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We study the two-dimensional creeping flow of a viscoelastic fluid around a cylinder
confined between two plates parallel to its axis. First, we solve the governing equations
under steady state with our novel stabilized finite-element formulation to obtain converged
solutions even at very high Weissenberg numbers. Then, we examine the stability of
this solution by perturbing all flow variables and solving the corresponding eigenvalue
problem. At critical conditions, a stable asymmetric flow arises, in which more fluid passes
from either the upper or the lower gap between the cylinder and the channel wall. Both
shear-thinning and elasticity play a crucial role on the onset and subsequent evolution
of the instability. Energy analysis shows that the terms of the constitutive equation
corresponding to apparent strain-rate thinning and material extensibility are responsible
for the flow destabilization. The instability is present at a wider range of flow conditions
when the material is more elastic and when the solvent contribution is smaller. The
instability is also promoted by increasing the confinement. Beyond the critical conditions,
asymmetric flow profiles vanish when the flow is so intense that thinning effects
are not important anymore. The critical Weissenberg number for instability inception
and cessation depends on material properties and geometry exponentially and linearly,
respectively. Furthermore, the instability arises even in a seemingly non-shear-thinning
fluid, i.e. one with constant shear viscosity in simple shear, when the solvent contribution
is minimal, because of the apparent thinning effect that is created by the convection of the
viscoelastic stresses. Finally, models with extension-rate thinning trigger the instability at
limited flow conditions, when the shear viscosity decreases with the shear rate, and the
normal stresses at the wake of the cylinder are still important. These results agree with
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previous experiments and simulations, and give new insights on the physical mechanism
that triggers this flow instability.

Key words: viscoelasticity

1. Introduction

The flow around a circular cylinder confined by two plates parallel to its axis of symmetry
and at equal distance from it is a common benchmark problem in non-Newtonian fluid
mechanics, which has been studied extensively in the past. The plethora of experimental
works (McKinley, Armstrong & Brown 1993; Shiang et al. 2000; Verhelst & Nieuwstadt
2004; Pipe & Monkewtiz 2006; Moss & Rothstein 2010; Ribeiro et al. 2014; James, Shiau
& Aldridge 2016; Zhao, Shen & Haward 2016; Haward, Toda-Peters & Shen 2018; Haward
et al. 2019; Haward, Hopkins & Shen 2020) allows comparison with numerical simulations
(Varchanis et al. 2020a), and testing of new constitutive models (Chilcott & Rallison
1988) and numerical schemes (Alves, Pinho & Oliveira 2001a; Oliveira & Miranda 2005;
Coronado et al. 2006; Ribeiro et al. 2014; Varchanis et al. 2019). This seemingly simple
arrangement includes distinct and complex kinematics in different regions of the flow. It
starts with planar Poiseuille flow in the entrance and then turns into compressive flow at the
upstream stagnation point on the cylinder, which diverts liquid to either gap between the
cylinder and the plates where shear and extension increase, as in contraction flow. The level
of increase depends on the blockage ratio, Bg, the ratio of the cylinder radius to half the
distance between the plates. At the downstream stagnation point, extension arises, which
intensifies with increasing material elasticity. Finally, far downstream of the cylinder, the
flow becomes one-dimensional again. This geometry is useful to understand flow in more
complicated configurations arising in numerous applications such as polymer processing,
microfluidics and flow in porous media (Kawale ef al. 2017; Carlson et al. 2022; Browne
et al. 2023).

Although the stable flow of a viscoelastic fluid around a confined cylinder is well
understood, the stability of the problem is still under investigation. In viscoelastic flows,
the combination of elasticity and curved streamlines (such as those that develop around the
cylinder) can give rise to purely elastic instabilities (McKinley, Pakdel & Oztekin 1996;
Pakdel & McKinley 1996). These instabilities occur even in the absence of inertia, as in
microfluidics, and in conditions under which generalized Newtonian fluids would remain
stable. Several elastic instabilities have been reported in the flow around a cylinder problem
under creeping flow conditions (Kenney et al. 2013; Shi et al. 2015; Nolan et al. 2016; Shi
& Christopher 2016; Zhao et al. 2016; Haward et al. 2018, 2019, 2020; Qin et al. 2019;
Hopkins, Haward & Shen 2020; Varchanis et al. 2020a). In this work, we will examine the
instability that leads to a lateral flow asymmetry in which more fluid passes from either
the upper or the lower gap between the cylinder and the walls. At critical flow conditions,
which depend on the fluid properties and the level of confinement, the symmetric flow state
around the cylinder becomes unstable and local fluctuations of the flow field begin to grow
in time, leading to a new asymmetric steady state. This asymmetric flow pattern has been
reported experimentally (Haward et al. 2020) and numerically (Varchanis et al. 2020a;
Kumar & Ardekani 2022), but here we tackle it through linear stability analysis. In all
previous works, a specific combination of viscoelasticity and shear-thinning was necessary
for the development of the instability, while absence of either one of these properties (i.e.
Boger or generalized Newtonian fluids) led to laterally symmetric flow. It was argued that
random fluctuations at the wake of the cylinder, where extensional stresses are high, cause
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minute variation of the shear rate. This, in turn, affects the viscosity when the material is
shear-thinning, and, finally, the flow rate increases at the gap between the cylinder and the
walls where the resistance to flow is lower. Surprisingly, re-symmetrization of the flow was
reported at extreme flow conditions when the flow rate (and the characteristic shear rate)
was so large that shear-thinning was too weak to cooperate with elasticity in generating
the asymmetric flow (Haward er al. 2020).

In this work, we perform linear stability analysis to provide further insight
on the conditions upon which the instability arises or vanishes. We solve the
steady two-dimensional (2-D) problem with a recently developed finite-element
methodology (Varchanis et al. 2019, 2020b, 2022). This approach is required because
both critical conditions, leading to asymmetric and then back to symmetric flow,
appear at high Weissenberg numbers (Wi ~ O(10 — 100)), which would lead to the
high-Weissenberg-number problem (HWNP) and failure to obtain accurate solutions with
other methods. After solving the steady problem, we apply a small perturbation to all
flow variables and solve the corresponding linearized equations for the most dangerous
eigenvalues and the corresponding eigenvectors. We examine three viscoelastic models:
the linear PTT model (L-PTT), the modified L-PTT model (m-L-PTT) and the exponential
PTT model (e-PTT) (Phan-Thien 1978). The predictions of the two L-PTT models are
similar in viscometric flows, except that the L-PTT model predicts shear-thinning in simple
shear, while the m-L-PTT model does not. In uniaxial extension, both models predict
extension-rate hardening followed by constant extensional viscosity at large extension
rates. By comparing the two models, we can examine the significance of shear-thinning.
The e-PTT model predicts elastic and shear-thinning effects in simple shear, and
extension-rate hardening followed by extension-rate thinning in uniaxial extension. Thus,
we can assess the importance of elastic extension by comparing the L-PTT with the e-PTT
model.

In §2, we present the formulation of the problem, the governing equations and
the corresponding boundary conditions. In §3, we briefly analyse the numerical
implementation and the solution procedure for both the steady and the linearized problem.
We discuss the results in § 4. The majority of the discussion involves the L-PTT model, and
we directly compare our results with previous simulations in the work of Varchanis et al.
(2020a), which is denoted with the abbreviation SV. We first present the main case along
with an energy analysis of the flow to examine the mechanism of the instability. Then,
we perform a parametric study on the material properties. The effect of the geometrical
confinement is also examined by varying the height of the channel. Additionally, we
provide simple stability criteria to predict the critical conditions. Then, we use the
m-L-PTT model to test whether shear-thinning as it is expressed in simple shear flow
is necessary for the instability. Finally, we are also interested in the effect of extension-rate
thinning and, thus, we present additional predictions with the e-PTT model. We draw
conclusions and make suggestions for future work in § 5.

2. Problem formulation

A schematic of the problem is shown in figure 1. A circular cylinder of radius R is
positioned at the centre of a channel of length 2L and height 2H. In the rest of the work,
a tilde () denotes a dimensional variable or parameter, whereas its absence refers to a
dimensionless quantity. The origin of the coordinate system is at the centre of the cylinder.

