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On Universal Schauder Bases in
Non-Archimedean Fréchet Spaces

Wiesław Śliwa

Abstract. It is known that any non-archimedean Fréchet space of countable type is isomorphic to a

subspace of cN

0 . In this paper we prove that there exists a non-archimedean Fréchet space U with a

basis (un) such that any basis (xn) in a non-archimedean Fréchet space X is equivalent to a subbasis

(ukn
) of (un). Then any non-archimedean Fréchet space with a basis is isomorphic to a complemented

subspace of U . In contrast to this, we show that a non-archimedean Fréchet space X with a basis (xn)

is isomorphic to a complemented subspace of cN

0 if and only if X is isomorphic to one of the following

spaces: c0, c0 × K
N, K

N, cN

0 . Finally, we prove that there is no nuclear non-archimedean Fréchet space

H with a basis (hn) such that any basis (yn) in a nuclear non-archimedean Fréchet space Y is equivalent

to a subbasis (hkn
) of (hn).

Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field K

which is complete under the metric induced by the valuation | · | : K → [0,∞). For

fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we refer to

[5], [7] and [6]. Bases in locally convex spaces are studied in [1]–[4].

Any infinite-dimensional Banach space E of countable type is isomorphic to the

Banach space c0 of all sequences in K converging to zero (with the sup-norm ‖·‖)([6],

Theorem 3.16), so E has a basis which is equivalent to the coordinate basis in c0.

There exist Fréchet spaces of countable type without bases (see [9, Theorem 3]).

However, any infinite-dimensional Fréchet space E contains a closed subspace X with

a basis (xn) (see [8, Theorem 2]). Moreover, any infinite-dimensional Fréchet space

G of finite type is isomorphic to the Fréchet space K
N of all sequences in K with the

topology of pointwise convergence (see [3, Theorem 3.5]), so G has a basis which is

equivalent to the coordinate basis in K
N.

Let F be the family of all bases in Fréchet spaces and let F0 ⊂ F. A basis (un) is

universal (respectively quasi-universal) for F0 if (un) ∈ F0 and any basis (xn) ∈ F0 is

equivalent (respectively quasi-equivalent) to a subbasis (ukn
) of (un).

In this paper we study the existence and the uniqueness of universal bases for some

important subfamilies of F.

First, we show that there exists a universal basis for the family Fb of all bases in Ba-

nach spaces and any two universal bases for Fb are permutatively equivalent (Propo-

sition 1).
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Next, we prove that there is a universal basis for the family Fc of all bases in Fréchet

spaces with continuous norms and any two universal bases for Fc are permutatively

equivalent (Theorem 2). A similar result we also show for the family F (Theorem 6).

It is known that the Fréchet space cN

0 is universal for the family of all Fréchet spaces

of countable type, that is, cN

0 is of countable type and any Fréchet space of countable

type is isomorphic to a subspace of cN

0 (see [3, Remark 3.6]). We prove that a Fréchet

space E with a basis (xn) is isomorphic to a complemented subspace of cN

0 if and only

if E is isomorphic to one of the following spaces: c0, c0 × K
N, K

N, cN

0 (Theorem 7).

In contrast to this, if U is a Fréchet space with a basis which is universal for F, then

any Fréchet space with a basis is isomorphic to a complemented subspace of U . It

is unknown whether there exists a Fréchet space F of countable type such that any

Fréchet space of countable type is isomorphic to a complemented subspace of F. By

Remark 9 there is a Fréchet space X of countable type that is not isomorphic to any

complemented subspace of a Fréchet space with a basis.

Finally, we prove that there exists no quasi-universal basis for the family Fn of all

bases in nuclear Fréchet spaces or for the family Fnc of all bases in nuclear Fréchet

spaces with continuous norms (Theorem 10). In particular, there is no universal

basis for Fn or Fnc.

Preliminaries

We will denote by N, Z, Q and R the sets of all positive integers, all integers, all

rational numbers and all real numbers, respectively.

The linear span of a subset A of a linear space E is denoted by lin A.

Let E, F be locally convex spaces. A map T : E → F is called a linear homeomor-

phism if T is linear, one-to-one, surjective and the maps T, T−1 are continuous. E is

isomorphic to F (E ' F) if there exists a linear homeomorphism T : E → F.

A Fréchet space is a metrizable complete lcs. A Banach space is a normable Fréchet

space. Every n-dimensional lcs is isomorphic to the Banach space K
n.

