(k + 1)�−1f (�k)

]
< ∞,

or, equivalently, V (�)(0) < ∞. By (3.6) we have E0[∑τ0−1
k=0 (k + 1)�f (�k)] < ∞, i.e. the

chain �n is (f, �)-ergodic.
For the necessity, we assume that �n is (f, �)-ergodic, i.e. E0[∑τ0−1

k=0 (k + 1)�f (�k)] < ∞.
From (3.5) and (3.6), we have

E0

[τ0−1∑
k=0

(k + 1)�f (�k)

]
≥ b0 E1

[τ0−1∑
k=0

(k + 1)�f (�k)
] ≥ b0g

(�)
1 (f ).

Hence, g
(�)
1 (f ) < ∞, or, equivalently,

∑∞
j=1 g

(�−1)
j (f )µj < ∞.

Remark 3.2. We expect that Lemma 3.1 and Theorem 3.1 can be extended to a more complex
Markov chain with the lower-Hessenberg stochastic matrix (or single-birth chains), i.e. pij = 0
if j ≥ i + 1, using the notation given in [11, p. 220].

Example 3.1. Let �n be a DTBD process with

ai = 1

2
, bi = 1

2
− α

2i
, ri = α

2i
, i � 1.

It is easy to calculate µn = (1 −α)(1 −α/2) · · · (1 − α/n) ∼ n−α . For two sequence {cn} and
{dn}, the notation cn ∼ dn means that the limit of cn/dn as n → ∞ is a positive number.

(i) Let f (n) = nβ1(log n)β2 , β1, β2 ≥ 0. Then we have g
(p)
n (f ) ∼ n2(p+1)+β1(log n)β2 .

Hence, the chain is (f, �)-ergodic if α > 2� + β1 + 1.

(ii) Let f (n) = eβn, β > 0. Then g
(0)
1 (f ) = ∞ and the chain is not (f, �)-ergodic for any

� ≥ 1.
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Example 3.2. Let �n be a DTBD process with

bi = 1

1 + c
, i ≥ 0, ai = 1

1 + c
c
√

i−√
i−1, i ≥ 1.

Obviously, µi = c−√
i , i ≥ 0. By Theorem 2 of [13], we can easily show that the chain is not

geometrically ergodic. Let β be any number in (1, c) and f (i) = β
√

i , i ≥ 0. It is not hard to
derive

(n + 1)αγ
√

n+1 − nαγ
√

n ∼ nα−1/2γ
√

n

for any α ≥ 0 and positive number γ �= 1, which shows that if γ < 1 then

∞∑
j=n+1

jαγ
√

j ∼ nα+1/2γ
√

j

and if γ > 1 then
n−1∑
j=0

jαγ
√

j ∼ nα+1/2γ
√

j .

Using the above facts and the Stolz–Cesáro theorem, we obtain

g(�)
n (f ) ∼ n�+1β

√
n

for any � ≥ 0. Hence, the chain is (f, �)-ergodic for any � ≥ 0.

3.2. Central limit theorems

The following proposition, which is taken from Chapter 17 of [15], gives a sufficient
condition for the existence for a CLT and an expression of the asymptotic variance. In this
section we set f to be a real-valued function which may be negative.

Proposition 3.1. Suppose that π(|f |) < ∞. If

Ei

[( τi∑
k=0

|f̄ (�k)|
)2]

< ∞ (3.7)

for some (then for any) i ∈ E, then (1.1) holds and the asymptotic variance is given by

σ 2
f = πi Ei

[( τi∑
k=1

f̄ (�k)

)2]
=

∑
n∈E

πn

(
2 En

[ σi∑
k=0

f̄ (�k)

]
f̄ (n) − f̄ 2(n)

)
.

Lemma 3.2. Suppose that π(|f |) < ∞. Then (3.7) holds for the DTBD process if and only if

∞∑
j=1

|f̄ (j)|µj

[j−1∑
n=0

1

bnµn

∞∑
k=n+1

|f̄ (k)|µk − |f̄ (j)|
]

< ∞. (3.8)

Proof. Since π(|f |) < ∞, it follows from Lemma 3.1 that

Ti0 = Ei

[τ0−1∑
k=0

|f̄ (�k)|
]

=
i−1∑
n=0

1

bnµn

∞∑
k=n+1

|f̄ (k)|µk < ∞ for any i ≥ 1
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and T00 = E0[∑τ0−1
k=0 |f̄ (�k)|] < ∞. In Theorem 2.1, let p = 2 and V (i) = |f̄ (i)|. Then

T
(2)
i0 = Ei[(∑τ0

k=0 |f̄ (�k)|)2]. It follows from Theorem 2.1(ii) that the sequence {x∗
i , i ≥ 0}

given by x∗
i = T

(2)
i0 , i ≥ 1, and x∗

0 = 0 is the minimal nonnegative solution to the equations

xi =
∑
k≥1

pikxk + 2|f̄ (i)|(Ti0 − |f̄ (i)|), i ≥ 1, x0 = 0.

From Lemma 3.1 and Remark 3.1, we find that, for any n ≥ 1, T
(2)
n0 < ∞ if and only if (3.8)

holds. From Theorem 2.1(i) we obtain

T
(2)

00 = b0T
(2)

10 + 2|f̄ (0)|T00 − |f̄ (0)|2.
Hence, T

(2)
00 < ∞ if and only if T

(2)
10 < ∞, completing the proof.

