
TRANSLATIONAL ARTICLE

Learning-based augmentation of physics-based models: an
industrial robot use case

András Retzler1,2,3 , Roland Tóth4,5, Maarten Schoukens4, Gerben I. Beintema4, Jonas Weigand6,
Jean-Philippe Noël1,2, Zsolt Kollár3 and Jan Swevers1,2

1MECO Research Team, Department of Mechanical Engineering, KU Leuven, Heverlee, Belgium
2Flanders Make@KU Leuven, Heverlee, Belgium
3Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
4Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
5Systems and Control Laboratory, Institute for Computer Science and Control, Budapest, Hungary
6Independent Researcher
Corresponding author: András Retzler; Email: retzlerandras@gmail.com

Received: 30 July 2023; Revised: 24 January 2024; Accepted: 15 March 2024

Keywords: industrial robot; machine learning; neural networks; robot simulation; system identification

Abstract

In a Model Predictive Control (MPC) setting, the precise simulation of the behavior of the system over a finite time
window is essential. This application-oriented benchmark study focuses on a robot arm that exhibits various nonlinear
behaviors. For this arm, we have a physics-based model with approximate parameter values and an open benchmark
dataset for system identification. However, the long-term simulation of this model quickly diverges from the actual
arm’s measurements, indicating its inaccuracy. We compare the accuracy of black-box and purely physics-based
approaches with several physics-informed approaches. These involve different combinations of a neural network’s
output with information from the physics-based model or feeding the physics-based model’s information into the
neural network. One of the physics-informed model structures can improve accuracy over a fully black-box model.

Impact Statement

Model Predictive Control (MPC) is one of the most impactful and promising technologies in the field of control.
With the methods compared in this paper, it is possible to create a more accurate forward dynamics model by
augmenting physics-based models with neural networks, from which MPC will benefit. On the example of a
robot model corresponding to a challenging nonlinear system identification benchmark dataset, we present
multiple hybrid model structures, combining physics-informed and data-driven models. This model collection
equips the users with different exploratory opportunities and gives them additional insight for more educated
choices on the model. Furthermore, our results confirm that using as much structural insight about the system as
possible is important.

1. Introduction

Within the domain of physics-informedmachine learning, the two disciplines of system identification and
machine-learning converge at certain points, though each of these realms has its unique approaches and
priorities. Practitioners of system identification, which is more closely associated with control systems,

©TheAuthor(s), 2024. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Data-Centric Engineering (2024), 5: e12
doi:10.1017/dce.2024.8

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://orcid.org/0000-0001-8635-3146
mailto:retzlerandras@gmail.com
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/dce.2024.8
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dce.2024.8&domain=pdf
https://doi.org/10.1017/dce.2024.8

typically work with shorter datasets, focus on more compact models, and use substantial physical
knowledge to build those models. Practitioners of machine learning, a field that has roots in computer
science, typically focus on huge datasets and use universal approximators like artificial neural networks
(ANNs).

In this research, we aimed to create a high-fidelity simulation model of a robot arm for Model
Predictive Control (MPC), as a more accurate model often leads to better tracking performance and a
solution in fewer iterations. All aspects of a system’s behavior cannot be perfectly modeled using
physical laws alone because of the measurement noise and those more complex nonlinear behaviors
that are infeasible to model manually. However, we can still refine our model through machine-
learning techniques that allow us to capture and predict these missing complex behaviors based on the
data. In our case, we require an accurate prediction of the movement of the arm for given actuator
torque inputs over a given finite time window ahead. In robotic MPC applications, this window is
typically between 100 milliseconds (e.g., Zhao et al., 2023) and 1 second (e.g., Trimble et al., 2020).
An overview of the connection between MPC and system identification for our use case is presented
in Figure 1.

To achieve the highest possible accuracy, we evaluate a set of physics-based models augmented with
ANNs in different ways. In general, physics-only models are fully explainable through the physical
relations that govern the system, though they usually provide a lower accuracy. ANN-based models can
often fit very well to the data but fail to extrapolate well on data in a range unseen during training
(as described, for example, in Zhang and Cross, 2022). Furthermore, ANNs are rarely physically
explainable. This lack of generalization calls for combinations of ANN and physics-based models, from
which we expect better accuracy compared to a physics-only model and better explainability and
extrapolation capability compared to an ANN-only model. Out of these metrics, the accuracy of
simulations within a given time window ahead is evaluated in this work, as it is the most relevant to
MPC. Given the computational complexity of calculating these N-step-ahead predictions, one of our
research questions is if we can avoid calculating them during the training and validation steps. Instead, we
use an indirect metric that is easier to compute, but our target is that the final model still reaches a good
result on the N-step-ahead predictions.

This application-oriented benchmark study is organized as follows: a literature review of existing
methods (Section 1.1) is in the remaining part of the introduction, along with the description of the plant
(Section 1.2), the benchmark dataset (Section 1.3) and the physics-based model (Section 1.4): all the
elements that were at our disposal at the beginning of this work. Afterward, all the details of our method
are unraveled (Section 2): the augmented models that we compare (Section 2.1), the way of evaluation
(Section 2.2), the objective function (Section 2.3), and the neural network implementation details
(Section 2.4). Ultimately, the paper culminates in presenting the results (Section 3), their discussion
(Section 4), and the conclusions (Section 5).

Figure 1. High-level overview of how the identified model will be used.

e12-2 András Retzler et al.