The channel extends from ¥ = —L to ¥ = L and from § = —H to y = H. We characterize
the level of confinement through the blockage ratio, which is the ratio of the cylinder
1001 A40-3
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Figure 1. Schematic of the 2-D problem of the flow around a cylinder.

radius R to half the channel height H, ie. Bg = R/H. The axis of the cylinder extends
along the neutral 7z direction. Viscoelastic fluid of constant density o enters the channel
at ¥ = —L and moves in the ¥-direction due to the application of a pressure gradient. The
volumetric flow rate per unit depth is Q = U(2H), where U is the average fluid velocity
in the channel far away from the cylinder. As the fluid approaches the cylinder, it passes
through the upper and the lower gap between the cylinder and the walls, and the flow
becomes two-dimensional.

For simplicity and to reduce the computational cost, we assume that the viscoelastic
material can be characterized by a single relaxation time Ayer. The fluid viscosity is 77 and
it accounts for the solvent (Newtonian) viscosity 7, and the polymeric viscosity 7, i.e.
N =1+ 1p.

We solve the governing equations in dimensionless form. To this end, we choose the
cylinder radius R, the average velocity U and the flow time scale R/U as characteristic

quantities. Finally, we choose the viscous scale 7U/R for the stresses. We study the
stability of the flow in the absence of inertia, because we are interested in microscale
flows, where the Reynolds number is negligible even at high flow rates (Haward et al. 2020;
Varchanis et al. 2020a). Consequently, the dimensionless equations for the momentum and
mass balance, and the constitutive model are

v.T=0, @1
Veu=0, 2.2)
Wit +f7 —(1—B)y =0, 2.3)

where V denotes the nabla operator, T = —PI 4 t + By is the total stress tensor, P is the

thermodynamic pressure, 7 is the viscoelastic stress tensor and y = Vu + (Vu)T is the
rate of strain tensor. Here, T denotes the transpose operator. Finally, the upper convected
derivative is defined as

v 0
r=a—r+u V- V) -1 —1- (V). 2.4)
The dimensionless numbers that arise are
;lrelf] 1 fxx - fyy

=R an—m 7 ] h=

=S

(2.5)
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The Weissenberg number Wi quantifies elastic effects and scales the elastic forces to
viscous forces. Additionally, A,; is the material relaxation time and ;Ch = U/R the
characteristic shear rate. Furthermore, § is the ratio of the solvent to the total viscosity.

The constitutive equation (2.3) is written and solved in terms of the viscoelastic stress
tensor. Our robust numerical method can circumvent the HWNP and converge without
the need to reformulate the viscoelastic equation (e.g. solving for the square root or the
logarithm of the conformation tensor). Equation (2.3) is a general form of the constitutive
equation in which we can use different viscoelastic models by changing the function
f = f(7). In the majority of this work, we will use the linear PTT (L-PTT) model which
combines shear-thinning and extension-rate hardening followed by constant extensional
viscosity at large extension rates . The function f(7) in dimensionless form for the L-PTT
model is

e Witr(t)

(1-p8) "
where ¢ is a parameter of the model that quantifies shear-thinning and the extensibility
of the polymer chains. With tr(t), we denote the trace of the viscoelastic stress tensor.

We will also use the m-L-PTT model, for which the function f is the same, but it also
multiplies the last term of the left-hand side in (2.3):

f(r) =1+ (2.6)

Wit +ft —f(1—B)y = 0. 2.7)

In the final part of the work, we use the exponential PTT model (e-PTT), which predicts
extension-rate thinning at large ¢, to elucidate the effect of this material response on the
onset of the instability. For the e-PTT model, () in dimensionless form is

) |:8 Wi tr(r)] 28)
T)=exp| ——|. .
1-=p)

We are particularly interested in the interplay between shear and elongation around the
cylinder. To this end, we compare the predictions of these three viscoelastic models in
steady shear and steady uniaxial elongation in Appendix A.

Regarding the boundary conditions, we apply the no-slip and no-penetration conditions
on the channel walls and on the cylinder:

u=0, ony==+H, and r = R. 2.9)

At the inlet (x = —L), we calculate and impose the fully developed velocity and stress
profiles by solving the one-dimensional (1-D) equations under the constant pressure
gradient that is obtained by specifying the volumetric flow rate through the channel. At
x = L, we apply the open boundary condition (Papanastasiou, Malamataris & Ellwood
1992; Dimakopoulos et al. 2012) to mitigate the effect of the outflow boundary.

First, we solve the steady 2-D equations (the base problem, (2.1)—(2.3)) by dropping the
time derivative in the constitutive equation. The result is the base (steady state) solution.
Then, we apply a small perturbation to all flow variables a = {uy, uy, P, Tyy, Tay, Ty},
in which the time dependence follows the usual ansatz, similarly to previous works
(Karapetsas & Tsamopoulos 2013; Pettas ef al. 2015; Pettas et al. 2019; Marousis et al.
2021):

a(xv )’» Z‘) = ab(x’ )’) +ap(-x’y’ t)’ ap(x’ y’ t) = 8eﬂtad(xa )7) (210)

The subscripts b and p denote the base and the perturbed variables, respectively, and ay
is the spatial disturbance of the variables (the terms that are calculated by solving the
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eigenvalue problem). The magnitude of the perturbation is § < 1 and A is the growth rate.
Under this formulation, when Re(1) < 0, the perturbation decays in time and the base
solution is stable. However, when Re(1) > 0 the perturbation grows, the system becomes
unstable and a new solution arises. Applying (2.10) in (2.1)—(2.3) and subtracting the base
solution, we obtain the linearized form of the equations for the stability problem:

V.T,=0, (2.11)
V.u,=0, (2.12)

v ,
Wiz, +fotp +fptp — (1 = By, = 0. (2.13)

Every term in the linearized equations is of order O(5). Here, ¥p is the linearized upper
convected derivative, and fj, and f,, are the base and linearized functions f(7), respectively.
The details of the equations are given in § B.1. For the linearized problem, we apply the
no-slip and no-penetration boundary conditions as in the base problem, and we set all
perturbed variables to O at the inlet and outlet, i.e. a,(x = —L) = a,(x = L) = 0, because
we have verified that the chosen channel length is long enough, and the inlet and outlet
conditions do not affect the flow closer to the cylinder, which is the focus of our present
examination.

3. Numerical implementation
3.1. Finite-element formulation

We solve the governing equations with our recently proposed stabilized finite-element
formulation, which permits the use of linear interpolants for all variables (Varchanis et al.
2019, 2020b, 2022). The main advantages of the method are the decreased computational
cost, the increased numerical stability and the simplicity of the code in comparison to
mixed finite elements. The stabilization scheme is based on a Galerkin/least squares
method (Hughes, Franca & Hulbert 1989) for viscoelastic flows (Castillo & Codina
2014; Varchanis et al. 2022; Wittschieber, Demkowicz & Behr 2022), which handles
the velocity—pressure coupling, copes with the hyperbolic nature of the constitutive
equation and preserves the ellipticity of the momentum equation even in the absence of
solvent viscosity. Finally, we use a YZB shock-capturing scheme (Bazilevs et al. 2007) to
accurately calculate abrupt stress changes due to the viscoelastic nature of the material
especially at large Wi. We apply the same stabilization schemes in both the base and the
linearized problem, as required by the standard procedure to derive the linear stability
equations. The weak forms of the equations for the base and linearized problems are given
in §§ B.2 and B.3, respectively, along with details regarding the added stabilization terms.
We discretize the computational domain with triangular linear elements. An example of
the computational mesh is shown in figure 2 zoomed in at the rear stagnation point of the
cylinder. The mesh is refined close both to the cylinder and the wake at y = 0, where we
expect large normal stresses to arise. We choose a rather long channel (in proportion to
its height) to avoid entrance and end effects. The size of the domain for the majority of
the simulations is x € [—-L, +L], y € [-H, +H] with L = 125, H = 10. We have verified
that the length L of the channel is sufficient for the base velocity and stresses to fully
develop at the wake of the cylinder, even at very large values of Wi. This was done by
solving the main case (discussed below) with different sizes of the domain L, where we
found identical results. In the parametric study with respect to the blockage ratio Bg, the
height of the channel changes and the distribution of the elements changes accordingly.
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Figure 2. Zoom-in of the computational mesh used for the simulations. The cylinder is depicted in white.
The image refers to mesh M2, as defined in table 1.