Example 3.3. In Example 3.2, let f (i) = β
√

i/2, where β is any number in (1, c). Then
π(f 2) < ∞. It is well known (see, e.g. [10]) that if a Markov chain is reversible and
geometrically ergodic, then the CLT holds for any f such that π(f 2) < ∞. Note that a positive
recurrent DTBD process is reversible. This DTBD process is not geometrically ergodic, but
condition (3.8) can be easily checked. Hence, the CLT holds.

Theorem 3.2. Suppose that π(|f |) < ∞ and that (3.8) holds for the DTBD process. Then the
asymptotic variance is given by

σ 2
f = −π0f̄

2(0) +
∞∑

n=1

πn[2g(0)
n (f̄ )f̄ (n) − f̄ (n)2],

where {πn, n ∈ E} is given by (3.1) and

g(0)
n (f̄ ) =

n−1∑
i=0

1

biµi

∞∑
j=i+1

µj f̄ (j), n ≥ 1.

Proof. It is easy to derive

σ 2
f = −π0f̄

2(0) +
∞∑

n=1

πn

(
2 En

[τ0−1∑
k=0

f̄ (�k)

]
f̄ (n) − f̄ (n)2

)
. (3.9)

We now give the expression for En[∑τ0−1
k=0 f̄ (�k)], where f̄ (�k) may be a negative number.

For a real-valued function h(i), define h+(i) = max{h(i), 0} and h−(i) = max{−h(i), 0}.
Since π(|f |) < ∞, we have π(|f̄ |) < ∞, which implies that π(|f̄+|) < ∞ and π(|f̄−|) < ∞.
From Lemma 3.1 we obtain

En

[τ0−1∑
k=0

f̄+(�k)

]
=

n−1∑
i=0

1

biµi

∞∑
j=i+1

µj f̄+(j)

and

En

[τ0−1∑
k=0

f̄−(�k)

]
=

n−1∑
i=0

1

biµi

∞∑
j=i+1

µj f̄−(j).
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Hence,

En

[τ0−1∑
k=0

f̄ (�k)

]
= En

[τ0−1∑
k=0

f̄+(�k)

]
− En

[τ0−1∑
k=0

f̄−(�k)

]
=

n−1∑
i=0

1

biµi

∞∑
j=i+1

µj f̄ (j).

The assertion follows by substituting the value of En[∑τ0
k=0 f̄ (�k)] into (3.9).

Remark 3.3. The existence of a CLT is related to the (f, �)-ergodicity. Another applicable
sufficient condition for (3.7) is that, for some i ∈ E,

Ei

[( τi∑
k=0

|f (�k)|
)2]

< ∞ and Ei[τ 2
i ] < ∞.

The second part of this condition corresponds to the (1,2)-ergodicity investigated in Section 3.1.

Example 3.4. Let �n be a DTBD process with

bi = b, i ≥ 0, ai = a, i ≥ 1, b < a, a + b = 1.

Let ρ = b/a. Then µi = ρi, i ≥ 0. This chain is geometrically ergodic with invariant
distribution πi = ρi(1 − ρ), i ≥ 0. Let f (i) = i. Then, obviously, (3.8) holds. We now
compute the interesting quantity σ 2

f . By routine calculations we have π(f ) = ρ/(1 − ρ),

En

[τ0−1∑
k=0

f̄ (�k)

]
=

n−1∑
i=0

1

bρi

∞∑
j=i+1

(
j − ρ

1 − ρ

)
ρj = ρn(n + 1)

b(1 − ρ)
,

and, finally,

σ 2
f = − ρ2

1 − ρ
− ρ − ρ2 + ρ3

(1 − ρ)2 + 2ρ2(2ρ + 2)

b(1 − ρ)4 .

Appendix A

To assist the reader, in this appendix we state some known definitions and results about the
theory of the minimal nonnegative solution, which are taken from Chapter 3 of [8].

We consider the following system of nonnegative linear equations:

xi =
∑
k∈E

cikxk + bi, i ∈ E, (A.1)

where 0 ≤ cik < ∞ and 0 ≤ bi ≤ ∞ for any i, k ∈ E.

Definition A.1. The solution {x∗
i , i ∈ E} of (A.1) such that 0 ≤ x∗

i ≤ ∞ is called the minimal
nonnegative solution if, for any solution {xi, i ∈ E} of (A.1) such that 0 ≤ xi ≤ ∞, we have
x∗
i ≤ xi, i ∈ E.

It is known that the minimal nonnegative solution of (A.1) exists and is unique. Moreover,
x∗
i = limn→∞ x

(n)
i , where {x(n)

i , i ∈ E} is given recursively by

x
(0)
i ≡ 0, x

(n+1)
i =

∑
k∈E

cikx
(n)
k + bi, n ≥ 0.
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In the following theorems, the sequence {x∗
i , i ∈ E} denotes the minimal nonnegative

solution of (A.1). The first theorem, called the localization theorem, is Theorem 3.4.1 of [8].
The second theorem, called the comparison theorem, is Theorem 3.3.1 of [8]. The generalized
localization theorem and comparison theorem can be found in Chapter 2 of [2].

Theorem A.1. (Localization theorem.) Let G be a nonempty set of E. The minimal non-
negative solution of the equations

xi =
∑
k∈G

cikxk +
( ∑

k∈E\G
cikx

∗
k + bi

)
, i ∈ G,

is x̃∗
i = x∗

i , i ∈ G.

Definition A.2. The inequality system

Xi ≥
∑
k∈E

CikXk + Bi, i ∈ E, (A.2)

is called a major system of (A.1) if cik ≤ Cik and bi ≤ Bi for any i, k ∈ E.

Theorem A.2. (Comparison theorem.) Let {Xi, i ∈ E} be any solution of the major system
(A.2). Then x∗

i ≤ Xi for any i ∈ E.
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