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

1.1. Related work and background

Models of electromechanical systems for prediction over a finite time window have been a long-standing
research focus. Based on physical interpretability, Schoukens and Ljung (2019) define several shades for
model structures, from pit-black to snow-white models, with snow-white being the completely theory-
and knowledge-basedmodel. In the realm ofmachine learning, the different physics-informed approaches
to deep learning are on various points of this scale. Lutter (2021) introduces a Differentiable Newton–
Euler Algorithm (DiffNEA) that uses virtual parameters to keep all the physical parameters physically
interpretable, combinedwith gradient-based optimization techniques typically used for machine learning.
DiffNEA results in a wholly physical model that can be integrated with machine-learning approaches like
reinforcement learning, keeping close to white-box approaches on the scale mentioned. It provides
considerably good extrapolation capability and achieves physical interpretability through virtual param-
eters. Some of its friction models are related but, at specific points, different from the combined models in
this work. Deep Lagrangian Networks (DeLaN), also introduced by Lutter (2021), combine deep learning
with Lagrangian mechanics to learn dynamical models that conserve energy, with no specific knowledge
of the system. However, they are close to the black-box endpoint of the scale.

The general framework of Physics-InformedNeural Networks (PINN) introduced by Raissi et al. (2019)
features an ANN with a time input that can learn to provide a data-driven solution to partial differential
equations. Extensions to this framework have emerged,with theANNalso having a control input: compared
to the Runge–Kutta-Fehlberg (also known as “RK45”) integration of a physics-based model, Nicodemus
et al. (2022) achieved a reduction in computational time in anMPC setting. Similarly, Lambert et al. (2021)
created long-term simulation models for MPC and reinforcement learning scenarios; both are close to the
complete black-box side of the scale. In contrast to these techniques, our approach is close to the middle of
the interpretability scale, as we calculate part of our model directly from physical relations.

Another similar approach is called Physics-Guided Neural Networks (PGNN), introduced by Daw
et al. (2022). They apply a physics inconsistency term in the loss function and different combinations of
physics-based models and neural networks, some of which we also evaluate for our application.

In De Groote et al. (2022), the so-called Neural Network Augmented Physics (NNAP) models were
introduced, where the neural network is inserted into the physics-basedmodel of a slider crankmechanism
to account for unknown nonlinear phenomena (unknown load interaction, effect of spring, and additional
nonlinear friction). Our work shares some similarities with this, though we are exploring and comparing
multiple ways of combining neural networks and physical models.

1.2. The plant

The system considered is a KUKA KR300 R2500 robot arm with six degrees of freedom, with a 150 kg
mass attached to the end effector (see Figure 2). Its dynamics consist of the interaction of the robot’s rigid
bodies, a contribution from a Hydraulic Weight Counterbalance (HWC) system installed on the second
joint, and nonlinear friction. We expect additional nonlinearities from gearbox deformation and backlash.

1.3. The data

Weigand et al. (2022)made this system’s dataset availablewith corresponding input andoutputmeasurements.
Their experiments were done in a closed loop; computed torque control (a proportional derivative controller
operating in conjunctionwith the inverse dynamics)was applied to themachine to followmultisine trajectories
designed to start fromand end in zero angular position for all joints. Thirty-nine different trajectories have been
executed, each of them twice, and the responses recorded.The recorded systemoutputs are the six joint angles.
The recorded system inputs are the six motor torques. We show one of these trajectories in Figure 3. The
sampling time is Ts = 0:004 seconds, and the number of samples per trajectory is 15,000. A key observation is
that as the angular positions follow the multisine reference trajectory well, so in the frequency domain, the
position data indicates a very low level of leakage: as shown in Figure 3, we find that themagnitude drop after
the last excited component is at least �40 dB.

Data-Centric Engineering e12-3

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

1.4. The physics-based model

The physics-based model of the robot is a nonlinear state-space model with 12 states in total: angular
positions (x∈R6) and angular velocities (v∈R6). It is composed of the f fwd forward dynamics model of
the robot, which relates the joint acceleration vector a to the state vector x,v½ �, the input motor torque
vector τm and parameters θ:

f rhs x,v,τm,θð Þ= _x

_v

� �
=

v

f fwd x,v,τm,θð Þ

� �
: (1)

We are integrating this model using the Runge–Kutta (RK4) method: f next is the resulting function that
tells the state at the next discrete-time instant based on the current state, a fixed Ts time step later. Applying
f next k-times will result in a k-step long simulation

Figure 2. The KUKA robot considered (image from Weigand et al., 2022).

0 5000 10000 15000
sample

-20

-10

0

10

]
m

N[euqrot tupnI

Input torque in time domain

0 5000 10000 15000
sample

-2

-1

0

1

2

O
ut

pu
t p

os
iti

on
 [r

ad
]

Output position in time domain

0 1 2 3 4 5 6 7
Frequency [Hz]

0

20

40

60

80

100]Bd[edutinga
m euqrot tupnI

Input torque in frequency domain

0 1 2 3 4 5 6 7
Frequency [Hz]

-100

-50

0

50

100

O
ut

pu
t p

os
iti

on
 m

ag
ni

tu
de

 [d
B] Output position in frequency domain

#1
#2
#3
#4
#5
#6

Figure 3. The training input–output data visualized in time domain (in full length) and frequency domain
(from DC to 7 Hz).

e12-4 András Retzler et al.

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

f k,0ð Þ
sim x0,v0,τm,θð Þ=

= f next f next …f next x0,v0,τm,0,θð Þ…,τm, k�2ð Þ,θ
� �

,τm, k�1ð Þ,θ
� �|ffl{zffl}

ktimes

, (2)

with x0 and v0 corresponding to the initial positions and velocities, together with the initial state of the
simulation, and τm,j as the column vector corresponding to the jth time step in the motor torque matrix.We
can define a simulation that starts from the pth time instant instead of the zeroth as

f k,pð Þ
sim xp,vp,τm,θ

� �
=

= f next f next …f next xp,vp,τm,p,θ
� �

…,τm, p+ k�2ð Þ,θ
� �

,τm, p+ k�1ð Þ,θ
� �

:|ffl{zffl}
ktimes

(3)

For the pure physical model, we choose f fwd = f phy, and define the continuous-time model of the
robot as

f phy x,v, θinθf½ �ð Þ= a=M�1 x,θinð Þ �C x,v,θinð Þ � v�g x,θinð Þ:� :τf v,θfð Þ� τhwc xð Þ+ uτmð Þ, (4)

with M x,θinð Þ as the inertia matrix, C x,v,θinð Þ as the matrix corresponding to Coriolis and centripetal
forces, g x,θinð Þ as the gravity vector, u as the vector of motor gear ratios, τf as the friction torque vector,
τhwc as the HWC torque vector. θin are the inertial parameters, θf are the friction parameters.