Let (xn) be a sequence in a Fréchet space E. The series
∑∞

n=1 xn is convergent in E

if and only if lim xn = 0.

Let (xn) and (yn) be sequences in locally convex spaces E and F, respectively. We

say that:

(xn) is equivalent to (yn) if there is a linear homeomorphism T : lin(xn) →
lin(yn) such that Txn = yn for all n ∈ N; (xn) is permutatively equivalent to

(yn) if (xn) is equivalent to a permutation (yπ(n)) of (yn); (xn) is semi equivalent

to (yn) if (xn) is equivalent to (αn yn) for some (αn) ⊂ (K \ {0}); (xn) is quasi-

equivalent to (yn) if (xn) is semi equivalent to a permutation (yπ(n)) of (yn).

A sequence (xn) in a Fréchet space E is equivalent to a sequence (yn) in a Fréchet

space F if and only if there is a linear homeomorphism T between the closed linear

spans of (xn) and (yn) such that Txn = yn, n ∈ N.

A sequence (xn) in a lcs E is a basis in E if each x ∈ E can be written uniquely as

x =

∑∞

n=1 αnxn with (αn) ⊂ K. If additionally the coefficient functionals fn : E → K,

x → αn (n ∈ N) are continuous, then (xn) is a Schauder basis in E.

A subsequence (xkn
) of a basis (xn) in a lcs E is a subbasis of (xn).
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As in the real or complex case any basis in a Fréchet space is a Schauder basis (see

[4, Corollary 4.2]).

By a seminorm on a linear space E we mean a function p : E → [0,∞) such that

p(αx) = |α|p(x) for all α ∈ K, x ∈ E and p(x + y) ≤ max{p(x), p(y)} for all

x, y ∈ E. A seminorm p on E is a norm if ker p := {x ∈ E : p(x) = 0} = {0}.

Two norms p, q on a linear space E are equivalent if there exist positive numbers

a, b such that ap(x) ≤ q(x) ≤ bp(x) for each x ∈ E. Every two norms on a finite-

dimensional linear space are equivalent.

The set of all continuous seminorms on a metrizable lcs E is denoted by P(E). A

non-decreasing sequence (pk) ⊂ P(E) is a base in P(E) if for every p ∈ P(E) there

exists k ∈ N with p ≤ pk. A sequence (pk) of norms on E is a base of norms in P(E)

if it is a base in P(E).

Any metrizable lcs E possesses a base (pk) in P(E). Every metrizable lcs E with a

continuous norm has a base of norms (pk) in P(E).

A metrizable lcs E is of finite type if dim(E/ ker p) < ∞ for any p ∈ P(E), and of

countable type if E contains a linearly dense countable set.

Let p be a seminorm on a linear space E. A sequence (xn) ⊂ E is 1-orthogonal with

respect to p if p(
∑n

i=1 αixi) = max1≤i≤n p(αixi) for all n ∈ N, α1, . . . , αn ∈ K.

A sequence (xn) in a metrizable lcs E is 1-orthogonal with respect to (pk) ⊂ P(E) if

(xn) is 1-orthogonal with respect to pk for any k ∈ N.

A sequence (xn) in a metrizable lcs E is orthogonal if it is 1-orthogonal with respect

to a base (pk) in P(E). (In [6] a sequence (xn) in a normed space (E, ||| · |||) is called

orthogonal if it is 1-orthogonal with respect to the norm ||| · |||.)

A linearly dense orthogonal sequence of non-zero elements in a metrizable lcs E is

an orthogonal basis in E.

Every orthogonal basis in a metrizable lcs E is a Schauder basis in E (see [3, Propo-

sition 1.4]) and every Schauder basis in a Fréchet space F is an orthogonal basis in F

(see [3, Proposition 1.7]).

Let B = (bk,n) be an infinite real matrix such that ∀k, n ∈ N : 0 < bk,n ≤ bk+1,n.

The space K(B) = {(αn) ⊂ K : limn |αn|bk,n = 0 for all k ∈ N} with the base of

norms (pk): pk

(

(αn)
)

= k maxn |αn|bk,n, k ∈ N, is called the Köthe space associated

with the matrix B. K(B) is a Fréchet space and the sequence (en) of coordinate vectors

forms a basis in it (see [2, Proposition 2.2]). The coordinate basis (en) is 1-orthogonal

with respect to the base of norms (pk).