3.2. Solution procedure

The solution procedure is as follows. At each Weissenberg number, we first solve the
discretized base problem with the Newton—Raphson method and the resulting linear
system with the direct solver MUMPS. We use the PETSc package for the computations
(Balay et al. n.d.; Balay et al. 1997), which are terminated when the norms of the residual
and the correction vector are less than 1078, Then, we apply the perturbation to the base
solution (2.10), we subtract the base solution and we discretize the linearized equations.
This leads to a generalized eigenvalue problem Ax = ABx, where matrix B is the mass
matrix which contains the contributions from the time derivative terms. This matrix is
singular because the time derivative of the pressure is absent from the incompressibility
constraint and of the velocity from the momentum balance because of the creeping
flow assumption. To overcome this problem, we apply the shift and invert technique
(Christodoulou & Scriven 1988; Natarajan 1992), and we solve the equivalent problem:

(A—oB)"'Bx = 0x. (3.1

Here, o is the shift value and 8 = 1/(4 — o). This technique is also efficient for calculating
eigenvalues close to the selected shift position, o. We solve the eigenvalue problem
with SLEPc (Herndndez, Roman & Vidal 2003, 2005) for the eigenvalues A that will
determine the stability of the base solution. We use the default Krylov—Schur solver

and we set the tolerance to 10710, At each Wi, we follow a similar procedure as in
previous works (Karapetsas & Tsamopoulos 2013; Pettas et al. 2015, 2019; Marousis
et al. 2021). Specifically, we perform a series of shifts, i.e. searches for eigenvalues along
the imaginary axis, and we calculate 50 eigenvalues at each shift. Initially, we search at
the origin of the complex plane (0.0, 0.0i) where we expect the real part of the most
dangerous (leading) eigenvalue to become positive, i.e. Re(d) > 0. Consequent shifts
occur at (0.0, 0.8max(Im(1))), where max(Im(4)) is the maximum imaginary part of
all calculated eigenvalues. We are only interested in positive imaginary parts because the
eigenvalues appear in conjugate pairs. We repeat the process for a maximum of 10 shifts
and as long as the calculated max(Im(4)) changes between shifts. In this way, we scan the
whole eigenspectrum of interest.
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Mesh Elements Nodes 8y on cylinder (upstream) 8y on cylinder (downstream)

M1 158400 79 920 0.013 2.7 %1073
M2 281600 141 760 0.010 2.0x 1073
M3 633600 318 240 6.5 x 1073 1.3x 1073

Table 1. Details of the computational meshes used throughout this study.

®)

-10 0 10 20 -10 0 10 20
X X

Figure 3. (a) Contours of the base u, velocity component close to the cylinder, (b) contours of the base 7,
stress component at the wake of the cylinder. Mesh M2 has been used.

4. Results
4.1. Main case, L-PTT model: B = 0.05, & = 0.05, Bg = 0.1

We use the L-PTT model to characterize the viscoelastic material. Following the numerical
simulations in SV (Varchanis et al. 2020a), we set the parameters 8 = 0.05, ¢ = 0.05 for
the main case. Varchanis et al. (2020a) also set 77, = 0.015 Pa s, which, for 8 = 0.05,
leads to 7, = 0.285 Pa s. Finally, the measured relaxation time of their test fluid is

Arer = 0.145 s. The geometrical blockage ratio is Bg = 0.1, as in their experiments and
simulations. We performed this study with three different meshes to assess the accuracy
of our computations. In table 1, we provide details about each mesh.

In figure 3, we present contours of the base solution for the u, ; velocity and the 7,y
stress component for Wi = 20.5. The base velocity remains symmetric with respect to
y = 0. The 7, 5 stress component extends for several radii along y = O at the wake of the
cylinder. This base result is qualitatively similar in the whole range of parameters that we
examined.

In figure 4(a), we present the real part of the leading eigenvalue, Re(1), against the
Weissenberg number. The results are almost identical for all three meshes. At small Wi, the
eigenvalue is negative and the base (symmetric) solution is stable. The eigenvalue becomes
positive at a critical Weissenberg number, Wi, & 20.5, exactly where the simulation
by Varchanis et al. (2020a) predicts the onset of the instability. We should note that,
experimentally, the instability is observed later, and this is attributed to the multiple
relaxation times that the material possesses. However, for simplicity and to reduce the
computational cost, we employ a single relaxation time. Beyond Wi., the eigenvalue
increases, which means that the instability will evolve faster. In figure 4(b), we present the
complex plane at Wi, i.e. the real and corresponding imaginary part of each computed
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Figure 4. (a) Real part of the leading eigenvalue against Wi for three different meshes: M1, black line with
triangles; M2, red line with circles; M3, blue line with stars. (b) Complex plane at Wi, for three different
meshes: M1, black triangles; M2, red circles; M3, blue stars. The properties of the material are ¢ = 0.05,
B = 0.05. The blockage ratio is Bg = 0.1.

eigenvalue. We note that the eigenspectrum converges with mesh refinement, and, even
more so, its more crucial part, Re(1) — 0. The leading eigenvalue is the only positive one,
equal to Re(1) = 3.2 x 107%. Its imaginary part is Im(1) = 0, indicating a bifurcation to
another steady non-oscillating solution. This result also agrees with that of Varchanis et al.
(2020a), where they report a pitchfork bifurcation to another steady solution. Since the
predictions of the critical condition with all three meshes coincide, a test more sensitive
than examining convergence of just the base flow, the following analysis is performed with
the mesh M2 to preserve accuracy and keep the computational cost relatively modest.

To understand the flow field of the new solution, we plot contours of the leading
eigenvector of the u, velocity in figure 5(a) at Wi. = 20.5. Each component of the
eigenvector is scaled with the L2-norm of the total vector. The eigenvector is positive
at the upper gap and negative at the bottom gap between the cylinder and the wall.
Hence, the velocity (and thus the flow rate) tends to increase at the upper gap, and this
implies that more fluid passes from there. This is also evident from the streamlines of the
perturbation solution which are shown with black lines and arrows. Of course, the sign
of the eigenvector is arbitrary and the opposite configuration (of increasing velocity at the
lower gap) is equally probable. However, the anti-symmetry of the eigenvector with respect
to y = 0 will always lead to the asymmetric flow field.

In figure 5(b), we plot contours of the u, velocity, which is a superposition of the base
and the perturbed solution (see (2.10)). The contours correspond to a large dimensionless
time ¢t = 20 000, so that we allow the perturbation to evolve significantly. We observe the
desired result of flow asymmetry with respect to the y-axis, which resembles the result of
Varchanis et al. (2020a). We should note that the obtained flow profile is not identical with
the results reported by Varchanis et al. (2020a) because linear stability analysis provides
information only about the onset and not the evolution of the instability.

The dominant term of the leading eigenvector is the 7y, stress component (more than one
order of magnitude larger than the velocity), which we plot in figure 5(c). The perturbed
Tyr.d component is also antisymmetric with respect to y = 0 and this causes the elastic
birefringent strand to deviate from y = 0. This result is visualized in figure 5(d), where we
plot the superimposed t,, component (see (2.10)), as we did for the velocity at ¢ = 20 000.
The strand is distorted and the stress field becomes asymmetric at the wake of the cylinder.
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Figure 5. (a) Contours of the leading eigenvector of the u, velocity. (b) Contours of the superimposed solution
of the uy velocity (2.10). (¢) Contours of the leading eigenvector of the ., stress component. (d) Contours of

the superimposed solution of the ty, stress component (2.10) The properties of the material are ¢ = 0.05,
B = 0.05. The blockage ratio is Bg = 0.1 and Wi = 20.5.

Similar results about the principle stress difference (PSD) are reported in the work by
Varchanis et al. (2020a).