The friction is defined as

τf v,θfð Þ= θasymm + θcoul � tanh v
vcoul

� �
+ θvis � v, (5)

with θasymm as the asymmetric friction component, θcoul � tanh v
vcoul

	

as the Coulomb friction with the

steepness of the tanh function chosen as vcoul = 1 rad
sec, and θvis � v as the viscous friction. The parameter

vectors θasymm,θcoul,θvis ∈R6 are grouped into θf = θasymm,θcoul,θvis
� �

:As seen from (5), τf is linear in the
parameters.

The model of the HWC is explained in detail in Weigand et al. (2022, p. 15). To summarize, τhwc only
depends on the position of the second joint; its output torque only applies to that joint, and we consider the
constants inside that model fixed throughout this work.

The expressions for M x,θinð Þ,C x,v,θinð Þ,g x,θinð Þ are acquired based on the Denavit–Hartenberg
(DH) parameters of the robot, using the SymPyBotics toolbox of Sousa (2014), through the recursive
Newton–Euler method. The DH parameters input to SymPyBotics are listed in Table 1.

The formulas output by SymPyBotics are very complex and highly nonlinear with respect to both the
state and the parameters. M,C,g nonlinearly depend on the following 66 inertial parameters:

θin = Lixx,Lixy,Lixz,Liyy,Liyz,Lizz, lix, liy, liz,mi, Iiaj∀i∈ 1,…,6f g� �
, (6)

with mi as the link mass, Iia as the motor inertia, lix, liy, liz as the first moments of inertia,
Lixx,Lixy,Lixz,Liyy,Liyz,Lizz as the elements of the inertia tensor of the link with respect to the center of

Table 1. DH parameters of the KUKA KR300 R2500 robot arm concerned.

Joint no. θ rad½ � d m½ � a m½ � α rad½ � offset [rad]

1 θ1 �0.675 0.35 π=2 0
2 θ2 �0.189 1.15 0 0
3 θ3 0.189 0.041 �π=2 π=2
4 θ4 �1 0 π=2 0
5 θ5 0 0 �π=2 0
6 θ6 �0.24 0 π 0

Data-Centric Engineering e12-5

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

mass, all corresponding to the ith link. Aside from those discussed above, there could be additional
nonlinearities from gearbox deformation and backlash, but these are not currently modeled.

We refer to the parameters of this physical model as θphy = θin,θf½ �: The initial values for inertia and
friction parameters, from which we start the optimization, were identified in the preceding work by the
authors and contributors ofWeigand et al. (2022). The inertial parameters were estimated based on publicly
available data of the robot and the components (e.g., gearboxes and drives): the available solid computer-
aided design (CAD)models of the robotic armwere hollow cut, and the properties of the expectedmaterials
of the components were looked up, see the work of Harttig (2018). The initial friction parameters were
determined using global optimization based on the surrogate optimization algorithm of Regis and Shoe-
maker (2007), available in MATLAB. As seen in Figure 8, the initial model is not adequate for simulation.

There also exists another linear baseline model provided with the dataset in Weigand et al. (2022),
though it is important to note that this model is even more limited due to the strong nonlinear nature of the
robot forward dynamics.

2. The method

2.1. Augmenting the physics-based model with ANNs

To improve upon the physics-only model, we compare several ways to augment the physics-based model
with ANNs, particularly with multilayer perceptrons (MLPs) that have a residual connection
(an additional linear layer directly between the inputs and outputs). We have implemented normalization
of the input and output features to standard deviation σ = 1 and mean μ= 0, based on previous results
discussed in Beintema et al. (2023). As mentioned there, weight initialization methods such as Glorot and
Bengio (2010) assume normalized inputs and outputs. Input normalization is also discussed as an often-
used technique in Aggarwal (2018, p. 127). We have calculated the normalization factors from the data,
considering the full model equations, using all the training, validation, and test datasets.

Below is a list of evaluated model structures. The formulas are listed in Table 2 and shown visually in
Figures 4 and 5. We gave every model a name so that we could easily refer to them; along with the model
numbers, these are mentioned in the figures and the table.

• Model 0.a “PHY-only” consists solely of the physics-based model.
• Model 0.b is the “ANN-only” model. It consists of a single MLP. It has the same 18 inputs (six
positions, six velocities, and six motor torques) and six outputs (accelerations) as Model 0.a.

• In Model 1, “PHY + ANN”, the acceleration outputs of the ANN and the physical model are added
together per channel. This is a residual model (called residual Hybrid-Physics-Data (HPD) model in
Daw et al., 2022) for approximating an additional term that is missing from the physical model. For
this model, we calculate the normalization factors of the neural network outputs based on the
difference between the output of the physics-based model and the actual acceleration.

• InModel 2, “PHY!ANN”, the output of the physics-basedmodel, is an input to the neural network,
along with the current state and motor torque. In this case, the role of the ANN is to “correct” the
acceleration coming from the physics-based model, knowing all the inputs of that model as well.
This is called a basic HPD model in Daw et al. (2022).

• In Model 3, the terms of the formula of the physics-based model are separately input to the ANN,
along with the current state and motor torque. Under 3, we have two submodels: in 3.b “M�1� PHY
parts ! ANN”; these terms contain the multiplication by M�1 x,θinð Þ, while in 3.a “PHY parts !
ANN” this multiplication is omitted. The difference is the preprocessing applied to the input
features, and our goal was to evaluate which one is more efficient, similar to De Groote et al.
(2022). Note that out of all these terms input to the ANN, some are always zero or close to zero. For
example, in the vector τhwc, only the second element is non-zero; the others are structurally zero. As
these elements do not carry meaningful information, we omitted them, i.e., we did not input them to
the ANN.

e12-6 András Retzler et al.