Let E be a Fréchet space with a Schauder basis (xn) which is 1-orthogonal with

respect to a base of norms (pk) in P(E). Then E is nuclear if and only if

∀k ∈ N ∃m > k : lim
n

[pk(xn)/pm(xn)] = 0

(see [2, Propositions 2.4 and 3.5]).

Results

We start with the following proposition.
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Proposition 1 There exists a universal basis (wn) for the family Fb of all bases in Ba-

nach spaces. A basis (xn) ∈ Fb is universal for Fb if and only if it is permutatively

equivalent to (wn).

Proof It is easy to check that an orthogonal sequence (xn) in a Banach space

(X, ||| · |||X ) is equivalent to an orthogonal sequence (yn) in a Banach space (Y, ||| · |||Y )

if and only if there exists a number A ≥ 1 such that

∀n ∈ N : A−1|||xn|||X ≤ |||yn|||Y ≤ A|||xn|||X .

Let {Nt : t ∈ Z} be a family of pairwise disjoint infinite subsets of N such that
⋃

{Nt : t ∈ Z} = N. Let α ∈ K with |α| > 1. Denote by (en) the coordinate basis in

c0. Put wn = αt en for all n ∈ Nt , t ∈ Z. Clearly, (wn) is a basis in c0.

Let π be a permutation of N and let (yn) be a basis in a Banach space (Y, ||| · |||).

We can choose an increasing sequence (kn) ⊂ N such that

∀n ∈ N ∀t ∈ Z : [kn ∈ π−1(Nt ) ⇔ |α|t ≤ |||yn||| < |α|t+1].

Then ∀n ∈ N : ‖wπ(kn)‖ ≤ |||yn||| < |α| ‖wπ(kn)‖. It follows that (yn) is equivalent to

(wπ(kn)). Thus for any permutation π of N the basis (wπ(n)) in c0 is universal for Fb.

Hence any basis (xn) ∈ Fb which is permutatively equivalent to (wn) is universal for

Fb.

Now, let us assume that a basis (xn) in a Banach space (X, ||| · |||) is universal for Fb.

Then the basis (wn) is equivalent to a subbasis (xsn
) of (xn). Thus there exists t0 ∈ N

such that

∀n ∈ N : |α|−t0‖wn‖ ≤ |||xsn
||| < |α|t0‖wn‖.

Hence ∀t ∈ Z ∀n ∈ Nt : |α|t−t0 ≤ |||xsn
||| < |α|t+t0 . Therefore for any t ∈ Z the set

Mt = {n ∈ N : |α|2t0t ≤ |||xn||| < |α|2t0(t+1)} is infinite. Let π be a permutation of N

such that

π(Mt) = {n ∈ N : |α|2t0t ≤ ‖wn‖ < |α|2t0(t+1)}, t ∈ Z.

Then ∀n ∈ N : |α|−2t0 |||xn||| < ‖wπ(n)‖ < |α|2t0 |||xn|||, so (xn) is equivalent to (wπ(n)).

Thus (xn) is permutatively equivalent to (wn).

Now, we prove the following.

Theorem 2 There exists a universal basis (vn) for the family Fc of all bases in Fréchet

spaces with continuous norms. A basis (xn) ∈ Fc is universal (respectively quasi-

universal) for Fc if and only if (xn) is permutatively equivalent (respectively quasi-

equivalent) to (vn).

Proof For any m ∈ N the set Am = {(x1, . . . , xm) ∈ R
m : 0 = x0 < · · · < xm}

is open in R
m. Moreover,

⋃∞

m=1 Am ∩ Qm
= {dn : n ∈ N} for some sequence

(dn). Assume that dn ∈ Qm(n), n ∈ N. For every n ∈ N there exists an increasing

sequence (b0
k,n)∞k=1 ⊂ Q such that (b0

1,n, . . . , b0
m(n),n) = dn. Put B = (b0

k,n). Let
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(vn) be the coordinate basis in the Köthe space V = K(B). For any m ∈ N the set

Dm = {(b0
1,n, . . . , b0

m,n) : n ∈ N} is dense in Am, since Dm = Am ∩ Qm.

Let F be a Fréchet space with a continuous norm and with a basis (yn). Then (yn)

is 1-orthogonal with respect to a base of norms (pk) in P(F). Put bk,n = pk(yn) for

k, n ∈ N. For every m ∈ N the set Sm = Am ∩
∏m

k=1(bk,m, 2bk,m) is open in Am.

Moreover, Sm 6= ∅, since (tb1,m, . . . , tmbm,m) ∈ Sm for any t ∈ (1, 21/(m+1)). Hence

Dm ∩ Sm is a dense subset of Sm for all m ∈ N.

