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ON THE
L? COHOMOLOGY OF COMPLEX SPACES II

TAKEO OHSAWA

Introduction

This is a continuation of the author’s previous work [O-6], in which we have
settled a conjecture of Cheeger-Goresky-MacPherson [C-G-M] by proving that the
L? cohomology group of a compact (reduced) complex space is canonically
isomorphic to its (middle) intersection cohomology group. Our aim here is, in addi-
tion to that result, to extend further the classical L? harmonic theory to complex
spaces with arbitrary singularities by establishing the following.

TueoreM 1. Let X be a compact Kihler space and H{y(X) its v-th L cohomolo-
gy group. Then every element in Hly (X) is uniquely representable as a sum 2 u®”?
where u™? are L? harmonic forms of type (b, q). In particular prazy

HLH(X) = @& HHL(X).
pta=r
Heve HY4(X) denotes the subspace of HE(X) consisting of the elements which are
representable by (p, q) -forms. Moveover the complex conjugate of HS (X)) is equal to
HE.(X).

Combined with our previous result, Theorem 1 implies that the intersection
cohomology group of a compact Kahler space admits a canonical Hodge structure.
Thus we are left with a question whether or not our (L2-) Hodge structure coin-
cides with another one introduced by M. Saito [S]. It follows from the works of
Zucker [Z] and the author [O-5] that they coincide if X admits only isolated sing-
ularities.

As for the proof of Theorem 1, a crucial step is in establishing the existence
of a family of complete Kahler metrics on X’ := X — Sing X converging to the
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prescribed one on X’ such that the L? cohomology groups with respect to them are
canonically isomorphic to the intersection cohomology group of X. Since one has
an axiomatic sheaf theoretic definition of the intersection cohomology, our task is
to show the nullity of certain L? cohomology, while our complete metrics will be
constructed by utilizing a “good” desingularization of X whose existence is
assured in general by the celebrated theory of Hironaka. The analytic part of the
proof of this sort of vanishing theorem is already contained in our earlier work
[O-5], where we proved Theorem 1 under the restriction that X admits only iso-
lated singularities. In order to treat the general case by an obvious induction proc-
edure, we have first to establish an analogue of Leray’s theory on the spectral
sequences in the L? context. We need this work because the theory of equisingular
stratification has not developed well enough to fit our specific purpose here. Thus
our effort will be concentrated to clarify This point (see the splitting lemma in
§ 3). The rest of the proof will be only sketchy because they are essentially the
same argument which we have been repeated in [O-1] through [O-6].

§ 1. Generalized Saper metrics

By generalizing Saper’s construction in [S-1, 2] we shall introduce a class
of Hermitian metrics on the nonsingular parts of complex spaces with arbitrary
singularities.

Let X be a (reduced and paracompact) complex space of dimension # and let
X’ C X be the set of regular points. A Hermitian metric of X is by definition a
C* Hermitian metric on X’ which is the pull-back of some C* Hermitian metric
around each point of X via a local holomorphic embedding into C¥ (N > 1). We
shall denote a Hermitian metric of X by ds%. By a desingularization of X we shall
mean a complex manifold X together with a proper holomorphic map @ : X—-X
such that @ | @ (X") is one-to-one and Eg:= @ *(Sing X) is a divisor of simple
normal crossings. Let ¢ € Eg be a point of multiplicity k. Then we shall denote
by 2i,...,2 a part of a holomorphic local coordinate around ¢ such that z; * - * 2
= 0 is (set theoretically) a local defining equation of the exceptional set Eg. Let
ds® be a Hermitian metric on X’. We say that ds? satisfies Saper’s condition with
respect to a desingularization X— X if @*ds? is quasi-isometrically equivalent to

~ ds? dz;dz;
@*dsy + + 2 —
X —Ioglzl'“"zkl i=1|2i|2(log'21""'Zkl)z

around each point ¢ € Eg, where d$? is a Hermitian metric on X and k is the mul-
tiplicity of Eg at q.
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We shall say that a desingularization X— X is good if @ is locally (with
respect to X) a projective morphism and there exists a complex analytic
stratification X, = XD X, =Sing XD+ - DX, D X_; = 0 such that, for
each X, and X € X,\X,_; there exist neighbourhoods U 2 z and V 3z in X and
Xa \ X,-1, respectively, with a holomorphic retraction f : U — V such that
fe@|@*(U) is a holomorphic submersion onto V.