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

Table 2. Model structures

Model Definition of the forward dynamicsf fwd

0.a. PHY–only f phy x,v,τm,θphy
� �

0.b. ANN–only f ann x,v,τm,θannð Þ
1. ANN + PHY f ann x,v,τm,θannð Þ+ f phy x,v,τm,θphy

� �
2. PHY!ANN f ann x,v,τm, f phy x,v,τm,θphy

� �
,θann

	

3.a. PHY parts!ANN f ann x,v,M�1 x,θinð Þ �u � τm,M�1 x,θinð Þ �C x,v,θinð Þ � v,�

M�1 x,θinð Þ �g x,θinð Þ,M�1 x,θinð Þ � τhwc xð Þ�,
3.b. M�1� PHY parts!ANN f ann x,v,u � τm,C x,v,θinð Þ � v,g x,θinð Þ,τhwc xð Þð Þ

4. vel.!ANN per joint f fwd ¼M�1 x,θinð Þ

f ann v1,θann1ð Þ
f ann v2,θann2ð Þ

⋮
f ann v6,θann6ð Þ

2
6664

3
7775 + f phy x,v,τm,θphy

� �
:

5. (vel., all pos.)!ANN per joint f fwd ¼M�1 x,θinð Þ

f ann v1,x,θann1ð Þ
f ann v2,x,θann2ð Þ

⋮
f ann v6,x,θann6ð Þ

2
6664

3
7775 + f phy x,v,τm,θphy

� �
:

D
ata-C

entric
E
ngineering

e12-7

https://doi.org/10.1017/dce.2024.8 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/dce.2024.8

• Model 4 “vel.!ANNper joint” draws inspiration from the understanding that the friction torque per
joint mainly depends on the velocity of the given joint. Thus, we instantiate separate neural networks
per joint (their parameter vectors are denoted by θann1,…,θann6). Each of these single-input, single-
output (SISO) networks has the same structure concerning the number of layers and number of
neurons.

Figure 4. Combinations of physics-based and ANN models from 0.a to 3.

Figure 5. Combinations of physics-based and ANN models, 4 and 5.

e12-8 András Retzler et al.

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

• Model 5 “(vel., all pos.)!ANN per joint” is very similar to Model 4, though we also input all the
positions to each of these separate networks, resulting in seven inputs and a single-output per
network. The idea behind this is that the load on the joint depends on the complete configuration
of the machine, and we were expecting that the ANN could use the information in the
position data.

Models 0.a and 0.b represent the two endpoints of the scale with respect to explainability, and they
serve as a baseline for the models described thereafter. Models 1–3 are general combinations of ANNs
and physics-based models, constructed without physical insight and still fully capable of universal
approximation. In Models 4 and 5, the configuration that follows the mechanical structure imposes a
strong inductive bias. Aside from the 0.a “PHY-only” model, the friction term τf inside f phy was not
active in any other models, as including these friction terms did not result in model improvements in our
experiments. We have yet to find Models 3.a, 3.b, and 5 in this exact way in the literature; thus, we
consider them our contributions.

2.2. Evaluation of the model: 150-step-NRMS

As stated before, our goal is to get the most accurate N-step-ahead simulation model for the robot. We
evaluated the model on a 600-millisecond window, equivalent to 150 simulation steps, within the range
typically used for MPC. The N-step-NRMS error measure, the normalized root mean square (NRMS)
error with N = 150 corresponds to this situation, as 150 �Ts = 0:6 second. We denote this measure with
η150, and as a note, the same error measure also appears in Beintema et al. (2021, p. 4) and Weigand et al.
(2022). It is calculated as follows:

η Nstepsð Þ =
XNstarts

p = 1

XNsteps

k = 1

diag
1
σp

� �
� f k,pð Þ

sim xfilt,p,vdx,p,τm,filt,θ
� �

1:6½ � � xfilt, p+ kð Þ
h i

2
2

()1
2

, (7)

with τm,filt, xfilt, and vdx as the filtered motor torques, positions, and the velocities calculated from the
positions, respectively, σp as the vector of standard deviations of each channel of xfilt, andNsteps =N as the
number of simulation steps in N-step-NRMS, Nstarts as the number of starting positions. The filtered
signals are calculated in the frequency domain as

xfilt = F
�1 h F xmeasð Þð Þð Þ,

vdx = F
�1 �jω �h F xmeasð Þð Þð Þ,

τm,filt = F
�1 h F τm,measð Þð Þð Þ,

h xð Þ =
xi ∣ i≤ 200,

0 ∣ i> 200,

((8)

where h xð Þ is our filter, F denotes the Fourier-transform, F�1 indicates the inverse Fourier-transform,
τm,meas and xmeas represent the measured motor torques and joint positions, respectively, and ω stands for
the angular frequency corresponding to each bin inside the frequency domain signal. The FFT is used in
the implementation of F and F�1. When calculating derivatives of noisy data, the filtering operation is
necessary to remove the high-frequency noise that the differentiation would otherwise emphasize.

As seen from (7), η150 is a unitless proportion (the unit of the error between the simulation and the
filtered measurement is either rad or rad/s, but we divide it by the standard deviation of the filtered
measurement which has the same unit). The higher value indicates a higher discrepancy between
simulation and measurement.

The explanation of (7) is as follows. Given N =Nsteps = 150 simulation steps to take into account, we
calculate simulations from all possible starting positions, meaning that if we have 15,000 samples, then
we start from Nstarts = 15000�150= 14850 different time steps, and calculate a forward simulation of
150 steps from each of them. Figure 6 shows this concept. As a result, we gain a three-dimensional array

Data-Centric Engineering e12-9

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

with dimensions Nsteps,Nstarts,Nchannels

� �
withNchannels = 12 as the number of states. Then we calculate the

average of each of the squared errors between the simulated and measured states along the dimensions
corresponding to the steps and starting positions, weighting the channels by 1

σp
, to get a single number for

the loss ultimately. Unfortunately, the initial physics-only Model 0.a evaluated this way shows a
considerably high mismatch with the data, as seen in Figure 8.