Let π be a permutation of N (and (cn) ⊂ N). Then there exists an increasing

sequence (kn) ⊂ N (with kn+1 > ckn
, n ∈ N) such that (b0

1,π(kn), . . . , b0
n,π(kn)) ∈ Sn,

n ∈ N.

Then ∀n ∈ N ∀1 ≤ i ≤ n : bi,n < b0
i,π(kn) < 2bi,n. Hence we get a j :=

supn(b j,n/b0
j,π(kn)) < ∞ and b j := supn(b0

j,π(kn)/b j,n) < ∞ for any j ∈ N.

It follows that the basis (yn) is equivalent to the subbasis (vπ(kn)) of (vπ(n)). Indeed,

let T : lin(yn) → lin(vπ(kn)) be a linear map with Tyn = vπ(kn), n ∈ N. Clearly, T is a

bijection. Let (q j) be the standard base of norms in P(V ). Let j ∈ N and y ∈ lin(yn).

Then y =

∑m
i=1 αi yi for some m ∈ N, α1, . . . , αm ∈ K. We have

p j(y) = max
1≤i≤m

|αi |p j(yi) ≤ a j max
1≤i≤m

|αi |q j(vπ(ki )) = a jq j(Ty),

q j(Ty) = max
1≤i≤m

|αi |q j(vπ(ki )) ≤ b j max
1≤i≤m

|αi |p j(yi) = b j p j(y).

Therefore T is a linear homeomorphism.

Thus for any permutation π of N the basis (vπ(n)) in V is universal for Fc. Hence

any basis (xn) ∈ Fc which is permutatively equivalent (respectively quasi-equivalent)

to (vn) is universal (respectively quasi-universal) for Fc.

Now, let us assume that a basis (xn) in a Fréchet space X with a continuous norm

is universal for Fc. We shall show that (xn) is permutatively equivalent to (vn).

Suppose that (xn) is 1-orthogonal with respect to a base of norms (rk) in P(X).

The basis (vn) is equivalent to a subbasis (xkn
) of (xn). Put M = {kn : n ∈ N} and

L = (N \ M). Clearly, it is enough to consider the case when L 6= ∅.

Denote by G the closed linear span of {xn : n ∈ L}. It is easy to show that the linear

space c0(G) = {(yn) ⊂ G : lim yn = 0} with the base of norms (r0
k ) : r0

k

(

(yn)
)

=

maxn rk(yn), k ∈ N is a Fréchet space.

For an infinite countable set A we will denote by S(A) an arbitrary sequence (an)

with {an : n ∈ N} = A such that an 6= am for all n, m ∈ N with n 6= m.

For i, j ∈ N, n ∈ L put xn
i, j = 0 if j 6= i, and xn

i, j = xn if j = i. Let xn
i = (xn

i, j)
∞
j=1

for all i ∈ N, n ∈ L. Set (sm) = S({xn
i : i ∈ N, n ∈ L}). It is easy to check that (sm)

is a basis in the Fréchet space c0(G) which is permutatively equivalent to the basis

S
(

{(xn, 0); n ∈ L} ∪ {(0, sn) : n ∈ N}
)

in G × c0(G).

The basis (sn) is equivalent to a subbasis (vmn
) of (vn). Hence (sn) is equivalent to

(xkmn
). Put W = {kmn

: n ∈ N} and K = (M \ W ). Since W = [N \ (L ∪ K)],

then (xn) is permutatively equivalent to the basis S
(

{(xn, 0, 0) : n ∈ L} ∪ {(0, sn, 0) :

n ∈ N}∪{(0, 0, xn) : n ∈ K}
)

in G× c0(G)×H, where H is the closed linear span of

{xn : n ∈ K}. But S
(

{(xn, 0) : n ∈ L}∪{(0, sn) : n ∈ N}
)

is permutatively equivalent
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to (xkmn
), so (xn) is permutatively equivalent to S

(

{(xn, 0) : n ∈ W} ∪ {(0, xn) : n ∈

K}
)

. Thus (xn) is permutatively equivalent to S({xn : n ∈ M}). Hence (xn) is

permutatively equivalent to (vn).