To provide insight into the mechanism of the instability, we perform an energy analysis
similar to previous works (Joo & Shagfeh 1991, 1992; Byars et al. 1994; Ganpule &
Khomami 1999; Grillet et al. 2002; Smith et al. 2003; Karapetsas & Tsamopoulos 2013;
Pettas et al. 2015, 2019). To this end, we take the inner product of the linearized momentum
equation (i.e. (2.11)) with the perturbed velocity vector u,. Combining equations (2.11) and
(2.13), we obtain an expression for the rate of change of the perturbed polymeric energy of
the system, dE,,/dz, which is a combination of purely elastic energy production, dE,;/dz,
and purely viscous dissipation, dVD/dt, of the material:

dE,; dVD

dr = d_l‘ + ©Opr + Cpsy + Gpuy + Cpsy + Gpuy + Prel + Guis. 4.1)
The term dE,;/dt indicates the onset of instability when it becomes positive so that
when the perturbation grows in time, more elastic energy is stored. The definitions of
all functionals and the methodology for obtaining (4.1) are analysed in Appendix C. In
figure 6, we plot each term against the Weissenberg number. As expected, dE,;/dt becomes
positive at Wi, = 20.5. As a result of the increasing energy of the system, more energy
can be dissipated by the viscous component so that dVD/d¢ also increases. However, the
two terms are not equal and their difference, i.e. dE),/dt, remains positive for Wi > Wi.
For visualization purposes, we plot dE,;/dt instead of dE,/dt as an indicator of instability,
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Figure 6. Energy terms (4.1) against Wi. The properties of the material are ¢ = 0.05, 8 = 0.05. The
blockage ratio is Bg = 0.1.

because it is much clearer when it becomes positive and how it increases with Wi in the
scale of figure 6.

The positive terms on the right-hand side of (4.1) are responsible for the onset of the
instability (excluding dVD/dr):

Wi
Ppst = —/ [V : (—ub - pr)} -updV, (4.2a)
o

Ppuz = / {V . [%wg cTht+TH Vup):H “u,dV, (4.2b)
b

el = — / [v . (];ﬁrb)] CupaV. (4.20)
b

All three terms arise from the constitutive model indicating that the instability is caused
by the viscoelastic nature of the material. The second term, ¢,2, is a coupling between
base stresses and velocity gradient perturbations. It is physically related to material
extensibility (the upper convected derivative terms introduce normal stresses in shear
flows). The third term is derived from perturbations of the viscoelastic function, f, which in
turn affect the effective material properties (polymeric viscosity and relaxation time). The
first and most dominant term, g1, is a combination of base velocity and stress gradient
perturbations. It is noteworthy that this term is negligible in commonly observed elastic
instabilities, such as those in Taylor—Couette and Taylor—Dean geometries (Joo & Shaqgfeh
1992). Here, @5 is related to the convection of the viscoelastic stresses. As discussed by
Varchanis & Tsamopoulos (2022) and Yokokoji et al. (2023), when a fluid parcel moves
along a curved streamline, the convection of viscoelastic stresses causes the stress and
strain rate to vary out of phase locally. The two quantities are not in equilibrium for some
time which is proportional to the relaxation time, i.e. the time that is required for the
material to adapt to the change. This lag creates an apparent shear-thinning effect in the
flow past a confined cylinder. Thus, ¢, can be seen as a measure of apparent viscoelastic
thinning effects. According to this analysis, we also expect non-shear thinning fluid models
(e.g. Oldroyd-B or FENE-CR) to exhibit steady asymmetric flow states as long as the
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Figure 7. Energy terms (4.1) against Wi evaluated at (a) |x| < y < H and x> + y> > 1 (upper gap between the

cylinder and the wall), (b) |y| < x < 10R, 2+ y2 > 1 (downstream region). The properties of the material are
e =0.05, B = 0.05. The blockage ratio is Bg = 0.1.

value of the viscosity ratio § is small (since B is also related to the relaxation time
Arel = np/ G= n(l—p)/ G which quantifies the apparent shear-thinning effect). At low 8
values, variations in the flow resistance at the two sides of the cylinder can be significant
in regions where the apparent shear-thinning effect is important, i.e. where strain rate
changes are abrupt, and the stress must vary considerably to reach its new appropriate
value. However, high § values suppress any variations in flow resistance at the sides of the
cylinder and only lead to symmetric steady states. This will be examined further in § 4.4.
It should be noted that Boger fluids in experiments are usually characterized by large §, so
the 2-D instability will be absent in these cases.

Moreover, we are interested in identifying the region around the cylinder where the
instability arises. Thus, we also evaluate the terms of (4.1) at the two important parts of the
domain: (a) at the upper gap between the cylinder and the channel wall (for |x| <y < H
and x2 4+ y2 > 1); and (b) close to the rear stagnation point (]y| < x < 10R, x4 y2 >1).
We plot the results in figure 7. In figure 7(a), we note that the terms at the gap between the
cylinder and the wall are an order of magnitude smaller (0(107%)) compared with their
values at the whole domain. However, in figure 7(b), we can see that the terms at the wake
of the cylinder are those that contribute the most to the total result. Consequently, the
instability is triggered at the rear stagnation point where large perturbations of tensile
stresses at the wake (figure 5c) cause fluctuations in the strain rate. The continuous
interplay between imbalanced stress and strain rate can be sustained when the material is
shear-thinning, because the viscosity is continuously changing as well. The process goes
on until fluctuations propagate at the cylinder-wall gaps, where the result of the instability
(the lateral flow asymmetry) becomes evident.

4.2. L-PTT model: parametric study

4.2.1. The effect of the viscosity ratio, B

The effect of the solvent is examined by varying the solvent to total viscosity ratio S.
In figure 8(a), we plot the real part of the leading eigenvalue against the Weissenberg
number for ¢ = 0.05, Bg = 0.1 and three different values of S. In all three cases,
the eigenvalue is negative at small Wi and it becomes positive at the respective
Wi, as seen in table 2. After reaching a maximum (Re(A4,,4¢) = 0.019 for g = 0.05,
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Figure 8. (a) Real part of the leading eigenvalue versus Wi for 8 = 0.05, black line with triangles; 8 = 0.06,
red line with circles; 8 = 0.07, blue line with stars. (b) Wi, and Wi, against 8. Wi, by SV (Varchanis et al.
2020a), black triangles. Present work (linear stability, denoted as LS): Wi, red line with circles; Wic,, blue
line with stars. In all cases, ¢ = 0.05, Bg = 0.1.

B 0.0 0.03 0.05 0.06 0.07 0.073
Wi, 12.6 159 20.4 244 32.7 39.9
Wi, 142.4 81.1 62.3

Table 2. Wi, and Wi, at each simulated 8 case.

Re(Apay) = 2.7 x 10~ for B = 0.07), it decreases and eventually becomes negative again
at a second critical Wi, see table 2. The appearance of Wi, is expected at very intense flow
conditions (at large Wi), where the shear rate is so large that the shear-thinning effect
becomes negligible (solvent shear stresses >> viscoelastic shear stresses) and steady
states with different flow resistance at the sides of the cylinder cannot be supported. Thus,
the flow re-symmetrizes, even though elasticity increases. Flow re-symmetrization has also
been reported experimentally in the viscoelastic flow around a cylinder by Haward et al.
(2020).

With increasing 8, the (Newtonian) solvent contribution is amplified and shear-thinning
is reduced. As a result, larger Wi is required for non-Newtonian characteristics (elasticity
and shear-thinning) to become significant. Thus, Wi, increases with 8, while the leading
eigenvalue is smaller at fixed Wi. Moreover, the symmetric flow restabilizes at smaller
Wi, . In figure 8(b), we plot Wi, and Wi,, against 8. Again, we observe that Wi, increases
with B, but Wi., decreases. We compare our results with those by SV (Varchanis et al.
2020a). Varchanis et al. (2020a) did not report Wi, but regarding Wi, our predictions
match their numerical values. In the limit 8 — 0.075, the two critical Weissenberg
numbers merge and the instability is not triggered at all at higher viscosity ratios. Overall,
for higher 8, the asymmetric flow instability is observed for a smaller range of Wi (or flow
rate experimentally), because elasticity and shear-thinning are equally important only at
limited flow conditions and instability is triggered when both are present.