2.3. Objective: acceleration-based error measure

While we use the 150-step-NRMS error measure to evaluate the model, unfortunately, it is computation-
ally costly. Instead, we applied an acceleration-based error measure during the training and validation
steps: in those steps, the error must be recalculated in every epoch. We then applied a 150-step-NRMS
error measure in the test phase afterward, which was calculated only once.

The simulation, implemented in PyTorch from Paszke et al. (2019) becomes very slow once the
physics-based model is applied. As an example, calculating the 150-step-ahead simulation from all the
possible places with Model 3.a takes approximately 77 seconds on a computer with 10 CPU cores
available. Applying the GPU acceleration and the Just-In-Time (JIT) compilation functionality built into
PyTorch did not improve the overall speed, probably because the operations carried out are sequential and
not suitable for the JIT fuser.

We solved the computational complexity in the following way: the output of the continuous-time
model f fwd is one acceleration per joint, so we fit these to the six accelerations calculated from the
measured positions. Such an error measure is described, for example, in Lutter (2021, p. 9, (2.2)). In this
case, we observe that the 15,000-sample measured position trajectories result in a periodic signal. As a
result, we can calculate the derivative of the positions in the frequency domain, resulting in velocity and
acceleration signals, as already seen in (8). However, this differentiation acts as a high-pass filter on the
signal, emphasizing the noise on the higher frequencies. We observe that in the frequency domain, the
position signal does not contain meaningful information above approximately 6 Hz, so we weight
the frequency data with a rectangular window, zeroing all content corresponding to frequencies above
the 200th bin that corresponds to the frequencymentioned before, equivalent to applying an ideal low-pass
filter. As seen in (8), we are also applying the filter to the torques τm,meas, though the torque signal is not
periodic, thus we will get a slight spectral leakage due to the discontinuity.

We define the addx filtered accelerations and the ζ acceleration-based error measure as

Figure 6. Illustration of calculating the N-step-NRMS (7).

e12-10 András Retzler et al.

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

addx = F
�1 ω2 �h F xmeasð Þð Þ� �

,

ζ = diag
1
σa

� �
� addx� f fwd xfilt,vdx,τm,filt,θð Þ½ �

2
2

,
(9)

with σa as the standard deviation corresponding to each channel in addx.
Indeed, we can only use (9) if our system only has states that correspond to positions that are

measurable and states that correspond to velocities that can be inferred from the positions. When
calculating velocities or accelerations is needed, it is common to calculate it through finite differences
(see, e.g., Lutter, 2021, p. 50). The formulation in (9) is an alternative to this.

2.4. Neural network and optimization details

We use the Adaptive Moment Estimation (ADAM) optimization algorithm of Kingma and Ba (2015),
which has recently become a typical default choice in deep learning, to update the ANN weights or the
physics-based model parameters.

We use a standard procedure for data partitioning: three different periods as training, validation, and
test datasets. The training set is used to adjust the model parameters in every epoch. The validation set is
also used during training to provide an unbiased model evaluation andmitigate the risk of overfitting. It is
used in early stopping: the optimization is terminated if the validation loss does not demonstrate an
improvement over 1000 epochs while training the ANN. Finally, after the training phase, we use the test
set for an unbiased evaluation of the performance of the final models. The test set also allows us to verify
the extrapolation performance concerning robot poses unseen during training.

As a note, we break down our training phase into two steps. First, we optimize the physical model
parameters θphy over the course of 5000 epochs, during which only f phy is active (i.e., replaces f fwd in the
objective). Additionally, we disable early stopping to prevent it from being triggered during this period.
Second, we optimize only the ANN parameters θann, and the entire f fwd (with both physical and ANN
parts, when applicable) is active until early stopping is triggered. The first step makes the physical model
more accurate before using its information in the combined models in the second step.

The data file used was recording_2021_12_15_20H_45M.mat from Weigand et al. (2022),
and the training, validation, and test data are concretely described in Table 3. The software stack we used
to implement this is the deepSI framework from Beintema et al. (2021), which is based on PyTorch.

The neural network we apply has 1000 neurons per layer, two hidden layers, a residual connection, and
tanh activation function. Models 4 and 5 are exceptions to this, with 100 neurons per layer, but then with
six separate, small networks (one per joint) instead of one large. We apply regularization to the ANN
parameters by the weight decay built into the implementation of the ADAM solver. We applied
hyperparameter tuning to find the right choice for the weight decay. We have been manually tuning the
learning rate of ADAM to find a value that is large enough but does not result in strong fluctuations in the
training loss. This value is 10�4 for θann and 1:0 for θphy: we apply different learning rates to the two sets of
parameters. Because of these different learning rates for the two components of the model and the need to
balance themwell, optimizing θphy and θann together is difficult. We have decided not to optimize them in
the same step. The weight initialization corresponds to the default uniform initialization provided by
deepSI and PyTorch.

Table 3. Data selected from py_recording_2021_12_15_20H_45M.mat for use in this work.

Dataset Sample ranges in file N∘realization N∘period

Training 0:15000 1 1
Validation 15151:30151 2 1
Test 30302:45302 3 1

Data-Centric Engineering e12-11

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

2.5. Cases

The interaction between surfaces is complex, and we can differentiate between different types of friction
based on the phenomenon observed, e.g., static, presliding, sliding, or stick–slip friction. Using this
insight, we have been considering two cases for the experiments:

• in Case 1, the models are evaluated on the complete trajectories (one trajectory for training,
validation, and test each),

• in Case 2, the models are evaluated on reduced trajectories (the first and last 1350 samples are left
out). The reason for reducing the trajectories is to eliminate regionswhere the velocity is consistently
very low, where the effects of the difficult-to-model presliding friction are strongest.