Similarly, one can show the following. If a basis (xn) in a Fréchet space X with a

continuous norm is quasi-universal for Fc, then (xn) is quasi-equivalent to (vn). (In

this case (vn) is quasi-equivalent to a subbasis (xkn
) of (xn) and (sn) is semi equivalent

to (xkπ(mn)
) for some increasing sequence (mn) ⊂ N and some permutation π of N;

instead of W we take W ′
= {kπ(mn) : n ∈ N}.)

From now on, (vn) is a universal basis for Fc and V is a Fréchet space with the

basis (vn).

By the proof of Theorem 2 we obtain

Remark 3 For any (zn) ∈ Fc and any sequence (cn) ⊂ N there exists an increasing

sequence (kn) ⊂ N with kn+1 > ckn
, n ∈ N such that (zn) is equivalent to (vkn

).

Clearly, any Fréchet space with a continuous norm and with a basis is isomorphic

to a complemented subspace of V . The following is also true.

Proposition 4 Let E be a Fréchet space with a continuous norm and with a basis. If any

Fréchet space with a continuous norm and with a basis is isomorphic to a complemented

subspace of E, then E is isomorphic to V .

Proof It is clear that the Fréchet spaces c0(E) and c0(V ) have continuous norms and

bases (see the proof of Theorem 2). Moreover, E×c0(E) and V×c0(V ) are isomorphic

to c0(E) and c0(V ), respectively. Thus there exist Fréchet spaces G and H such that

V ' c0(E)×H ' E×c0(E)×H ' E×V and E ' c0(V )×G ' V×c0(V )×G ' V×E.

Hence E is isomorphic to V .

By the closed graph theorem (see [5, Theorem 2.49]) we get

Remark 5 Let (xn) be a basis in a Fréchet space E and (yn) a basis in a Fréchet

space F. Then the following conditions are equivalent:

(1) (xn) is equivalent to (yn);

(2) for any (βn) ⊂ K the sequence (βnxn) is convergent to 0 in E if and only if the

sequence (βn yn) is convergent to 0 in F;

(3) for any (βn) ⊂ K the series
∑∞

n=1 βnxn is convergent in E if and only if the

series
∑∞

n=1 βn yn is convergent in F.

Using Remark 5 we shall prove the following.

Theorem 6 There exists a universal basis (un) for the family F of all bases in Fréchet

spaces. A basis (xn) ∈ F is universal (respectively quasi-universal) for F if and only if

(xn) is permutatively equivalent (respectively quasi-equivalent) to (un).
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Proof Put U = V N. Assume that (vn) is 1-orthogonal with respect to a base of

norms (qk) in P(V ). Set pk

(

(xn)
)

= k max1≤n≤k qk(xn) for (xn) ∈ U , k ∈ N. Clearly,

(pk) is a base in P(U ). For n, i, j ∈ N we put vn
i, j = 0 if j 6= i, and vn

i, j = vn if

j = i. Let vn
i = (vn

i, j)
∞
j=1 for all n, i ∈ N. It is easy to see that there exists a bijection

ϕ : N × N → N such that the sequence
(

ϕ(i, n)
)∞

n=1
is increasing for any i ∈ N. Let

uϕ(i,n) = vn
i for i, n ∈ N. Of course, (um) is a basis in U . Moreover, for any i ∈ N the

subbasis (uϕ(i,n))
∞
n=1 of (um) is equivalent to (vn), so it is a universal basis for Fc. Put

Mi = {ϕ(i, n) : n ∈ N}, i ∈ N. Clearly, Mi = {m ∈ N : um ∈ (ker pi−1 \ ker pi)} for

i ∈ N, where p0(x) = 0 for x ∈ U .

Now, let us assume that (yn) is a basis in a Fréchet space Y . Then (yn) is 1-

orthogonal with respect to a base (rk) in P(Y ). Let r0(y) = 0 for y ∈ Y . Put

Ni = {n ∈ N : yn ∈ (ker ri−1 \ ker ri)} for i ∈ N. Denote by W the set of all

i ∈ N for which the set Ni is infinite. For any i ∈ W the sequence (ym)m∈Ni
is a basis

in the closed linear span Y i of {ym : m ∈ Ni} and ri |Yi is a continuous norm on Y i .

Let π be a permutation of N. By the proof of Theorem 2 we can construct induc-

tively an increasing sequence (kn) ⊂ N with {π(kn) : n ∈ Ni} ⊂ Mi , i ∈ N, such

that (yn)n∈Ni
is equivalent to (uπ(kn))n∈Ni

for any i ∈ W . We shall prove that (yn) is

equivalent to (uπ(kn)).

