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The Relationship Between e-Kronecker Sets
and Sidon Sets

Kathryn Hare and L. Thomas Ramsey

Abstract. A subset E of a discrete abelian group is called e-Kronecker if all E-functions of modulus
one can be approximated to within e by characters. E is called a Sidon set if all bounded E-functions
can be interpolated by the Fourier transform of measures on the dual group. As e-Kronecker sets
with € < 2 possess the same arithmetic properties as Sidon sets, it is natural to ask if they are Sidon.
We use the Pisier net characterization of Sidonicity to prove this is true.

1 Introduction

A subset E of the dual of a compact, abelian group G is called an e-Kronecker set if for
every function ¢ mapping E into the set of complex numbers of modulus one, there
exists x € G such that

|¢(y) = y(x)| <eforally ¢ E.

The infimum of such ¢ is called the Kronecker constant of E and is denoted x(E).
Trivially, (E) < 2 for all sets E, and this is sharp if the identity of the dual group
belongs to E. e-Kronecker sets have been studied for over 50 years since the concept
was introduced by Kahane in [9], and the terminology was coined by Varapoulos in
[14]. Examples of recent work include [1,2] (where they are called e-free) and [3-7,10].

If k(E) < \/2, then E is known to be an example of a Sidon set, meaning every
bounded E-function is the restriction to E of the Fourier transform of a measure on
G. In fact, the interpolating measure can be chosen to be discrete, and v/2 is sharp
with this additional property. Like e-Kronecker sets, Sidon sets have also been exten-
sively studied for many years; we refer the reader to [8] or [12] for an overview of what
was known prior to the early 1970’ and to [5] for more recent results. But many fun-
damental problems remain open, including a full understanding of the connections
between these two classes of interpolation sets.

As sets with Kronecker constant less than 2 possess many of the known arithmetic
properties satisfied by Sidon sets, it was asked in [5] whether all such sets are Sidon.
Here we answer this question affirmatively by using Pisier’s remarkable net charac-
terization of Sidon sets. We also construct non-trivial examples of Sidon sets with
Kronecker constant 2.

As well, we define a weaker interpolation property than e-Kronecker by only re-
quiring the approximation of target functions whose range lies in the set of n-th roots
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of unity. Sets that satisfy a suitable quantitative condition for this less demanding
interpolation property are also shown to be Sidon.

2 Kronecker-like Sets that are Sidon

Let G be a compact abelian group and I' its discrete abelian dual group. An example
of such a group G is the circle group T, the complex numbers of modulus one, whose
discrete dual is the group of integers, Z.

Definition 2.1 (i) A subsetE c T is said to be e-Kronecker if for every ¢: E — T
there exists x € G such that

(2.1) |¢(y) —y(x)| <eforally e E.

By the Kronecker constant of E, k(E), we mean the infimum of the constants € for
which (2.1) is satisfied.

(ii) A subset E C T is said to be Sidon if for every bounded function ¢:E — C
there is a measure p on G with zi(y) = ¢(y) for all y € E. If the interpolating measure
y can always be chosen to be discrete, then the set E is said to be I,.

Hadamard sets E = {n;} ¢ Nwithinf nj,,/n; = g > 2 are known to satisfy x(E) <
1 - e/7(471)|, and this tends to 0 as q tends to infinity. More generally, every infinite
subset of a torsion-free dual group I’ contains subsets of the same cardinality that are
e-Kronecker for any given € > 0. If I is not torsion-free, but the subset E does not
contain “too many” elements of order 2, then E will contain a subset F of the same
cardinality, having x(F) =1 (see [3,4]).

Obviously, every Iy set is Sidon, but the converse is not true. It is unknown whether
every Sidon set is a finite union of I sets.

For a set E to be Sidon (or Iy), it is enough that there be a constant § < 1 such that
for every E-function ¢ with |¢(y)| < 1 for all y, there is a (discrete) measure y such
that

|p(y) — u(y)| < dforally € E.

