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Abstract

Projective planes of order n with a coUineation group admitting a 2-transitive orbit on a line of length at
least n/2 are investigated and new examples are provided.

2000 Mathematics subject classification: primary 51E15; secondary 20B25.

1. Introduction

A classical subject in finite geometries is the investigation of a finite projective plane FI
of order n admitting a coUineation group G which acts 2-transitively on a point-
subset ff of size v of n . It dates back to 1967 and it is due to Cofman [9]. It is easily
seen that either

(i) the structure of a non trivial 2-(u, k, 1) design is induced on 6, or
(ii) & is an arc, or

(iii) & is a contained in a line.

This paper focus entirely on the case when C is a contained in a line. Starting from
Cofman [10], several papers have been devoted to this case. In [10], Cofman proves
that n is Desarguesian and SL(2, n) < G, under the assumptions that v = n + 1
(that is, @ is the entire line), n ^ 1 mod 8 and G contains involutory homologies.
Some years later, Schulz [56] and Czerwinski [13] essentially proved that the unique
translation planes with a coUineation group acting 2-transitively on the line at infinity
are either Desarguesian or Liineburg planes. Actually, they proved this characteriza-
tion under additional assumptions that ruled out the possibility for G to contain Baer
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collineations. Later, such additional assumptions were totally dropped with the use of
the classification of finite 2 -transitive groups. In 1981, Korchmaros [44] investigated
the general case v = n + 1 when n = 2r. Apart from the Desarguesian case, the
author proves that either G ^ Sz(n) or G = PSU(3, n).

Also the case v = n has been investigated extensively. In 1986, Ganley and Jha
[19] proved that if v = n and. n is a translation plane and / is the line at infinity, then n
is actually a semifield plane. The case v = n was investigated by Hiramine [29] in
1993, without any assumption on the structure of FI. Apart from a few numerical
values of n, Hiramine shows; that the socle of G, where G denotes the group induced
by G on 0, is an elementary abelian p-group for some prime p, the plane II has
order n = pr and either Go < TL(1, pr) orSL(2, pr) <G0< TL(2, pr). In 1999,
Biliotti, Jha and Johnson classified the translation planes II for v = n, n ^ 26, when /
is the line at infinity and G < ATHX, pr). In 2000, Ganley, Jha and Johnson [20]
classified the triple (n , 0, Cj) for v=n, when n is a translation plane, / is an affine
line and G is non solvable. Recently, Biliotti and Francot [4] investigated the general
case v > n, determining all the possible collineation groups.

The problem of classifying the triple (11, 0, G) when 0 eland the length v of 0
is smaller than n, but close ti3 n , is open. An initial result in this direction is the paper
of Biliotti and Montinaro [8] devoted to the case v = n — 3. In that paper no nontrivial
cases arise.

The aim of this paper is to investigate the finite projective planes II of order n
admitting a collineation groUp G which acts 2-transitively on a subset 0 of a line /
of n , under the assumption v > n/2. In particular the following results are obtained.

THEOREM 1.1. Let Yl be a projective plane of order n and let 0 be a 2-transitive
G-orbit of length v on a line. If v > n/2 and G is almost simple then one of the
following occurs:

(1) v -n + l, and one of the following occurs:

(a) n = q,Tl = PG(2, q) andSL(2, q) < G;
(b) n = q1,q= 22s+\ s > 1, and Sz(q) < G;
(c) n=q\q = 2*, $ > 1, PSU(3, q) < G and G fixes a point ofW;

(2) v = (n + l)/2, n odd, cmd one of the following occurs:

(a) n is the Hall plarie of order 9 or its dual, \0\ = 5 and SL(2, 5) < G;
(b) n = 2q + l,q = 3 mOd4, q £ 1, \0\ = q + 1 and SL(2, q) < G;

(3) v = n/2, n even, and one of the following occurs:

(a) n is the Johnson-Walker translation plane of order 16 or its dual, and
PSL{2,1) <G;
(b) n = 2(q + I), q = 3 mod 4, \0\=q+\ and SL(2, q) < G.
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We remark that the result (1) is already known (see [4] and its references for related
examples). So, our task is to prove the results (2) and (3). We also remark that there
are no known examples for the cases (2b) and (3b).