Let (βn) ⊂ K. Assume that limn βn yn = 0. Then limn∈Ni
βn yn = 0 for any i ∈ W .

By Remark 5, limn∈Ni
βnuπ(kn) = 0 for any i ∈ W . We show that limn βnuπ(kn) = 0.

Suppose, by contradiction, that there exists a neighborhood M of 0 in U and an

increasing sequence (dm) ⊂ N such that (βdm
uπ(kdm )) ⊂ (U \ M). Then for any i ∈ N

the set {m ∈ N : dm ∈ Ni} is finite. Therefore for every i ∈ N there is mi ∈ N with

(dm)∞m=mi
⊂

⋃∞

j=i+1 N j . Hence
(

π(kdm
)
)∞

m=mi
⊂

⋃∞

j=i+1 M j , so pi(βdm
uπ(kdm )) = 0

for all m, i ∈ N with m ≥ mi . It follows that limm βdm
uπ(kdm ) = 0, a contradiction.

Thus limn βnuπ(kn) = 0.

Similarly, assuming that limn βnuπ(kn) = 0 we get limn βn yn = 0. By Remark 5,

(yn) is equivalent to (uπ(kn)). Thus the basis (uπ(n)) in U is universal for F. Hence any

basis (xn) ∈ F, which is permutatively equivalent (respectively quasi-equivalent) to

(un), is universal (respectively quasi-universal) for F.

Now, let us assume that a basis (xn) in a Fréchet space X is universal (respectively

quasi-universal) for F. As in the proof of Theorem 2 one can show that (xn) is per-

mutatively equivalent (respectively quasi-equivalent) to (un).

The Fréchet spaces cN

0 and V N are universal for the family of all Fréchet spaces

of countable type. By Theorem 6 any Fréchet space with a basis is isomorphic to a

complemented subspace of V N. In contrast to this, we shall prove the following result

for cN

0 .

Theorem 7 A Fréchet space X with a basis (xn) is isomorphic to a complemented sub-

space of cN

0 if and only if X is isomorphic to one of the following spaces: c0, c0 × K
N,

K
N, cN

0 .

Proof Clearly, any Fréchet space, which is isomorphic to one of the following spaces:

c0, c0 × K
N, K

N, cN

0 , is isomorphic to a complemented subspace of cN

0 .
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To prove the converse, let us denote by P a linear continuous projection from cN

0

onto a complemented subspace Y of cN

0 which is isomorphic to X. Let (en) be the

coordinate basis in c0. For n, i, j ∈ N we put en
i, j = 0 if j 6= i, and en

i, j = en if j = i.

Set en
i = (en

i, j)
∞
j=1 for n, i ∈ N. Let ϕ : N × N → N be a bijection. Put zϕ(k,n) = en

k for

all n, k ∈ N. Clearly, (zn) is a basis in cN

0 . Let (yn) be a basis in Y . Denote by ( fn) and

(hn) the sequences of coefficient functionals associated with the bases (zn) and (yn),

respectively. Put gn(z) = hn(Pz) for n ∈ N and z ∈ cN

0 . Since

1 = |gn(yn)| =

∣

∣

∣
gn

(

∞
∑

k=1

fk(yn)zk

)∣

∣

∣

=

∣

∣

∣

∞
∑

k=1

fk(yn)gn(zk)
∣

∣

∣
≤ max

k
| fk(yn)gn(zk)|, n ∈ N,

then for any n ∈ N there exists tn ∈ N with | ftn
(yn)gn(ztn

)| ≥ 1.

Put pk

(

(αn)
)

= k max1≤n≤k ‖αn‖ for all k ∈ N and (αn) ∈ cN

0 . Clearly, (pk) is a

base in P(cN

0 ) and the basis (zn) is 1-orthogonal with respect to the base (pk).

For any k ∈ N there exist qk ∈ P(cN

0 ) and sk ∈ N with pk ≤ qk ≤ psk
and

qk ◦ P ≤ psk
such that (yn) is 1-orthogonal with respect to qk. For all n, k ∈ N we

obtain

pk

(

ftn
(yn)ztn

)

≤ max
m

pk

(

fm(yn)zm

)

= pk(yn) ≤ |gn(ztn
)|−1 max

m
qk

(

gm(ztn
)ym

)

= |gn(ztn
)|−1qk(Pztn

) ≤ psk

(

ftn
(yn)ztn

)

.

Hence

(∗) pk

(

ftn
(yn)ztn

)

≤ pk(yn) ≤ psk

(

ftn
(yn)ztn

)

for all k, n ∈ N.