Since y(x) = 8(y) for &, the point mass measure at x, it is easy to see that if E is
e-Kronecker for some € < 1, then E is Iy. With more work this can be improved: if
k(E) < V2, then E is Iy. This result is sharp, as there are non-I sets that are V2-
Kronecker; see [3].

It is well known that Sidon sets satisfy a number of arithmetic properties such
as not containing large squares or long arithmetic progressions. In [3] (or see the
discussion in [5, p. 35]), it was shown that sets E with x(E) < 2 also satisfy these
conditions, thus it is natural to ask if such sets are always Sidon. Here we answer this
question affirmatively.

Theorem 2.2  If the Kronecker constant of E C T is less than two, then E is Sidon.

Proof We use Pisier’s e-net condition, which states that a subset E is Sidon if and
only if there is some & > 0 such that for each finite subset F c E thereisaset Y c G
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with Y] > 2¢/F], and whenever x # y € Y,

e <sup|y(x) - y(y)].
yeF
This was proven by Pisier in [13]. Proofs can also be found in [5, Thm. 9.2.1] and
[11, Thm. V.5].
Since we are assuming that x(E) < 2, we can choose ¢ > 0 such that k(E) + ¢ < 2.
Let F be any finite subset of E.
Forall g € G and A > 0, the sets

U(g,A) = {h eG: 1> sup|y(h) —y(g)|}
yeF

are among the basic open sets for the topology on G (the topology of pointwise con-
vergence as functions on I'). We claim there is a finite maximal set S ¢ G such that

xfyeS—essuply(x)-y(y)l
Y€

This is a consequence of the compactness of G. If it was not true, one could choose an
infinite set S having this separation property. As G is compact, S would have a cluster
point z € G. The open set U(z, ¢/2) would then contain infinitely many members of
S, violating the required separation assumption.

By the maximality of S, for each g € G there is some h € S such that g € U(h, ¢).

Consider any function ¢: F — T. By the Kronecker property, there is some g € G
such thatsup,,. [y(g) - ¢(y)| < x(E). Since thereis some h € S such that g € U(h,¢),
we have that ¢ € W(h), where

W (h) = {y:F > T sup|y(h) - y(y)| < () +e<2}.
yeF

Consequently,
TF = | W(h).

heS
We identify TF with [0,27)F, with the group operation being addition mod 27,
and in this way put | F|-dimensional Euclidean volume on TF. With this identification,

W(h) < [1[y(R) = n,y(h) + 7],
yeF

where 1 < 7 depends only on the number «(E) + ¢ (and not on k or F). Thus, the
|F|-dimensional volume of each set W () is bounded by (2)!¥!, while the volume of
TF is (27)F. It follows that

IF| ,
card(S)Z(i—ﬂ) = 2¢IFl
n

for a suitable choice of ¢’ > 0.
The minimum of ¢ and ¢’ meet the Pisier net condition and are independent of F.
Thus, E is Sidon. ]
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Remark 2.3 In number theory, a set E C T’ is sometimes called a Sidon set if when-
ever y; € E, y1y2 = y3y4 if and only if {y3, y4} is a permutation of {y,y,}. This is
a different class of sets from the Sidon sets defined above. e-Kronecker sets need not
be Sidon in this sense; indeed, any finite subset E C Z that does not contain 0 has
x(E) < 2. However, if E is e-Kronecker for some & < \/2, then there are a bounded
number of pairs with common product, with the bound depending only on ¢ (see [3]).

Next, we alter the definition of the Kronecker constant by only considering target
functions whose range is restricted to a finite subgroup of T. This is a natural variation
to consider, for if T' is a torsion group, the characters of G take on only the values in
a suitable finite subgroup of T. Moreover, there are even subsets E of Z (including all
subsets of size 2 and many of size 3) whose Kronecker constant is realized with target
functions ¢ mapping E into {-1, +1} (cf. [7]).