DerINITION. A Hermitian metric on X’ is called a generalized Saper metric if
it satisfies Saper’s condition with respect to some good desingularization.

ProrosITION 1.1. Let X’ © X be as above. Then X' adwmits a generalized Saper
metric.

Proof. Given a complex space X, by Hironaka’s theory one can always find a
good desingularization. Hence by a patching argument using a nonnegative C®
partition of unity we obtain a generalized Saper metric on X’.

From the above construction it is not clear whether a manifold equipped with
a generalized Saper metric should enjoy good properties at all. Thus we must be-
gin with describing a property of generalized Saper metrics.

Let 0 (resp. 0) denote the complex exterior derivative of type (1,0) (resp.
(0,1)). Given a C* function ¢ on a complex manifold, we shall often identify 65¢
with the complex Hessian of ¢ by an abuse of notation.

ProposiTioN 1.2. Let X be as above. Then there exist a Hermitian metvic dsé of
X and a real-valued C* function ¢ on X’ such that dsi + 00 ¢ is a generalized
Saper metric for which the length of 0¢ is a bounded function on K X’ for every
compact subset K < X,

Proof. Let X—> X be any good desingularization. Since @ is locally projec-
tive, for each point x € X there exist a neighbourhood U 2 z, positive line bun-
dles Li,...,Lm over U= @ (U) together with holomorphic sections Si,...,Sm
vanishing on U N Ejz such that, for any ¢ € U N Ea, of multiplicity &,

aﬁ(i‘i —log(—log | s:]))

_ dsh 44 dzidz:
—_ o e o 2 2
IOglzl zk| ;=1|z,~|(loglzl~-'--zk|)
around ¢ (and outside E3), where A ~ B means that ¢'A < B <¢B for some
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positive number ¢. By patching the functions — X log (log| s;|) by a partition of
unity one obtains a function ¢ on X’ such that pods% + 80¢, for some positive C*
function p on X, is a Hermitian metric on X’ for which | 8¢ | satisfies the require-
ment. For detailed estimation of 0¢ the reader is referred to a computation in
[0-2, 81].

Let us summarize the above mentioned local construction of a generalized
Saper metric in a more convenient form.

ProposITION 1.3. Let ds® be a generalized Saper metric on X' associated to a
good desingularization X —> X. Then for each pomt x € X one can find a neigh-
bourhood U D x and a finite number of nonnegative C* functions a; ¢ = 1,...,m)
om @ Y(U) such that
1) 00 log a; extends to a C* form on @~ (U).

2) log a; is plurisubharmonic for every 1.

3) ds? ~ @*dsi + 3 96(—log(log ap) on &2 (U N X7).
i=1

Remark. A crucial point in the asymptotics of a generalized Saper metric ds?
is that it behaves locally like Poincare metrics on the product of the discs and the
punctured discs up to the logarithmic factor. By this property the L? cohomology
classes with proper support conditions on @ ~Y(U N X’) are “nearly” zero
(cf. [0-5)). Additional properties of ds? which lead to the precise L? cohomology
vanishing are summarized as follows. The first one is that it admits a potential of
bounded gradient @ ~'(U N X’). The second one is more geometric. Namely, in
terms of the above mentioned submersion f ° @: (@ X (U), @ *(V)) — V attached
to £ € Xa\ Xe-1, we shall use later that @*ds? is quasi-isometrically equivalent to
a bundle-like metric on @ (U N X’) with respect to a local C* trivialization
induced from that of the fibration f ° @. Since this last property is clear from the
asymptotics of ds? we shall not give any proof here.