3. Results

In Table 4, the results corresponding to the two cases are listed. The lower value corresponds to better
accuracy, meaning a lower error between the simulation and the data. Only the results on the test dataset
are reported in the table, but we also provide a visualization of the results on graphs in Figure 7, which
show the 150-step-NRMS on the training and validation sets. These results are after the hyperparameter
tuning: we have made a few trials to adjust the weight decay to find the lowest 150-step-NRMS on the
validation data.

Along with reporting the 150-step-NRMS error as a single number, in Figures 9 and 10, we show some
sample simulations (red and blue lines) overlaid with the data (black line), the latter serving as ground
truth. Each blue and red line corresponds to a simulation starting from the state at the beginning of the line.
The red lines correspond to the regions where the presliding friction can have a substantial effect; all the
other lines are shown in blue, corresponding to the region where we expect sliding friction to dominate.
Both figures correspond to Case 2with the reduced datasets, all the blue lines start in this reduced range of
the test dataset. Red lines allow us to see the model’s performance outside this range. To be able to
distinguish between the lines visually, we show only simulations starting at every 100 samples each, but
all the simulations (on the reduced range) are taken into account in the N-step-NRMS error calculation.
Lines starting from the same sample number on all the subplots in the same figure belong together as a
simulation. An additional figure of this type, Figure 8, shows the simulations of the 0.a initial physics-only
model.

To better compare Model 4 and 0.b, we also show their simulation results overlaid on each other, for
two channels, in Figure 11. The red and orange lines correspond to the regions with strong presliding
friction. The other lines, in the sliding-dominated range, are shown in green and blue. Orange and green
lines correspond to Model 4, while red and blue lines correspond to Model 0.b.

Table 4. Comparison of models across Cases 1 and 2.

150-step-NRMS error on test data

Model Case 1 Case 2

0.a. PHY–only 0.796552 0.766740
0.b. ANN–only 0.069210 0.078613
1. ANN + PHY 0.107080 0.098252
2. PHY!ANN 0.067969 0.076287
3.a. PHY parts!ANN 0.072906 0.078795
3.b. M�1� PHY parts!ANN 0.064798 0.070711
4. vel.!ANN per joint 0.086870 0.043441
4. (vel., all pos.)!ANN per joint 0.098745 0.064279

Note. The best result per case is formatted in bold, the second best result is indicated with an underline.

e12-12 András Retzler et al.

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

4. Discussion

In this section, we first discuss our best results that belong to Case 2. Afterward, we proceed to Case 1 to
add more details about the limitations.

4.1. Case 2: reduced trajectories

In Case 2, we have discarded the regions of strong presliding friction from both the training and the
evaluation of the models.

In this case, we observe that the combined Model 4 performs best. Its NRMS error is η150 = 0:043441,
55% of that of the ANN-only Model 0.b with η150 = 0:078613. We consider this a significant difference,
which is further reinforced by comparing simulations of these two models in Figure 11. While Figure 11
shows the short simulations in Case 2 for two selected channels, all channels can be inspected for Model
4 in Figure 9, and forModel 0.b in Figure 10.Model 4 is based on the idea that friction depends only on the
velocity of the given joint but not on the velocity of the other joints. Another point is that sliding mode
friction is often modeled with Coulomb friction, which contains a sign function that is similar to the tanh
activation function that we apply in the ANN. We conclude that we have managed to include physical
knowledge in the model.

Case 1

0.
a.

0.
b. 1. 2.

3.
a.

3.
b. 4. 5.

10-1

100

15
0-

st
ep

-N
R

M
S

 e
rr

or

Case 2

0.
a.

0.
b. 1. 2.

3.
a.

3.
b. 4. 5.

10-1

100

Training
Validation
Test

Figure 7. Results from Table 4 on a bar graph: 150-step-NRMS error on training, validation, and
test data.

0 5k 10k
−1

−0.5
0

0.5
1

0 5k 10k
−1

0
1

0 5k 10k
0

0.2
0.4

0 5k 10k
−0.5

0
0.5

0 5k 10k
−1

−0.5
0

0.5

0 5k 10k
−1

0
1

0 5k 10k
−1

0
1
2

0 5k 10k
−2

0
2

0 5k 10k
−1

0
1

0 5k 10k
−2

0
2

0 5k 10k
−2

0
2

0 5k 10k
−5

0
5

an
gu

la
r p

os
iti

on
s [

ra
d]

an
gu

la
r v

el
oc

iti
es

 [r
ad

/s
ec

]

sample# sample

Figure 8. Short simulations (indicated in blue and red, with the red part excluded from error calculation
in Case 2) versus data (indicated in black), six position (left column) and six velocity (right column)
channels, with channel numbers increasing from top to bottom. Result with physics-only Model 0.a,

before optimization.

Data-Centric Engineering e12-13

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

Model 5 is the second best with η150 = 0:064279. While it still performs better than Model 0.b, the
difference is insignificant, and it performs notably worse than Model 4. We discarded our hypothesis that
the position-dependent load strongly affects the forward dynamics. Different preprocessing of the input
positions could also improve the results.

Models 2, 3.a, and 3.b also perform similarly to Model 0.b, and the combined Model 1. performs even
worse thanModel 0.b.While in these model combinations, we augment the physical model with the ANN
in different ways, the real gain is clearly visible when we do so based on information about the structure
(i.e., Model 4).

To see how the initial, physics-onlymodel performs, i.e., the onewe started from at the beginning of the
research, its simulations are available for comparison in Figure 8. We see that the blue and red lines

0 5k 10k
−1

−0.5
0

0.5
1

0 5k 10k
−0.5

0
0.5

0 5k 10k
0

0.2
0.4

0 5k 10k
−0.2
−0.1

0
0.1

0 5k 10k
−1

−0.5
0

0.5

0 5k 10k

0

0.5

0 5k 10k
−1

0
1

0 5k 10k
−0.5

0
0.5

0 5k 10k
−1

−0.5
0

0.5

0 5k 10k
−0.5

0
0.5

0 5k 10k
−2
−1

0
1

0 5k 10k
−1

−0.5
0

0.5

an
gu

la
r p

os
iti

on
s [

ra
d]

an
gu

la
r v

el
oc

iti
es

 [r
ad

/s
ec

]

sample# sample

Figure 10. Short simulations (indicated in blue and red, with the red part excluded from error calculation
in Case 2) versus data (indicated in black), six position (left column) and six velocity (right column)

channels, with channel numbers increasing from top to bottom. Result in Case 2, Model 0.b.