Put rk(y) = maxn |hn(y)|pk

(

ftn
(yn)ztn

)

for k ∈ N, y ∈ Y .

By (∗), we get rk(y) ≤ maxn |hn(y)|qk(yn) = qk(y) ≤ psk
(y), and pk(y) ≤

maxn |hn(y)|pk(yn) ≤ maxn |hn(y)|psk

(

ftn
(yn)ztn

)

= rsk
(y).

Thus (rk) is a base in P(Y ). Put bn =

(

yn/ ftn
(yn)

)

, n ∈ N. Clearly, (bn) is a basis

in Y which is 1-orthogonal with respect to (rk). Let k, n ∈ N. Since rk(bn) = pk(ztn
),

then rk(bn) = 0 or rk(bn) = k. Set r0(y) = 0 for y ∈ Y .

Put Nk = {n ∈ N : bn ∈ (ker rk−1 \ ker rk)}, k ∈ N. Clearly,
⋃∞

k=1 Nk = N and

Ni ∩ N j = ∅ for i, j ∈ N with i 6= j.

Consider four cases:

Case 1 For some k0 ∈ N we have
⋃k0

k=1 Nk = N: Then ∀k ≥ k0 ∀n ∈ N : rk(bn) = k.

Hence Y is normable, so it is isomorphic to c0.

Case 2 For any k ∈ N the set Nk is finite: Let k ∈ N. Since {bn : n ∈
⋃∞

i=k+1 Ni} ⊂
ker rk, then dim(Y/ ker rk) < ∞. Thus Y is of finite type, so it is isomorphic to K

N.

Case 3 For some increasing sequence (in) ⊂ N the sets Nin
, n ∈ N, are infinite: Let

n ∈ N and i0 = 0. Put Mn =

⋃in

k=in−1+1 Nk. Denote by Yn the closed linear span of
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{b j : j ∈ Mn}. Since rk(b j) = k for j ∈ Nk, k ∈ N, then rk(b j) = k for j ∈ Mn and

k ≥ in. Hence Yn is normable, so it is isomorphic to c0.

For any (an) ∈
∏∞

n=1 Yn the series
∑∞

n=1 an is convergent in Y . Indeed, let k ∈ N.

Since rk(b j) = 0 for j ∈ Nk+1, then rk(b j) = 0 for j ∈ Mn, n ∈ N with in−1 ≥ k.

Hence rk(an) = 0 for any n ∈ N with in−1 ≥ k. Thus lim an = 0.

Let Tn be the natural projection from Y onto Yn, n ∈ N. Clearly, y =

∑∞

n=1 Tn y

for any y ∈ Y . By the open mapping theorem ([5], Corollary 2.74), the continuous

map T : Y →
∏∞

n=1 Yn, y → (Tn y) is an isomorphism. Thus Y is isomorphic to cN

0 .

Case 4 For some k0 ∈ N the sets W1 :=
⋃k0

k=1 Nk, W2 :=
⋃∞

k=k0+1 Nk are infinite

and the sets Nk, k > k0, are finite: The closed linear span Z1 of {bn : n ∈ W1} is

normable, since ri(bn) = i for i ≥ k0 and n ∈ W1. Thus Z1 is isomorphic to c0. The

closed linear span Z2 of {bn : n ∈ W2} is of finite type, since {bn : n ∈
⋃∞

k=i+1 Nk} ⊂
Z2 ∩ ker ri for any i ≥ k0. Thus Z2 is isomorphic to K

N. Hence Y is isomorphic to

c0 × K
N.

For V N we have the following result (see the proof of Proposition 4).

Proposition 8 A Fréchet space E with a basis is isomorphic to V N if and only if any

Fréchet space with a basis is isomorphic to a complemented subspace of E.

Remark 9 There exists a Fréchet space X of countable type which is is not isomor-

phic to any complemented subspace of V N. Indeed, there is a nuclear Fréchet space

X with a continuous norm and without the bounded approximation property (see

[9, Theorem 11]). Since any complemented subspace of a Fréchet space with a basis

has the bounded approximation property, then X is not isomorphic to any comple-

mented subspace of V N.

For bases in nuclear Fréchet spaces we shall prove the following.

Theorem 10 There is no quasi-universal basis for the family Fn of all bases in nuclear

Fréchet spaces or for the family Fnc of all bases in nuclear Fréchet spaces with continuous

norms.