§2. L? cohomology with boundary conditions

Let (N, ds}) be a Hermitian manifold of pure dimension # and let £ C N be
a domain with C* smooth boundary. We denote by Co(2) (resp. Co(£2)) the set of
compactly supported complex valued C* differential forms on 2 (resp. on Q) and
by C{(R) (resp. C{(2)) the subset of Co(f2) (resp. Co(2)) consisting of the
r-forms. Given a real-valued C* function @ on 2 we put
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luls = [ eoluldv  for ue Co@),

where | % | denotes the pointwise norm of # and dV the volume form of N with
respect to ds¥. The inner product associated to | [lo will be denoted by (, ). The
weight function @ will not be referred to if @ = 0. Let L"(2) denote the Hilbert
space defined as the completion of C§(£2) with respect to || [o. We are going to
define the L? cohomology groups of £ with certain restrictions on their boundary
values.

Let d be the exterior derivative operating on the space of currents on £, and
let dp be the formal adjoint of d with respect to (, )s. By using the Hodge’s star
operator % one has 0o = — ¢ % d % ¢~%. We put do = d| Co(R) and 8o, =
00| Co(R2). These operators will be regarded as linear operators on Lo() : =

2n
@ L%(£) which have a dense domain Co(£2). Then we put dmax = (Js0)5 and
r=0

domax = (do)’s. Here ()% denotes the Hilbert space adjoint with respect to (, ).
Similarly we put dmin = (0o,max)s and domin = (dmax)s. Then the 7-th L? cohomol-
ogy group of £ with respect to ds and @ is defined as

H{y o(82) 1= Ker dmax N L5(2) /Im dax N L5(2).

Elements of Ker dmax N Ker (dmax) 5 will be called harmonic forms. Similarly we
put

Hpy00(2) := Ker dpin N L3(2) /Im dmin N Lp(£2).
Furthermore we put dmia := @max | dimix (Dom dmin) and
Hbom(2) := Ker dmin N L3(2) /Im dmia N L%(2).
Since dmin ° dmia = 0, Hb),0m(£2) is nothing but the image of H o0 (2) in
HEy o (82) by the natural inclusion homomorphism.
ProrosiTiON 2.1.  In the above notation we have
Dom(dmin) ¥ N Co(2) = {u € Co(2); u| 02 = % e®dv for some v € Co(02)}.
Here the restriction | 08 is as a differential form on 0.

Proof is omitted because it is a direct computation.
The following is also straightforward.
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PRrOPOSITION 2.2. Dom(dmia) ¥ o N Co(R2) is dense in Dom (dmia) s with respect
to the graph norm of (dmia) 5. The same is true for dmn.

From Hahn-Banach’s theorem we have

ProPoSITION 2.3.  In the following statements (1) implies (2) for any integer v and
any positive number C.

(1) C (| dmin e [lp + |(dmia)§ u 13) = [ [l3
for all % € Dom dan N Dom (dma)¥ N L5 ().

(2) For any u € L'y(2) there exist v € Dom dmia N L5 (2)
and w € Dom (dmin) § N L™ (02) such that

# = dmav + @mn)gw and Cllull = (v} + | wlf).

§ 3. A splitting lemma

Given a Riemannian submersion of (N, ds%) onto some differentiable man-
ifold, say M, one can naturally expect to compute the L? cohomology group of N
from that of the fibers and certain local systems on M just as one deals with
Leray’s spectral sequences in topology or complex analytic geometry. We shall
present here a basic lemma which justifies such a procedure in our problem.