Definition 2.4 Let T, denote the set of n-th roots of unity in T for n > 2. Let x,, (E)
be the infimum of € > 0 such that E is (¢, n)-Kronecker, where E ¢ T is (e, n)-Kro-
necker if for every ¢: E — T, there exists x € G such that

yeE=[¢(y) -y(x)| <e.
Theorem 2.5 Let E c T. Ifk,(E) < |1 - &™)\, then E is Sidon.

Proof Choose ¢ > 0such that «, (E)+¢ < [1-¢'""/")|. Let F c E be finite. Choose
S c G as in the proof of Theorem 2.2. Arguing in a similar fashion to that proof, we
again deduce that for every ¢: E — T, there is some h € S such that ¢ € V(h), where

V(h):= {w:F -T,: sup|y(h) - 1//()/)| <k,(E)+ s}.
yeF

Consequently,
(Ta)" = p V(h).
€S
For each h € S and every y € F, there is an n-th root of unity, w € T,, such that
ly(h)-w| > [1-e"71/m)| Whenever ¢, (y) = w, it follows that ¢, ¢ V (k). Thus, each
V (h) has at most (n—1)!F| elements. Consequently, there is some &’ > 0, independent
of F, such that

d " ¢|Fl
card(S) > ——= =21
Again, the minimum of € and ¢’ meets the Pisier net condition to be Sidon. |

It is sometimes more convenient to measure angular distances when comparing
elements of T and to express Kronecker constants in those terms. Towards this, put
Z,={2nj/n:j=0,1,...,n-1},and for z € T, let arg(z) be the angle 6 € [0, 27) such
that exp(i0) = z. Let a,,(E) be the infimum of ¢ > 0 such that for every ¢:E - Z,
there exists x € G such that

yeE==[¢(y) -argy(x)| <e.
A set E satisfying this condition is called weak (e, n)-angular Kronecker. Here
|¢(y) — argy(x)| should be understood mod 27, so «,, (E) € [0, 7].
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It is easy to see that «,, (E) = |1-e'®(¥)|, thus the previous theorem can be restated
as: E is Sidon if a,, (E) < n(1—1/n).

We can similarly define weak angular e-Kronecker sets and the angular Kronecker
constant, a(E), by considering the approximation problem for functions ¢:E —
[0,27). One can easily check that (E) = |1 — ¢'*(¥)|, hence Theorem 2.2 can be
restated as: E is Sidon if a(E) < 7.

Example 2.6 Let n >1be any integer. The set E = 1+ nZ is not a Sidon subset of Z
being a coset of an infinite subgroup, but «, (E) = 7 — 7/n. That shows Theorem 2.5
is sharp. In fact, for odd #, &, (E) < 7 — 7/n for all subsets E of any discrete abelian
group I'. This is because the #-th root of unity farthest from 1is e/”=1/") so that if
we let 1 denote the identity element of G, then for all T,,-valued functions ¢, and any
y € T we have [¢(y) — y(1)] < [1 - '7(=1/m)],

To see that a, (1+nZ) < w—7/n for n even, take g = exp(mi/n). For any character
y =1+ nk € E, we have argy(g) = n(nk +1)/n with nk + 1 an odd integer. Thus,
|z —argy(x)| < m-mn/nforanyz e Z,.

3 Some Examples of Sidon Sets with Kronecker Constant Equal to
2

Since any subset of I' that contains the identity character 1 has Kronecker constant
equal to 2, we are interested in constructing examples of Sidon subsets E of T \ {1}
with k(E) = 2and «,, (E) > [1-¢/7(=1/")|. We give one example with a set of elements
of finite order and a second example where all the elements of E have infinite order.

Example 3.1 LetT =7, ® Z, ®Z,, where Z, = {0,1}. Then E=T \ {(0,0,0)} is
Sidon, but «(E) = 2 and «,, (E) > [1- ¢ 7Y™ for n > 2.