Additionally, we determine the wall shear rate at the minimum gap width between the
cylinder and the walls by a simple mass balance:

~ 6;;chBR
yw,gap = m (43)
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Figure 9. Viscosity versus shear rate in log-linear plot. Predictions of the L-PTT model for ¢ = 0.05: 8 = 0.06
(blue line) and B = 0.07 (pink dashed line). Critical shear rate for the onset of the instability, y,, gap.c (black
triangles), and critical shear rate for re-stabilization, ;w ap.c, (red circles), for each case.

In figure 9, we plot in log-linear scale the flow curve (i.e. shear viscosity versus shear rate)
for B = 0.06 and B = 0.07. We obtain these plots by solving the constitutive equation
(2.3) under steady shear. Naturally, the curves are very similar. We also provide the shear
viscosity at the critical values ;W, gap,c (black triangles) and ;W, gap,cs. (red circles) at which
the instability arises and vanishes, respectively In both cases, at y,, g, .- the viscosity

decreases with the shear rate, but at y,, ., ey the slope of the flow curve is significantly
reduced. As noted before, shear-thinning is weak at this flow rate and the instability
vanishes. Moreover, with increasing B, the two critical values of y,, ,,, come closer, so
that the symmetric flow is unstable at more limited conditions.

4.2.2. The effect of the extensibility parameter &
The effect of elasticity is examined by varying the extensibility parameter €. In the limit
& — 0, the L-PTT model reduces to the Oldroyd-B model in which the macromolecular
chains are infinitely extensible. In figure 10(a), we plot the real part of the leading
eigenvalue against Wi for 8§ = 0.05, Bgr = 0.1 and three different values of e. The
predictions are similar to those of increasing 8. With increasing &, the material is
less extensible and more shear-thinning. It is only at large Wi that elasticity introduces
sufficient fluctuations at the rear pole of the cylinder. Thus, Wi, increases. For larger ¢,
the leading eigenvalue is smaller and the symmetric flow is restabilized at smaller Wi,
see table 3. In figure 10(b), we plot Wi, and Wi, against €. Here, Wi, increases with ¢,
but Wi,, decreases so that the range of flow rates for which the instability is observed is
smaller. Again, our results for Wi, agree with SV (Varchanis et al. 2020a). In the limit
& — 0.09 and beyond, elasticity is weak at small Wi, and it cannot contribute as required
to generate the instability. For the same ¢, at larger Wi where elasticity is important,
shear-thinning is weak, and their combined effect cannot induce the elastic instability.
Thus, no flow asymmetry is observed.

We refer to the flow curve again (figure 11) to justify the interplay between elasticity and
shear-thinning. We show the predictions of the L-PTT model for ¢ = 0.07 and ¢ = 0.085,
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Figure 10. (a) Real part of the leading eigenvalue versus Wi for ¢ = 0.05, black line with triangles; ¢ = 0.07,
red line with circles; & = 0.08, blue line with stars. (b) Wi, and Wi, against &. Wi. by SV (Varchanis et al.
2020a), black triangles. Present work (LS): Wi, red line with circles; Wi, , blue line with stars. In both cases,
B =0.05 Bg =0.1.

e 0.002 0.03 0.05 0.07 0.08 0.085 0.088
Wi, 7.7 14.1 20.4 30.5 39.7 47.9 58.5
Wi, 145.1 109.5 90.0 72.0

Table 3. Wi, and Wi, at each simulated ¢ case.

along with the critical values of the shear rate as in figure 9. We note again that the value
of ¥,y eap,¢, 18 such that the slope of the flow curve is small and shear-thinning is weak.
With increasing €, the critical shear rates tend to merge, and, in this case, the instability
cannot be triggered at all.

4.2.3. The effect of the confinement Bg = R/H

We investigate the effect of the geometry through the blockage ratio Bg. By decreasing
the height of the channel H, By increases and the flow becomes more confined between
the cylinder and the plates increasing locally the shear rate and the extension rate at the
rear stagnation point. In figure 12(a), we report Re(1) against Wi for three different Bg.
The material properties are 8 = 0.05, ¢ = 0.05. For larger Bg, the leading eigenvalue
increases more abruptly and Wi, is smaller. The leading eigenvalue also decreases faster
after reaching a maximum so that Wi, is smaller too, see table 4. In figure 12(b), we plot
Wi, and Wi,, against Bg, and we observe the same behaviour: both Wi, and Wi., and the
range of flow rates leading to asymmetric fluxes decrease with Bg. Our results for both
critical Wi agree with SV (Varchanis et al. 2020a).

In contrast to the cases of § and &, Wi, decreases with Bg. From (4.3), the wall shear rate
at the minimum gap between the cylinder and the wall increases with B, even though the
critical characteristic shear rate decreases (chh, .= Wi/ ;1,@1). As a result, shear-thinning
is more intense at the gap when the flow is more confined and the instability is triggered
earlier. In figure 12(b), we note that for Bg = 0.25, the critical Wi increases slightly. In
such confined flow conditions, shear-thinning is intense at small Wi, while elasticity is
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Figure 11. Viscosity versus shear rate in log-linear plot. Predictions of the L-PTT model for g8 = 0.05,
& = 0.07 (blue line) and ¢ = 0.085 (pink dashed line). y,, 4, . (black triangles) and y,, 44, ., (red circles)

for each case.
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Figure 12. (a) Real part of the leading eigenvalue versus Wi for Bg = 0.10, red line with circles; Bg = 0.15,
black line with triangles; Bg = 0.20, blue line with stars. (b) Wi, and Wi, against Bg. SV (Varchanis et al.
2020a): Wi, black triangles; Wi,,, green squares. Present work (LS): Wi, red line with circles; Wi,, blue line
with stars. The material properties are ¢ = 0.05, g = 0.05.

still weak. A slight increase of Wi results in higher elasticity, while the slope of the flow
curve decreases (see figure 13). Thus, there is a point beyond which elasticity produces
sufficient fluctuations, and, simultaneously, the shear viscosity is effectively affected by
these fluctuations. At even higher Bg, the perturbations are confined at the rear stagnation
point. Then, even when elasticity is very important, shear-thinning is not because the shear
rate is very large. As a result, the flow resistance and, consequently, the lateral asymmetry
is minimal and the instability is absent.

In figure 13, we plot in log-linear scale the flow curve of the L-PTT model for
B =0.05, & =0.05. With symbols, we denote y,, ,,, . (at the onset of the instability)

and )A'/Jwvgap’cz (at flow re-symmetrization) for every case of Bg. Therefore, when the
instability is triggered (black triangles), the material is shear-thinning. However, the flow
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Bg 0.04 0.05 0.075 0.10 0.15 0.20 0.25
Wi. 633 465  28.0 20.4 14.1 11.8 12.3
Wi, 133.0 75.1 37.9

Table 4. Wi, and Wi, at each simulated By, case.
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Figure 13. Viscosity versus shear rate in log-linear plot. Predictions of the L-PTT model for 8 = 0.05,
& = 0.05 (blue line). y,, 44, . (black triangles) and y,, 44, ., (red circles) for every simulated By case.

becomes symmetric again (red circles) when shear-thinning is not so strong. Qualitatively,
the slope at the onset of the instability varies from —0.06 to —0.034, while at flow
re-symmetrization, it is three times smaller in magnitude and ranges from —0.018 to
—0.013.

4.3. L-PTT model: Dependence of Wi, and Wi on material properties and geometry

In this section, we provide simple formulae to estimate the conditions under which the
instability arises. First, we provide an expression for Wi, in terms of the material properties
and the level of confinement. From figures 8(b), 10(b) and 12(b), we observe that Wi,
depends exponentially on §, ¢ and Bg. Thus, we propose the following expression:

Wi, = glc1BtcaetesBr) 4 ca, (4.4)

where cp, ¢y, c3 are the coefficients that measure the importance of B, e and Bpg,
respectively, on Wi.. The coefficients are evaluated through nonlinear regression on the
data points which we have already obtained through linear stability analysis. The values
are summarized in table 5.