THEOREM 1.2. Let Ylbe a projective plane of order n and let & be a 2-transitive
G-orbit of length v on a line. If v > n/2 and G is of affine type then one of the
following occurs:

(I) v = n + I, n even, and either

(a) Go < TL{\,v),or

(b) v e {5\ 72, II2, 192, 232, 292, 592};

(II) v = n and either

(a) Go < TL{\,v),or
(b) SL(2, pd'2) <G0,d even, or

(c) v e {24, 32, 34, 36, 52, 72, 112, 192, 232, 292, 592};

(IQ) n/2 < v < n and either

(a) G < ATL{\, v), or
(b) v e {2\ 26, 32, 33, 34, 36, 52, 72, II2, 192, 232, 292, 592}.

We remark that the results (I) and (II) are already known (see [4] and [29] for related
examples). So we have to prove the result (HI). We stress that, while there are no
known examples for the case (nib), examples of type (Ilia) occur in the Desarguesian
planes of order 8 and 9, in the Lorimer-Rahilly plane of order 16 and in the Johnson-
Walker plane of order 16 and in their duals. A complete description of these examples
is given in section 3.

Clearly, Theorems 1.1 and 1.2 together cover all possibilities for a 2-transitive
collineation group G.

The present paper is structured as follows. In section 2 we fix notation and the
background of the problem and we recall some results which are useful for proving
Theorems 1.1 and 1.2. In section 3, a complete description of the examples provided
in the paper is given. In section 4, we give some preliminary reductions for the
structure of the 2-transitive collineation group G. Sections 5 and 6 are devoted to the
proofs of Theorems 1.1 and 1.2, respectively. Finally, in section 7, our main problem
is investigated under the additional assumption that n is the projective extension of a
translation plane.

2. Background

The group-theoretical and geometrical notation used in this paper is standard. For
the required background concerning finite groups, the reader is referred to [1, 22]
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and [34]. In particular, for the finite groups admitting a 2-transitive permutation
representation we have the following classification.

THEOREM 2.1. Let H be a finite group with a 2-transitive permutation represen-
tation of degree v and let S = soc(ff) be the socle of H. Then one of the following
occurs:

(1) Sis non abelian simple, and S <H < Aut 5 where S and v are as follows:

(a) Av with v > 5;
(b) PSL(d, q),d>2,v = (qd - \)/{q - 1) and (d, q) £ (2, 2), (2, 3);
(C) PSU(3,q), v = qi + \,q>2;
(d) Sz(q), v = q2+\,q = 22e+l > 2;
(e) 2G2(qY, v = q3 + l,q = 3 2 < ! + 1 ;
(f) Sp(2n, 2),n>3,v = 22""1 ± 2""1;
(g) PSL(2,U),v=U;
(h) Mathieu groups Mv, v = 11, 12, 22, 23, 24;
(i) Mu, v = 12;
(j) A7, u = 15;

(k) HS (Higman-Sims group), v = 176;
(1) Co3 (Conway's smallest group), v = 276.

(2) 5 is an elementary abelian group of order v = pd, where p is a prime. Identify G
with a group ofaffine transformations x i—> xs + c ofGF(p)d, where g e Go.
Then one of the following occurs:

(a) G0<TL(l,pd);
(b) SL(a, q) < Go, where a>2 and q" = pd;
(c) Sp{a, q) < Go, where a > 4, a even, and q" = pd;
(d) G2(q)' < Go where q6 — pd and q is even;
(e) Go = A6 or A7, pd = 24;
(f) SL(2, 3) < Go or SL(2, 5) < Go, v = p2 and p = 5, 7, 11, 19, 23, 29, or

59, or v = 34;
(g) Go has a normal extraspecial subgroup R of order 25 and Go/R < S5;
(h) Go = SL(2, 13), pd = 36.

See for example [40].
A finite 2-transitive group is said either almost simple or ofaffine type according to

whether its socle is a nonabelian simple or an elementary abelian p-group for some
prime p , respectively.

The background concerning finite projective planes may be found in [33]. Let
n = {&, _Sf) be a finite projective plane of order n. If G is a collineation group
and P e &> (I e _£f), we denote by G(P) (by G(/)) the subgroup of G consisting
of perspectivities with the centre P (the axis /). Also, (P, 1) = G(P) n L(l).
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Furthermore, we denote by G(P, P) (by G(l, /)) the subgroup of G consisting of
elations with the centre P (the axis /).

The following theorems deal with projective planes II of order n with a collineation
group G acting 2-transitively either on the points of a line, or on the points of a line
minus one.