Proof Beinga finiteset,I' \ {(0,0,0)} is Sidon. Let e; be the standard basis vectors
of Z, ®Z, ®Z; and let E' = {ey, e3,e1 + €3, €1 + €3}

We will first show that x(E") = 2, whence x(E) = 2. Define ¢ by ¢(e;) = ¢(e3) =
¢(e; +e2) =1and ¢(e; + e3) = —1. Suppose that g € G and € > 0 satisfies

ly(g) —¢(y)|<2—€ forallyeE.

Because y(g) € {-1, +1} for every y € T, we must have

e2(g) =es(g) =1=(e1+e2)(g) and (er+e3)(g) =-1

This forces e;(g) to be equal to both —1 and 1, a contradiction. Hence x(E) = 2.

Since ¢ takes on only n-th roots of unity for even #, this argument also proves
k. (E) = 2 when n is even.

If n is odd, then, instead, define ¢(e; + e3) = w,, where w, = ei"(1-1/n) an n-th
root of unity nearest to —1. If k,, (E) < [1 - ¢/"("1/")|, then we obtain the same con-
tradiction as before by noting that the identity |1 - ¢(e; + e3)| = [1 - e7=/")| forces
(e1+e3)(g) =-L [ |
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Example 3.2 LetT = Z &I, where I, is the countable direct sum of copies of Z,.
Let e, be the character ¢2™"(*) on T and let ¥, be the projection onto the n-th-Z,
factor, both viewed as elements of I in the canonical way. Set

E = {(en,yn)}nzi U {(ens yn) ity
Then E is Sidon, but x(E) = 2 and «,,(E) > |1 - /""" for n > 2.

Proof We argue first that E; = {(en, y,)}52, and E; = {(e,', )} 52, both satisfy
algebraic conditions to be Sidon. Let f:N — {-1,0,1} be finitely non-zero and satisfy
H(em )/n)f(") =L

n

By the algebraic independence of the factors of I' this implies yﬁ(") =1forall n
and hence f(n) = 0. Therefore, E, is quasi-independent and such sets are well known
to be Sidon. Likewise, E; is Sidon, and hence the union, E = E; U E,, is Sidon.

Let € > 0 and suppose E is (2 — ¢)-Kronecker. Define ¢ to be -1 on E; and 1 on
E,. The compact group G = T®G,, where G; is the direct product of countably many
copies of (the multiplicative group) Z,, is the dual of I'. Choose g € G such that for
ally € E,

lp(y) —y(g)l<2-e.

Write g = (u, (g,)) where u € T and g, is the projection of g onto the n-th-Z,
factor. With this notation, (%!, y,)(g) = e**""*g,, hence for all n,

|_ efzm'nu _gn| — | —1- lerinugn‘ <2—¢ and
|627rinu _gn| — |1 _ e—Zninugn| <2—¢.

If u is rational, then e?""* = ¢=27/"% = | periodically as a function of n. For these
infinitely many n, we have | -1- g,| <2-€eand [1- g,| < 2-¢. But g, = %1, so this is
impossible.

Otherwise, {e2™"} is dense in T. Choose # such that

|1_ elrrinu| — |1_ e—2m’nu| < 6/2.

But then |-1-g,| <2 -¢/2and |1 - g,| < 2 —€/2, and again these cannot be simulta-
neously satisfied for g, = +1. This impossibility proves x(E) = 2 and also establishes
k,(E) =2 for n even.

If, instead, we define ¢ = w, on E;, where w, is an n-th root of unity nearest -1,
then similar arguments show that «,, (E) = |[1- ¢/"=/")| for n odd and «,, (E) = 2 for
n even. |

Remark 3.3 Itwould be interesting to know whether non-trivial examples of 2-Kro-
necker Sidon sets could be found in a torsion-free group and also whether every Sidon
set is a finite union of sets that are e-Kronecker for some € < 2.
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