In figure 14, we present the predictions of (4.4) against the results from linear
stability analysis. The agreement is excellent except for very small ¢ (figure 14b), where
shear-thinning is negligible at a large range of shear rates. Note that the equation is
accurate for the L-PTT model, but its purpose is to provide a quick estimate for the
critical conditions and not accurate values especially outside of the ranges that have been
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Cl (o) c3 Cc4
56.94 47.65 —32.49 11.49

Table 5. Values of coefficients of (4.4), obtained through nonlinear regression.
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Figure 14. Wi, against: (a) B; (b) €; (¢) Bg. Predictions of (4.4) (black line, Fit) and results from linear
stability analysis (red symbols, LS).

examined here. For other constitutive equations, similar expressions can be defined and
tested against numerical and experimental results.

We follow a similar approach for the second critical Weissenberg number. In this case,
a linear expression is more appropriate:

Wic2 = —c1B — cpe — c3BR + 4. 4.5)

Again, c1, ¢z, c3 are the coefficients that measure the importance of B,¢ and Bpg,
respectively, on Wi.,. Through nonlinear regression, we obtain the values of the
coefficients (table 6).
The predictions of (4.5) nicely fit the numerical values of linear stability (figure 15).
Next, we examine the predictions of the linear stability analysis against the criterion for
elastic instabilities proposed by McKinley et al. (1996) and Pakdel & McKinley (1996).
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cl c c3 cq
6089.9 3157.5 1171.0 782.2

Table 6. Values of coefficients of (4.5), obtained through nonlinear regression.
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Figure 15. Wi, against: (a) B; (b) €; (c) Bg. Predictions of (4.5) (black line, Fit) and results from linear
stability analysis (blue symbols, LS).

These authors argue that the combination of elastic extensional stresses along a streamline
and the curvature of these streamlines can extend a macromolecular chain asymmetrically
between streamlines. This is also affected by the intensity of the shearing part of the flow.
In the case of the cylinder, at the rear stagnation point, where the streamlines are curved
and material undergoes large extension, a perturbation of the stress field is likely to occur.
This alters the local shear rate and, due to the shear thinning nature of the material, the
shear viscosity is affected. Under certain conditions, when shear thinning is strong enough,
the perturbation can grow and cause a global flow instability, in which local variations
in the flow resistance propagate to the rest of the domain. The authors’ criterion finally
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involves an interplay between normal stresses and curved streamlines:

1/2
( relU fxx ) M (46)
= Mc. .

Rc nOVRc

Here, R. is the radius of curvature of the streamlines, g is the zero-shear-rate viscosity and
y Re = = U/R. is a characteristic local deformation rate. Additionally, M, is a critical value
which must be surpassed so that local fluctuations grow and the instability is triggered.
Following the authors’ suggestion (McKinley ez al. 1996), we can describe R, as a function
of the height of the channel and the radius of the cylinder:

1 a

b 1
R. R H R

Here, a and b are constants which characterize the sensitivity of the curvature of the
streamlines to the geometrical aspect ratio. We can define the zero-rate relaxation time,

/Nlrelso, and the zero-rate first normal stress coefficient Ef/l,() =2(1 — ﬁ)ﬁo;lrel,o- For a more
precise description of the criterion, we must take into account that the material properties
are strain-rate dependent, so that ;lrel()j) =y ()7)/277,,()7) and ¥, (37) = fxx(;)/)jz (Tyy =
0 in the L-PTT model). Considering all the above, and that Wi = A, OU /R the criterion
becomes

. - 172
AU AR

(a+ bB R))/ _— > M

( R ke Mo Y10 ‘

/2
<Wz(a + bBR) el Wita + bB )M ) > M. 4.8)
0

rel,0 ljl’l,

Aot W 12
= Wita+bBr) [ =20 -p)) >m.
/lrel,O '1/1 0

This can be reformulated at the critical conditions to

=d + b'Bg, 4.9
Wi, a + b Bg (4.9a)
d = a—v2(1—,3)’ (4.9b)
;
b = w (4.9¢)
M, ’ '
7 A 2
M.o=M,| —50 _Creo . (4.9d)
l1/] (VRc) /lrel(VRc)

In figure 16, we plot the inverse of Wi, against Bg. We note that the points can indeed be
approximated by a line, but nonlinearities arise for Bg > 0.2. This happens because Wi,
slightly increases at Bg = 0.25 (see discussion in § 4.2.3). By fitting the linear regime, we

finda = 1.48 x 1073 and ' = 0.437.
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Figure 16. 1/Wi, against Bg. Numerical results (black triangles) and linear fitting (red line).

B VRe(s™) M,

0.040 5576.9 3.586
0.050 5035.0 3.968
0.075 4448.1 4.487
0.100 4273.1 4.669
0.150 4391.8 4.544
0.200 4885.1 4.089

Table 7. Local deformation rate and the critical value for instability at a given Bg.

We can scale (4.7) by setting a = 1. In our case, the viscosity ratio is g = 0.05 and
we find M. = 928.5 (see (4.9b)) and b = 294.2 (see (4.9¢)). Finally, we can calculate the
local deformation rate for each Bg and M, through (4.9d). To do this, we need the values
of the material properties, g (;Rc) and i,el(;Rc), which can be calculated numerically
or analytically (Alves, Pinho & Oliveira 20015) from the steady shear predictions of the
L-PTT model. We report the results in table 7. Here, M, increases with Bg, it reaches
a maximum at Bg = 0.1 and then decreases again. The opposite is true for ; re- In this
way, we know the critical value for instability as a function of the geometry and the flow
conditions of the problem.

Local evaluation of the Pakdel-McKinley criterion can also be insightful in
understanding the regions which are sensitive to elastic instabilities. Calculation of the
local parameter M has been performed previously by Cruz et al. (2016) and particularly
for the flow around a cylinder by Peng et al. (2023). Following these works, we define
the dimensionless local Pakdel-McKinley parameter as a function of locally calculated

quantities:

Wilu| 74 \'/?

M= = , (4.10)
Rc,loc |r|F

where |u| is the velocity magnitude, R joc = |u|3/ |lu x (Du/Dt)| is the radius of
curvature, T, = u! - 7 - u/|u|? is the tensile stress in the streamwise direction and |t|p
is the Frobenius norm of the stress tensor. In figure 17, we present contours of M} at
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Figure 17. Contours of the Pakdel-McKinley parameter around the cylinder. The material and geometric
parameters are B = 0.05, ¢ = 0.05, Bg = 0.1 and Wi = 20.5.

the region around the cylinder for the main case (8 = 0.05, ¢ = 0.05, Bg = 0.1), at
Wi = 20.5, beyond the critical conditions. The quantities are calculated using the base
solution. The parameter is large at the cylinder-wall gaps, due to the small radius of
curvature of the streamlines. However, its largest values are located close to the rear
stagnation point, because of the large shear and tensile stresses, as well as the small radius
of curvature. Clearly, both regions are prone to instability, but, as suggested by the energy
analysis, the perturbations are more pronounced at the stagnation point and the instability
will be triggered there.

4.4. Predictions of the m-L-PTT model: is a shear-thinning flow curve necessary?

In §4.1, we revealed the energy terms that contribute to the instability, stating that the
convection of the viscoelastic stresses is the most important one. This term creates an
apparent shear-thinning effect because it forces the stresses to vary out of phase with
the strain rate. Any seemingly non-shear-thinning model predicts this behaviour, despite
predicting constant shear viscosity in simple shear, because the material derivative term
is absent in this ideal flow. Because of this, we expect the asymmetric flow instability to
arise under conditions where this apparent shear-thinning term is significant, i.e. when
the solvent contribution is minimal. To test this hypothesis, we repeat the analysis, this
time using the modified L-PTT model (m-L-PTT) (Coates, Armstrong & Brown 1992;
Oliveira 2009). The governing equations are the same, except for (2.3) being replaced
with (2.7). The predictions of the model in viscometric flows are similar to L-PTT, but
the shear viscosity is constant in simple shear; see Appendix A. We examine the effect of
the viscosity ratio B for ¢ = 0.05 and Bg = 0.1. For small §, the model indeed predicts
the asymmetric flow instability, but at larger Wi, (figure 18). For example, for § = 0,
Wi, = 19.0, while in the case of the L-PTT model, Wi, = 12.6. This is an expected
result because the shear-thinning response is not as strong as in the L-PTT case. Here,
Wi, increases abruptly with 8 and the instability vanishes beyond § =~ 0.025 when the
solvent severely affects the apparent shear-thinning response. For the same ¢ and Bg, the
L-PTT model can reproduce the instability up to 8 & 0.075. The eigenvector of the leading
eigenvalue at the critical conditions is similar to that of figure 5. The dominant energy
terms are also the same as in the L-PTT case. Thus, the instability is the same in nature,
but it is limited by the weak apparent shear-thinning response of the material.
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Figure 18. Wi, against B using the m-L-PTT model. In all cases, ¢ = 0.05, Bg = 0.1.