THEOREM 2.2. Let n be a projective plane of order n with a collineation group G
acting 2-transitively on the points of a line. Then one of the following occurs:

(1) 11 = PG(2,n)andSL(2,n)<G;
(2) n = q2,q = 22s+\ s>l, and Sz(q) < G;
(3) n = q\q = 22s,s > 1, PSUQ, q) < G and G fixes a point of TI';
(4) n = ph — 1, p an odd prime, and G < AFL(1, v);
(5) n = ph - 1, ph 6 {52, 72, II2, 192, 232, 292, 592}, and G1 is sharply transitive

on I except possibly for ph = 52 or 292.

For a proof see [4, Theorems 5.2 and 5.5].
Note that, while the there no known examples corresponding to the cases (3)-(5),

the case (2) really occurs in the projective extensions of the Liineburg planes.
We now consider the case where G fixes an incident point-line pair (L, I) of II and

acts 2-transitively on / — {L}.

THEOREM 2.3 (Hiramine). Let n be a projective plane of order n with a collineation
group G that fixes an incident point-line pair (L,l) ofU. and acts 2-transitively on
I — {L}. Then n = pd, p prime, and G contains a normal elementary abelian p-group
acting regularly on I — [L]. In particular, one of the following occurs:

(1) Go<rL(l,pd);
(2) SL(2, pd'2) <G0,d even;
(3) pd e {24, 32, 34, 36, 52, 72, 112, 192, 232, 292, 592}.

In the following result, the two previous situations are analyzed under the further
assumption that II is the projective extension of a translation plane.

THEOREM 2.4. Let n be the projective extension of a translation plane of order n
and let (L, I) be an incident point-line pair of FI, and let G be a collineation group
of Tl fixing the line I. Then one of the following occurs:
(1) IfG acts 2-transitively on I then I is the line at infinity and either

(a) PI is Desarguesian, or
(b) n is a Liineburg plane.

(2) Ifn ^ 26, G fixes the point L and acts 2-transitively on I — {L}, where I is the
line at infinity, then either
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(a) n is a Desarguesian, or
(b) FT is a Generalized Twisted Field plane.

(3) Ifn i {34, 36, 112, 192, 292, 592}, G is non solvable, G fixes the point L and acts
2-transitively on I — [L], where I is an affine line, then either

(a) FI is Desarguesian, or
(b) n is one of the three Walker planes of order 25, or
(c) FI is the Dempwolff plane of order 16.

See for example [38, Theorem 4.3.16] for a proof of the case (1), see [5, The-
orem 8.1] for a proof of the case (2) and see [20, main theorem] for a proof of the
case (3). Clearly all these cases really occur. Note that a classification of the projective
extensions of translation planes, when / is an affine line and one of the situations (1)
or (3) of Hiramine's theorem occurs, is not available. Nevertheless, there are several
examples corresponding to each of these situations (see [6]). In particular, in the
examples referring to the situation (3), A5 is involved in Go in many cases.

3. Examples

In this section we provide some examples. It is worth noting that, while Examples 1
and 2 are already known, Example 3 is new.

EXAMPLE 1. Let n be a projective plane of order n, with n < 9, and let G be a
collineation group of n . Suppose that G induces a group G which has a 2-transitive
point-orbit of length v on a line 1. If n > v > n/2, then one of the following
occurs:

(1) Tl = PG(2,4), G = AGL(l, 3) and there is exactly one 2-transitive G-orbit of
length 3 on/;
(2) n = PG(2, 5), G = AGL(l, 3) and there are exactly two 2-transitive G-orbits

of length 3 on /;
(3) n = PG(2, 7), G = 5L(2, 3), in particular G = AGL(l, 4) and there are

exactly two 2-transitive G-orbits of length 4 on I;
(4) n = PG(2, 8), G = AGL{\, 4) and there are exactly two 2-transitive G-orbits

of length 4 on/;
(5) II = PG{2, 8), G S AGL{\, 7) and there is exactly one 2-transitive G-orbit of

length 7 on /;
(6) n = PG(2, 9), G = AGL{\, 5) and there are exactly two 2-transitive G-orbits

of length 5 on/;
(7) n = PG(2, 9), G = SL(2,5), in particular G = A5 there are exactly two

2-transitive G-orbits of length 5 on /.
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In particular, each of these cases really occurs.