0 5k 10k−1
−0.5

0
0.5

1

0 5k 10k
−0.5

0
0.5

0 5k 10k
0

0.2
0.4

0 5k 10k
−0.2
−0.1

0
0.1

0 5k 10k
−1

−0.5
0

0.5

0 5k 10k
−0.5

0

0.5

0 5k 10k
−1

0
1

0 5k 10k
−0.5

0
0.5

0 5k 10k
−1

−0.5
0

0.5

0 5k 10k
−0.5

0
0.5

0 5k 10k
−2
−1

0
1

0 5k 10k
−1

−0.5
0

0.5

an
gu

la
r p

os
iti

on
s [

ra
d]

an
gu

la
r v

el
oc

iti
es

 [r
ad

/s
ec

]

sample# sample

Figure 9. Short simulations (indicated in blue and red, with the red part excluded from error calculation
in Case 2) versus data (indicated in black), six position (left column) and six velocity (right column)

channels, with channel numbers increasing from top to bottom. Result in Case 2, Model 4.

e12-14 András Retzler et al.

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

(simulation) are strongly diverging from the black lines (measurement) compared to Figures 9 and 10. The
improvement we achieve with other models can mainly be attributed to all containing a universal
approximator.

4.2. Case 1: complete trajectories

In Case 1, we use the complete dataset of three trajectories for training, validation, and test, including the
regions of strong presliding friction.

In this case, the combinedModel 3.b is performing best with η150 = 0:064798, andModel 2, which has
a similar structure to the previously mentioned, is the second best with η150 = 0:067969. Unfortunately,
both are in the same range as the ANN-only Model 0.b which comes third with η150 = 0:069210. For this
reason, we cannot state that the inclusion of physical information is successful here.We believe the reason
is both that our structures are inefficient for the presliding friction, and that the physics-based model does
not contain information about it either.

All the remaining models perform worse than the ANN-only Model 0.b: combining physics-based
models with a black-box model does not necessarily improve the results.

5. Conclusions

In this paper, we compared different augmentations of physics-based models with neural networks, using
the example of a robot model corresponding to a challenging nonlinear system identification benchmark
dataset. The presented model collection equips the users with different exploratory opportunities and
gives them additional insight for more educated choices on the model to use to create a more accurate
forward dynamics model for the benefit of MPC.

In a general MPC application, we suggest using Model 4, because of its low N-step-NRMS error in
Case 2. We have managed to include physical knowledge into this model, as it has a significantly lower
error, 55% of that of the ANN-only Model 0.b. A key to achieving this result was selecting the model
structure based on insight into the system’s physical structure.

The picture is different if the application targets a region of very low velocities (e.g., very precise
positioning). In Case 2, we see that Model 4 improves upon modeling the sliding friction. In contrast, in
Case 1, we observe that none of the combinedmodels handle the presliding friction (corresponding to low
velocities) particularly well, as neither the physics-basedmodel nor the imposedmodel structure provides
sufficient information about it.

Figure 11. Short simulations versus data. Simulation results of Model 0.b and 4 are overlaid on each
other, in Case 2 (red and orange parts are excluded from error calculation in Case 2).

Data-Centric Engineering e12-15

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.8

The complexity of the combined models is similar to that of the ANN-only Model 0.b, thus, the noise
sensitivity will be approximately the same. On the contrary, compared to Model 0.b, we still managed to
improve the generalization capability in Case 2 with Model 4 (Figure 11). Our result reinforces that
physics-guided selection of black-boxmodel structures is advantageous, as it has also proven beneficial in
other works. For example, in Csurcsia et al. (2024), the selection of the states included in the nonlinear part
of a Polynomial Nonlinear State-Space (PNLSS) model structure is assisted by physical knowledge, in
particular the nonlinear distortion levels acquired through frequency domain system identification.

In future research, it would bemeaningful to evaluate different ways of preprocessing the features input
to the ANN, i.e., applying a transformation to the velocity to emphasize the slight differences. Lowering
the computational burden for calculating the robot model within deep learning frameworks would also be
a helpful improvement to ensure that the N-step-NRMS error measure (7) can be minimized directly.
Furthermore, testing the model’s performance in a real MPC setting would be interesting.

Data availability statement. We worked from a dataset available from Weigand et al. (2022). The code corresponding to this
research is available on GitHub under https://github.com/ha7ilm/roblue, commit 9dd1dcb at the time of writing.

Acknowledgments. We thank the team that prepared the open-source robot dataset for Weigand et al. (2022).

Author contribution.
• Conceptualization: András Retzler, Maarten Schoukens
• Methodology: András Retzler, Roland Tóth, Gerben Beintema, Jean-Philippe Noël, Maarten Schoukens, Jonas Weigand,

Zsolt Kollár, Jan Swevers
• Software: András Retzler, Gerben Beintema
• Writing—Original Draft: András Retzler
• Data Curation: Jonas Weigand
• Supervision: Jan Swevers, Zsolt Kollár

All authors approved the final submitted draft.

Funding statement. This research was partially supported by FlandersMake: SBO project DIRAC:Deterministic and Inexpensive
Realizations of Advanced Control, and ICON project ID2CON: Integrated IDentification for CONtrol, and by the Research
Foundation - Flanders (FWO - Flanders) through project G0A6917N. The research reported in this paper was partially carried out at
the Budapest University of Technology and Economics, and it has been supported by the National Research, Development, and
Innovation Fund of Hungary under Grant TKP2021-EGA-02, and the János Bólyai Research Grant (BO/0042/23/6) of the
Hungarian Academy of Sciences.