Proof Let E be a nuclear Fréchet space with a basis (xn). Assume that E is not

of finite type. Then (xn) is 1-orthogonal with respect to a base (qk) in P(E) with

dim(E/ ker q1) = ∞. Let i ∈ N. Put Ni = {n ∈ N : qi(xn) > 0}. Clearly, the

closed linear span Xi of {xn : n ∈ Ni} is an infinite-dimensional nuclear Fréchet

space and (xn)n∈Ni
is a basis in Xi which is 1-orthogonal with respect to the base of

norms (qk|Xi)
∞
k=i in P(Xi). Therefore we have limn∈Ni

[qi(xn)/q j(xn)] = 0 for some

j > i. Thus we can construct inductively an increasing sequence (ik) ⊂ N such that

limn∈Nik
[qik

(xn)/qik+1
(xn)] = 0 for any k ∈ N. Put pk = qik

and Mk = Nik
for k ∈ N.

Let ai, j(n) = [p j(xn)/pi(xn)] for k, i, j ∈ N with k ≤ i < j and n ∈ Mk. Clearly,

limn∈Mk
ai, j(n) = ∞ for k, i, j ∈ N with k ≤ i < j. Thus there exists an increasing

sequence (sn) ⊂ N such that for any n > 1 we have

(∗) max
1≤i< j≤n

max
m∈M(n)

ai, j(m) < min
1≤k≤n

min
m∈Mk(sn)

ak,k+1(m)
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where M(n) = {m ∈ M1 : m ≤ n} and Mk(sn) = {i ∈ Mk : i ≥ sn} (we assume

that max ∅ = 0). Let t j = min{n ∈ M1 : sn ≥ j} for j ∈ N. Put bi, j = pi(xt j
)

for all i, j ∈ N. Then 0 < bi, j ≤ bi+1, j for all i, j ∈ N and lim j(bi, j/bi+1, j) =

lim j a−1
i,i+1(t j ) = 0 for any i ∈ N. Thus for B = (bi, j ) the Köthe space K(B) is nuclear.

We shall show that the coordinate basis (en) in K(B) is not quasi-equivalent to any

subbasis of (xn). Suppose, by contradiction, that (en) is equivalent to (αnxkπ(n)
) for

some (αn) ⊂ (K \{0}), some increasing sequence (kn) ⊂ N and some permutation π
of N. Then there exists a linear homeomorphism T : lin(en) → lin(xkn

) with T(en) =

αnxkπ(n)
for any n ∈ N. By the continuity of T and T−1 we obtain

∀m ∈ N ∃u(m), v(m) ∈ N ∀x ∈ lin(en) : pm(Tx) ≤ ru(m)(x) ≤ pv(m)(Tx)

where (rk) is the standard base of norms in P
(

K(B)
)

. Clearly, we can assume that

u(m) < u(m + 1) for any m ∈ N.

Then ∀m, n ∈ N : pm(xkπ(n)
) ≤ ru(m)(α

−1
n en) ≤ pv(m)(xkπ(n)

). Thus

∀m, n ∈ N : [pm(xkπ(n)
)/ru(m)(en)] ≤ |α−1

n | ≤ [pv(m)(xkπ(n)
)/ru(m)(en)].

Hence ∀i, j, n ∈ N : [p j(xkπ(n)
)/ru( j)(en)] ≤ [pv(i)(xkπ(n)

)/ru(i)(en)].

Since ∀n ∈ N : pv(1)(xkπ(n)
) ≥ ru(1)(α

−1
n en) > 0, then {kπ(n) : n ∈ N} ⊂ Mv(1) and

∀i, j, n ∈ N : [ru( j)(en)/ru(i)(en)] ≥ [p j(xkπ(n)
)/pv(i)(xkπ(n)

)]. Thus we have

(∗∗) ∀i, j, n ∈ N : au(i),u( j)(tn) ≥ av(i), j (kπ(n)).

Let j = v(1) + 1 and n ∈ M1 with n > u( j). Since max{kπ(b) : 1 ≤ b ≤ sn} ≥ sn,

there exists d ∈ N with d ≤ sn ≤ kπ(d). Hence td ≤ n and kπ(d) ∈ Mv(1)(sn). Thus by

(∗) we get au(1),u( j)(td) < av(1), j(kπ(d)), contrary to (∗∗).

It follows that the basis (xn) is not universal for Fn or Fnc. This completes the

proof, since any basis in a Fréchet space of finite type is not universal for Fn.
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