Since the instability is triggered only for small 8, it should not be observed in typical
experiments involving Boger fluids, because their solvent viscosity is usually large. For
example, McKinley et al. (1993) report in Boger fluids a three-dimensional (3-D) periodic
flow instability at the wake of the cylinder, but no 2-D asymmetric flow. However, if
such an instability can be triggered at small 8, then we expect this 3-D instability to
arise at Wi, ~ O(1), well before the 2-D asymmetric flow instability (Wi, ~ O(10)).
If additionally, the 3-D instability can be sustained at large Wi, we might observe both
instabilities simultaneously; all these need to be examined.

4.5. Predictions of the e-PTT model: the effect of extension-rate thinning

In the final part of this study, we examine the effect of extension-rate thinning by replacing
the L-PTT with the e-PTT model. An e-PTT material is slightly more shear-thinning, but
more importantly, less elastic compared with an L-PTT material with the same remaining
properties. Because of extension-rate thinning, normal stresses at the wake of the cylinder
are significantly smaller and decrease with Wi. Thus, we expect lateral asymmetry to occur
only when Wi is large enough so that the material is shear-thinning, but simultaneously
small enough for elastic tensile stresses to be important. We test the e-PTT model at
B = 0.05 and Bg = 0.1 for different . At small ¢, the two models predict similar Wi,.
However, as we described above, the instability conditions for the e-PTT model are limited
and the instability vanishes for ¢ > 0.02. The material is not elastic enough and normal
stresses at the wake of the cylinder are unable to produce significant local fluctuations. In
figure 19, we plot the leading eigenvector of the u, velocity for ¢ = 0.03 at Wi = 30. Note
that the perturbations are confined at the wake of the cylinder. There is a slight tendency
for the fluid to pass preferably through the lower gap between the cylinder and the wall.
However, the magnitude of the velocity there is very small and the flow asymmetry is very
weak. For larger ¢ or larger Wi, the eigenvector is even more confined at the rear stagnation
point and no asymmetry is evident.

5. Conclusions

In this work, we investigated the 2-D stability of the flow of a viscoelastic fluid around a
confined cylinder. We reproduced the elastic instability leading to lateral flow asymmetry
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Figure 19. Leading eigenvector of the u, velocity for 8 = 0.05, ¢ = 0.03, Bg = 0.1 at Wi = 30 for a fluid
following the e-PTT constitutive model.

by means of linear stability analysis. This instability requires a combination of elasticity
and shear-thinning, and it causes more fluid to pass through either the upper or the lower
gap between the cylinder and the channel walls. Either one of the two configurations is
equally probable. The transition occurs through a supercritical pitchfork bifurcation to
the new steady solution. We performed an energy analysis, and we concluded that the
instability is induced by coupling the base velocity with stress gradient perturbations and
the base stress with velocity gradient perturbations. These terms arise from the upper
convected derivative terms of the constitutive equation, indicating an instability which
is absent in inelastic fluids. A third term that contributes mildly to the instability is the
perturbation of the viscoelastic function, f, which is translated to perturbations of the
effective material properties. The main contribution to these terms comes from the rear
stagnation point, and that is where the instability is initiated, because of large tensile stress
perturbations there.

We performed parametric studies on the material properties 8, ¢ and the blockage ratio
Bg. Larger 8 (more Newtonian contribution) delays the instability and the critical Wi
increases. The same holds true for larger ¢ because the polymer chains are less extensible,
and it is rare for them to cross streamlines. With increasing Bg, the shear rate at the
gap between the cylinder and the walls increases for a given Wi (or flow rate). Thus,
shear-thinning becomes important at smaller Wi and Wi, decreases. In general, a certain
level of shear-thinning and elasticity is necessary for flow asymmetry to arise. Our results
for Wi, agree with previous studies (Varchanis et al. 2020a) in all cases.

Moreover, beyond a limiting value of the parameters (B, ¢, Br), the instability is
not observed at all because the interplay between elasticity and shear-thinning is not
established. Thus, we extended this work by reporting a second critical Weissenberg
number, Wi,,, at which the symmetric flow is re-stabilized. This happens at large Wi
where the flow is very intense and the shear rate is so large that the shear viscosity does
not practically decrease anymore. For lower 8 or ¢, the material is more elastic and it can
compensate for weaker shear thinning so that Wi, increases. Here, Wi, increases with
decreasing Br as well, because the shear rate at the gap increases more mildly with the
flow rate and shear-thinning is relevant at a wider range of Weissenberg numbers.

Additionally, we provided simple expressions for the critical Weissenberg numbers
in terms of the material parameters and the level of confinement. Here, Wi, depends
exponentially on the parameters (8, e, Br), while Wi, decreases linearly with (8, &, Bg).
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The predictions match the numerical values that we obtained from linear stability. Similar
expressions can be formulated for other viscoelastic models in the future. Moreover, we
discussed the elastic instability criterion developed by McKinley et al. (1996). We reported
the critical value M, for the onset of the instability, depending on the blockage ratio Bg.
Furthermore, we calculated the M value using local quantities and we found that the wake
of the cylinder is more prone to instability, thus verifying the energy analysis result.

It is important to note that shear-thinning is not present only in models that predict
decreasing shear viscosity in simple shear flow. An apparent shear-thinning effect is
generated by the material derivative of the viscoelastic stresses even in models that are
considered non-shear-thinning (Varchanis & Tsamopoulos 2022). Thus, these models can
also predict asymmetric flows around a cylinder, though at limited flow conditions. We
verified this statement with the modified L-PTT model which replicates a Boger fluid in
simple shear. The instability arises at larger Wi, and quickly vanishes with increasing
B, because the apparent thinning effect is relatively weak and very sensitive to the
contribution of the solvent.

Finally, we examined the predictions of the e-PTT model to assess the effect of
extension-rate thinning. For small ¢, both models predict similar results. With increasing ¢,
the instability vanishes in an e-PTT fluid, because tensile stresses at the rear of the cylinder
decrease abruptly with Wi. At flow conditions where the shear viscosity decreases, elastic
stresses are not strong enough to produce fluctuations at the wake of the cylinder. Thus,
elasticity and shear-thinning cannot effectively interact, and the asymmetry in the flow is
minimal.

In the future, we would like to extend this work to other elastic instabilities in the flow
around a confined cylinder, such as those that arise due to the presence of inertia (Kenney
et al. 2013; Shi et al. 2015) or more complex 3-D structures (McKinley et al. 1993).
Additionally, it would be interesting to examine more complex and practical geometries
such as arrays of cylinders (Smith et al. 2003; Shi & Christopher 2016) or even instabilities
in porous media (Kawale et al. 2017; Carlson et al. 2022; Browne et al. 2023).
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Appendix A. Model predictions in viscometric flows

The predictions of the three viscoelastic models in steady shear and uniaxial elongation
are presented in figure 20. The material parameters are B = 0.05, ¢ =0.05 and
Ao = 0.145 5. In steady shear (figure 20a), the L-PTT and e-PTT models offer similar
shear-thinning response, while the m-L-PTT predicts constant shear viscosity. However,
the e-PTT model predicts extension rate hardening and then extensional rate thinning at
large extension rate (figure 200). The L-PTT and m-L-PTT models predict extension rate
hardening and constant extensional viscosity at large ¢.
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Figure 20. (a) Shear viscosity in steady shear flow, (b) extensional viscosity in steady uniaxial flow.
Predictions of the three models: L-PTT (black), m-L-PTT (red), e-PTT (blue). The material parameters are
B =0.05, ¢ =0.05and A,y = 0.145 s.