Competing interest. The authors declare none.

Ethical standard. The research meets all ethical guidelines, including adherence to the legal requirements of the study country. To
adhere to the publisher’s ethical guidelines on “AI Contribution to Research Content,” it is acknowledged that OpenAI Codex,
GPT-3.5, andGPT-4modelswere used (versions up to January 24, 2024) to help in the activities related towriting and editing the text
and formulas of this paper and the corresponding software source code, but the authors have checked to the best of their ability the
correctness of any output generated with AI.

References
Aggarwal CC (2018) Neural Networks and Deep Learning: A Textbook. Springer Nature Switzerland AG, Cham, Switzerland.
Beintema G, Tóth R and Schoukens M (2021) Nonlinear state-space identification using deep encoder networks. In Proceedings

of the 3rd Conference on Learning for Dynamics and Control, Vol. 144. Proceedings of Machine Learning Research,
pp. 241–250.

Beintema GI, Schoukens M and Tóth R (2023) Deep subspace encoders for nonlinear system identification. Automatica 156,
111210.

Csurcsia PZ,Decuyper J,RunacresMC,Renczes B andDe Troyer T (2024) Reducing black-box nonlinear state-space models:
a real-life case study. In Mechanical Systems and Signal Processing 211, 111230. Elsevier BV, Amsterdam, The Netherlands.

Daw A, Karpatne A, Watkins WD, Read JS and Kumar V (2022) Physics-guided neural networks (PGNN): an application in
lake temperature modeling. In Knowledge-Guided Machine Learning. Chapman and Hall/CRC, New York, pp. 353–372.

De Groote W, Kikken E, Hostens E, Van Hoecke S and Crevecoeur G (2022) Neural network augmented physics models for
systems with partially unknown dynamics: application to slider-crank mechanism. IEEE/ASME Transactions on Mechatronics
27(1), 103–114.

e12-16 András Retzler et al.

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://github.com/ha7ilm/roblue
https://doi.org/10.1017/dce.2024.8

Glorot X and Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. Journal of Machine
Learning Research 9, 249–256.

Harttig S (2018) Modeling Dynamics of the KUKA Quantec Industrial Robot for Use in the Milling Process. MSc. thesis,
Technische Universität Kaiserslautern, Kaiserslautern, Germany.

Kingma DP and Ba J (2015) Adam: a method for stochastic optimization. arXiv, v9 (30 January 2017).
Lambert N, Wilcox A, Zhang H, Pister KSJ and Calandra R (2021) Learning accurate long-term dynamics for model-based

reinforcement learning. In 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA. IEEE,
pp. 2880–2887.

Lutter M (2021) Inductive biases in machine learning for robotics and control. Ph.D. dissertation, Technische Universität
Darmstadt.

Nicodemus J,Kneifl J, Fehr J and Unger B (2022) Physics-informed neural networks-based model predictive control for multi-
link manipulators. IFAC-PapersOnLine 55(20), 331–336. Accessed: 2023-02-10.

A. Paszke et al. (2019) PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information
Processing, Curran Associates, Inc.

Raissi M, Perdikaris P and Karniadakis G (2019) Physics-informed neural networks: a deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378,
686–707.

Regis RG and Shoemaker CA (2007) A stochastic radial basis function method for the global optimization of expensive functions.
INFORMS Journal on Computing 19(4), 497–509.

Schoukens J and Ljung L (2019) Nonlinear system identification: a user-oriented road map. IEEE Control Systems Magazine 39
(6), 28–99.

Sousa CD (2014) Sympybotics v1.0. https://doi.org/10.5281/zenodo.11365. Accessed: 2024-01-21.
Trimble S, Naeem W, McLoone S and Sopasakis P (2020) Context-aware robotic arm using fast embedded model predictive

control. In Proceedings of Irish Systems and Signals Conference, Letterkenny, Ireland. IEEE.
Weigand J, Götz J, Ulmen J and Ruskowski M (2022) Dataset and baseline for an industrial robot identification benchmark.

https://doi.org/10.26204/data/5. Accessed 2023-02-07.
Zhang S and Cross EJ (2022) Grey-box modelling via gaussian process mean functions for mechanical systems. In Madarshahian

R and Hemez F (eds.),Data Science in Engineering, Vol. 9. Springer International Publishing, Cham, Switzerland, pp. 161–168.
Zhao X, Zhang Y, Ding W, Tao B and Ding H (2023) A dual-arm robot cooperation framework based on a nonlinear model

predictive cooperative control. In IEEE/ASME Transactions on Mechatronics, IEEE, pp. 1–13.

Cite this article: Retzler A, Tóth R, Schoukens M, Beintema GI, Weigand J, Noël J.-P, Kollár Z and Swevers J (2024). Learning-
based augmentation of physics-based models: an industrial robot use case. Data-Centric Engineering, 5, e12. doi:10.1017/
dce.2024.8

Data-Centric Engineering e12-17

https://doi.org/10.1017/dce.2024.8 Published online by Cambridge University Press

https://doi.org/10.5281/zenodo.11365
https://doi.org/10.26204/data/5
https://doi.org/10.1017/dce.2024.8
https://doi.org/10.1017/dce.2024.8
https://doi.org/10.1017/dce.2024.8

	Learning-based augmentation of physics-based models: an industrial robot use case
	Impact Statement
	Introduction
	Related work and background
	The plant
	The data
	The physics-based model

	The method
	Augmenting the physics-based model with ANNs
	Evaluation of the model: 150-step-NRMS
	Objective: acceleration-based error measure
	Neural network and optimization details
	Cases

	Results
	Discussion
	Case 2: reduced trajectories
	Case 1: complete trajectories

	Conclusions
	Data availability statement
	Acknowledgments
	Author contribution
	Funding statement
	Competing interest
	Ethical standard
	References