From now on we assume that (N, ds}) is a complete Riemannian manifold,
f : (N, dsk) — M a Riemannian submersion and 2 C N is an open subset with
C> smooth boundary such that f| 98 is also a submersion onto M. We shall
assume moreover that for any point *x € M there exists a neighbourhood
B 3 x and a C* diffeomorphism &€ : B X (f"1(x) N Q) — f~Y(B) N 2 such that
f ° € is the projection to the first factor. Let us fix such x, B and €. For simplic-
ity we put F=f"(x) N 2 and E = B X F. By an abuse of notation we put
E:= B X F, which is naturally identified with f"2(B) N £. Let p, (resp. ps) be
the projection from E onto B (resp. onto F). We shall identity Co(B) (resp. Co(F))
with p¥Co(B) (resp. with pFCo(F)). We assume that the metric £*dsf is of the
form p¥dsg + 2.5, where 25 is a positive semidefinite Hermitian form on E which
is smoothly extendable to E and annihilates Ker p,. The Hodge's star operator * p
with respect to 2, which is well-defined on p~*(y) for each y € B, shall be
naturally extended by linearity as an operator on Co(E). We shall denote by * g
(resp. by % p) the Hodge's star operator with respect to £*ds# (resp. dsZ). Then we
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note that
(4) ¥p(u A v) = (— 1)% oy N\ %z

for all # € Co(B) and v € Co(F), since f is a Riemannian submersion. The La-
placian dd + dd on N will be denoted simply by 4, which will also stand for the
Laplacian on E.

Let us put

inflr; w € Co(E) A C{(F)} if w € Co(E) \ {0}

degr =19, i w=o.

Then we have the following.
LeMMA 3.1. For any w € Co(E), degpd w > degrw.

Proof. Clearly it suffices to show the inequality for those w of the form
# A v with # € CJ(B) and v € C§(F). For such a form the result follows from
the fact that

degr(0(u N dv)) = s
degr(0du N V) + (— 1) 'du N\ *pd*pv) =5

and
degr(dd(u AN v) + (— 1)’du N\ *pd*pv) =s.

Let ¢ be any C* real-valued function on B and let @ = p¥¢. Then the
weighted Laplacian 4y := d0gp + 0¢d has the same property as above. Namely we
have

(5) degr Ao w = degrw  for any w € Co(E).
For any w € C{(E), one has a canonical decomposition w = 2%_ ws such that

degrws = s and degr ¥ r wo > degrkp wy >+ > degr¥Fr w,.

PROPOSITION 3.2. Under the notation as above, if w € C{(E) N Dom dmin N
Dom (dmin)§ then dr * r ws | 0E = O for all 5. Heve dr denotes the exterior devivative
along the fiber divection.

Proof is a staightforward computation and may well be omitted.
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Using the above mentioned computations we shall prove the following basic
lemma.
SpLITTING LEMMA.  Under the above notation
14
lawls + I dow s = ) (I drws I + || Orus 13)
§=

for any w € C{(E) N Dom dmin. Here Or:= —%pdr¥r.

Proof. Since w € Co(E) N Dom dumin,
) (Aow, wo =l dwls + 00wl + [ e®5ow A ¥,
We note that
(6) faE e 0ow N¥gw = SE;I) fw e™%0o ws N *¥ g ws

since w € Dom dmin.
By Lemma 3.1 we have

(7) (Bow, w)o = gmwws, w5)o

since (dow, w)e = lim (Aow, ovw) ¢ for cut off functions oy converging to one.
Y00

Thus we obtain from (5), (6) and (7)
|4
lawls + |l dowls = ZE) (I dws 15 + || domws 113)
s=
from which the desired inequality follows immediately.
Let us choose B in advance so that one has a local C* frame of T*M, say

B1,...,0:m over B. For each w € C{(E) with the canonical splitting w = X wq as
above we put

wS = Zl 01 /\ wsI,

where I runs through the increasing multi-indices of length » —s, 6 = 0,
A+ A b, for I=(iy,...,irs) and w! € C{E) @ Co(F). If one has w €
C¢ (E) N Dom(dmia), it is clear that w| p5'(y) € Dom(dr | p7i(y))* for all y €
B. Therefore the splitting lemma shows in particular the following.