Appendix B. Details of the equations
B.1. Strong form of the linearized equations
Equations (2.11)—(2.13) read in detail:

—VP,+V.1,+BV.y,=0, (B1)
with y, = Vu, + Vu].

V.u,=0, (B2)

Wildty, +up - VT, +up -V, — Vug c Ty — Vu; “Tp — Tp-Vup — 1, V)
+bep +prb - (- ,B)Yp =0.
(B3)

The term AT, corresponds to the time derivative (A is the eigenvalue). This term contributes
to matrix B of the eigenvalue problem (see (3.1)).
The viscoelastic functions fj and f, for the L-PTT are

Wit Wit
=1 eWi r(rb)’ - eWi I’(Tp). (Bda.b)
1-8) Ol )]
While for the ePTT model, after linearization of the perturbed term:
eWitr(typ) eWitr(tp)
fo= [—} s o= (B5a.b)
(1-8) P (1-8)
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B.2. Weak form of the base equations
The weak form of the base problem reads:

/ T:Vwd2 + tLSIC/ (V-w)(V -u)ds2

(B6)
risce / —(1— B(Vw) + (Vw)™] : [con, EQ1 AL = 0,
/q(V -u)ds2 + TLSME/ Vg (—V.T)ds2 =0, B7)
/M : [con, EQ]dS2 + TLSME/ (-V-M).(-V.-T)ds2
+TLSCE/ [Wi(u - VM) + f(T)M] : [con, EQ]dS2 (B8)

+rDCS/ (VM|V1)||con, EQ|| d2 = 0.

Here, con, EQ stands for the constitutive equation, (2.3). Additionally, w, g, M are the
basis functions for the velocity, pressure and viscoelastic stresses, respectively. Equations
(B6)—(B8) represent a least-squares stabilization scheme and tzsic, TLSME, TLSCE> TDCS
are stabilization terms that depend on the element size and on the local element
quantities. Such a least-squares stabilization generates terms which act similarly to
standard stabilization terms used in viscoelastic flow problems. For example, the
term Tt suE f Vg-(—V - T)ds2 resembles the PSPG term that is used to tackle the
velocity—pressure coupling. The term t75cE f [Wi(u- VM)] : [con, EQ]dS2 acts as a
SUPG stabilization for the hyperbolic constitutive equation. Additionally, the LSCE term

TLSCE f —(1-=B)I(Vw) + (Vw)T] : [con, EQ]dS2 preserves the elliptic nature of the
momentum equation even in the absence of solvent viscosity (8 = 0). It acts as a DEVSS
term without the need to introduce extra unknowns for the projection of the velocity
gradient. Finally, the extra term tpcs f (VM|V T)||con, EQ|| dS2 allows us to circumvent
the HWNP by capturing abrupt viscoelastic stress changes without the need to reformulate
the viscoelastic equation in terms of the log (or square root) of the conformation tensor.
For more details, the interested reader may refer to Varchanis et al. (2019, 20205, 2022).

B.3. Weak form of the linearized equations
Similarly, the weak form of the linearized equations is

[ 7o vwag +ase [ (7m0 up an

+11SCE / —(1 = BL(VW) + (Vw1 : (Widt), 4 con, EQ, stab) d$2 = 0, ®)
/q(V - up) d2 + ‘ELSME/ Vg-(V-T,)d2 =0, (B10)
/M . (Widz, + con, EQ, stab) d$2 + ‘ELSME/ —(V-M)-(V-T,ds2
+TLSCE/ [Wi(up - VM) + fp,M] : (Widzt,, + con, EQ, stab) d§2 (B11)
+TDCS/ (VM|V )| |WidT), + con, EQ, stab|| d$2 = 0,
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con, EQ, stab represents the constitutive equation for the stability problem (B3), excluding
the time derivative term. The Widt, terms correspond to the time derivative. These terms
contribute to matrix B of the eigenvalue problem (see (3.1)). The stabilization scheme is
analogous to the base problem. Note that we use the base solution for the least squares
stabilization terms (for example, the LSCE term in (B11)) similar to previous works with
stabilized finite elements (Mittal 1970, 2010).

Appendix C. Energy analysis terms

To obtain the terms for the energy analysis, we take the inner product between the
linearized momentum equations (see (B1)) and the perturbed velocity:

—/Vpp-updv+/(v-r,,)-u,,dv+/(ﬁv-;>p)-updV=o. (C1)

Under creeping flow conditions, the time derivative only appears in the constitutive
equation. Thus, we need a perturbation term that indicates stability or instability of the
base flow if it decays or grows in time, respectively. To this end, write the constitutive
equation (B3) as

Wi
) =——l[/l‘rp—l—ub-th—l—up-V‘tb—VubT-‘tp—Vu;-tb — 75+ Vu,
fb _ (C2)
—7p - Vup] _f£7b+ d /3))7 =0
! o fy P
Combining equations (C1) and (C2), we obtain
dE,
? = Qpr + Ops1 + Cpul + Ops2 + Ppu2 + Prel + Puis, (C3)

where dE), /dt is the rate of change of the perturbed energy associated with the viscoelastic
stresses. The functional terms on the right-hand side represent couplings between base and
perturbed velocity and stress components and their gradients. Any terms that are positive
contribute to the increase of the perturbed energy, thus promoting instability. However,
any negative terms cause dissipation of the energy. The expression for each term is

A _ [T (V0% av [[v-(Yias,)].
F_/[V <fb ot ﬂ updv_f[v <fb hp)] v &

Cpr = — / VPp < Up dv, (CS)

Ppst = —/ [V . (mub . V'L'p>i| - u,dV, (C6)
Jo
Wi

Ppul = _/ [V . (—up . V‘tb>j| < Up dv, (C7)
Jo
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¥ps2 = / {V : [?(Vug Tyt Tpe V“b)]} “updV, (C8)

wpuzzf{v |:f—(VuT rb—l—rb-Vup)]}-updV, (C9)
b

oa=— [ [v : (];—th)} CuydV. (C10)
o 1-5 .
wu,s—/{ [<ﬂ+ % )y,,]} u,dv, (C11)

where fj, and f,, are given for the L-PTT and ePTT models by (B4) and (B5), respectively.
All terms are calculated after integrating by parts and applying the divergence theorem. In
our problem, the surface integrals vanish because u;, = 0 on all boundaries.

As argued by Ganpule & Khomami (1999), dE,,/dt is not the appropriate term to indicate
instability when there is no solvent contribution (8 = 0) or when the problem involves a
free surface. A more general approach is to split the viscoelastic stress tensor into a purely
elastic and a purely viscous part:

T, =X+ (- Py, (C12)

The rate of change of the perturbed viscoelastic energy is then

dE, WidX, Widy,
= [ () o= [ [ (32w

The first term on the right-hand side is the rate of change of the perturbed purely elastic

energy:
dE WidX,
e _ / v. (X Cuy V. (C14)
dr fb ot

The second term on the right-hand side of (C13) is the rate of change of the perturbed
purely viscous energy, which, after integration by parts and application of the divergence
theorem, can be split into a surface and a volume integral:

dE, dvD

F = Qjump — T, (C]S)
where
w,ump—(l—ﬂ)/ (Wl Yy, )dr, (C16)
dﬂ—/( - )—— Vu,dv. Cl17)
e P fo ot (

The term @jy,, vanishes in this problem because u, = 0. dVD/dt is the rate of change of
the viscous dissipation associated with the viscous part of the polymer. The inception
of an elastic instability can be tracked through the dE,./df term. When dE,/df > O,
the perturbations grow in time, the elastic energy of the system increases and the
instability is triggered. Simultaneously, the viscous dissipation term, dVD/dt, is expected
to grow, because the perturbed system has higher energy and, thus, more room for energy
dissipation. Finally, combining (C3), (C13)—(C17):

dE, dvD
ar + Qjump = F + ©pr + Cps; + Cpuy + Opsy + Ppuy + Prel + Puis- (C18)
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