PrOPOSITION 3.3.  Under the above situation, suppose moreover that there exists a
positive number C such that for every y € B and v € Z, the estimate
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holds for all u € Dom dmin N Dom (dmia)s N L'(f*(y) N 2), where the operators
Amin and dmia vepresent those on f~(y) relative to dsk | = (y). Then one has for every
reZ,

| diatw I + 1| (dmi)§ wlp = Cllw

for all w € Dom dmin N Dom (dmia)3 N L"(f~2(B) N Q), provided that the metric
dsk | f~Y(B) is replaced by a complete metric of the form dsy + f*ds® for some com-
plete metric ds? on B.

Given a Riemannian manifold (7', ds%) equipped with a real valued C* func-
tion @, we say for convenience that the triple (T, ds%, @) is L*-acyclic with mag-
nitude C if

lols < Cl dminte 3 + | (dimia) *o [3)

for all # € Dom dmin N Dom (dmia)s. We say simply that (T, ds%, @) is
L2-acyclic if Ho.om(T) = 0 for all 7. Let us restate Proposition 3.3 by using this
terminology.

PropositioN 3.3". Let (B, dsg) be a complete Riemannian manifold, let £y be a
smoothly bounded domain in a parvacompact C® wmanifold F, let N=B X F, let
dsk = p*dsi + 25 be a bundle-like and complete metric on N with respect to the pro-
jection p: N— B, and let 2, = {y} X Q0. Suppose that (2,, 2r | 2,) is L*-acyclic
with magnitude C for all y € B. Then for any C* real valued function ¢ on B, (N,
dsk, p*¢) is also L*-acyclic with magnitude C.

84. The main results

_ Let X be a compact complex space of pure dimension # and let X", ds? and X
—— X be as in Proposition 1.3. Let {X,} be a stratification associated to @, let &
€ X, \ X,-: be any point for some «, and let U and V be neighbourhoods of x
in X and X, \ X,_i, respectively, such that there exists a holomorphic retraction
f :U— Vsuch that p:= f>@| @ *(U) is a holomorphic submersion. For any
open set 2 C Xwe put 2 = 2 N & 1(X).

PrOPOSITION 4.1. There exist a neighbourhood system {2}5=1 of A in @~ *(U)
such that for amy complete metvic dsy on V and any C* function ¢ :V—R
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(21, ds?| 24, p*¢) is L? acyclic.

Proof. Let us proceed by induction on #. If # = 0, there is nothing to prove.
Suppose that the assertion is true if # < k. Then, from the remark at the end of
§1 and Proposition 3.3, the result is true for # = k if @ > 0. If @ = 0, the result
is contained in the author’s previous work (cf. [0-6] Theorem 3.5).

In virtue of the sheaf theoretic characterization of the intersection cohomology
group of X (cf. [C-G-M]), Proposition 4.1 implies the followlng.

THEOREM 4.2. With vespect to any generalized Saper metric ds® on X', we have
HiH(X) = IH'(X) for all 7.
Herve IH"(X) denotes the r-th intersection cohomology group of X.

Let us denote by H& (X) the »-th L? cohomology group of X’ with respect to
a Hermitian metric ds? of X. Then we have H&(X) = IH”(X) for all # by
[O-6]. Hence, applying Proposition 4.1 to ds?:= ds®*+eds® for ¢ € (0,1], noting
that the magnitude of L?-acyclicity remains bounded as ¢ — 0, we obtain the fol-
lowing.

ProrosITION 4.3.  Let {0} 5=1 be a C* family of compactly supported cut-off func-
tions uniformly converging to 1 on each compact subset of X'. Then, for any harmonic
form b on X’ with respect to ds? the harmownic parts of prh with respect to ds? converge
to h on every compact subset of X' as e — 0 and k— oo.

In case ds% is Kihlerian, one can choose ds? also to be a Kahler metric.
Therefore, from Theorem 4.2 we obtain

THEOREM 4.4, If dsk is Kdhlerian,
HH(X) = & HEW(X)
and e
HE (X)) = HE (X))

with respect to any generalized Saper metric on X'

Combining Theorem 4.4 with Proposition 4.3 we obtain Theorem 1.
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