Let n be a projective plane of order n, with n < 9, and let G be a collineation
group of n inducing a group G which has a 2-transitive point-orbit of length v on a
line /. Assume that n > v > n/2. Clearly v > 3.

If v — 3 then 3 < n < 6. Actually, n < 6 by [33, Theorem 3.6]. Hence either
n = 4 or n = 5. If II = PG(2, 4) then any subgroup G of /TL(2,4) isomorphic to
D6 = AGL(\, 3) and containing the involution induced by the Frobenius automor-
phism of GF(4) fixes two points on / and acts 2-transitively on the remaining ones.
Thus (1). If II = PG(2,5) the group SL(2, 5) induces A5 on / and any G = D6

inside A5 has two 2-transitive point-orbits on / both of length 3, and hence (2).
If v = 4 then 4 < n < 8. That is n = 5, 7 or 8. The are no examples in PG(2, 5),

since the stabilizer in PGL(2, 5) of three distinct points on a line is trivial. In
PG(2,7) there is exactly one example: the group G = SL{2, 3) has two 2-transitive
point-orbits on /, both of length 4. Therefore (3). In PG(2, 8) there is exactly one
example: a subgroup G of PVL(2, 8) isomorphic to AGL{\, 4) has two 2-transitive
point-orbits on /, both of length 4. Hence (4).

If v = 5 then 5 < n < 9. If n = 7 or 8 then II = PG(2,n). Nevertheless
these cases cannot occur, since 5 \ \PFL(2, n)\. Therefore n = 9. Then either n
is Desarguesian or II is one of the Hall planes by [58]. It is easily seen that there
exists a subgroup G = AGL(l, 5) of PFL(2, 9) splitting / in two 2-transitive orbits,
both of length 5 when II is Desarguesian, and hence (6). If n is the Hall plane of
order 9 then the group induced on the line at infinity by the full translation complement
of FI is described in the proof of Lemma 5.2 of [18]. It is easy to check with [24],
by using such a description, that the group induced on the line at infinity does not
contain solvable subgroups with a 2-transitive permutation representation of degree 5.
Nevertheless, the group G = SL(2, 5) induces A5 on the line at infinity and this one
is split in two 2-transitive i45-orbits, both of length 5 (see [6]). Thus (7).

Ifu = 6 t h e n 6 < n < 9. If n = 7 or8 then II = PG{2,n). Thus G < PVL(2, n)
such that G is 2-transitive orbit on / of length 6. Clearly 5 | \G\. This gives a
contradiction, since 5 f \PTL(2, n)\ for n = 7 or 8. So n = 9. Nevertheless, this case
cannot occur by [8, Theorems 25 and 35], since n — v = 3.

If v = 7 then 7 < n < 9. That is n = 8 or« = 9. If n = 9 then 17 = PG(2, 9)
by [57, Lemma 8.2]. So G < PVL(2, 9). This gives a contradiction since 7 | \G\
while 7 f \PTL{2, 9)|. Thus n = 8 and hence II = FG(2, 8). Let / be a line of
n = PG(2, 8). Clearly PTL{2, 8) acts on /. Pick any Z7 in PTL{2, 8). Then Z7

fixes two points Px and P2 on / and Z7 acts regularly on / — {P\, P2}. Furthermore,
NprL(2,s)(Zi) = Du.{a), where a is the collineation of II "induced" by a Frobenius
automorphism of GF(8). Set 6 = I - [Px, P2) and G = NpneMZri. Then
G = i4GL(l, 7) acts 2-transitively on 6 and v = 7. Thus (6).
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If v = 8 then n = 9. Then n = PG(2, 9) by [57, Lemma 8.2], since 7 | \G\ as G
acts 2-transitively on & and v = 8. This gives a contradiction, as above.

EXAMPLE 2. In the Johnson-Walker translation plane II of order 16 or its dual,
there exists an affine line / on which a group G isomorphic to PSL(2, 7) has two
2-transitive orbits of length 7 and 8.

This example follows by [15, Theorems 4.8^.10 and Section 5].

EXAMPLE 3. In the Lorimer-Rahilly translation plane of order 16, in the Johnson-
Walker translation plane of order 16 and in their duals, the group G = AGL(l,8)
admits a 2-transitive orbit & of length 8 on a line.

Let n be the Lorimer-Rahilly translation plane of order 16 or the Johnson-Walker
translation plane of order 16 or one of their duals. Denote by /<» the line at infinity
of n . Let T be the full translation group of n and let H = Z7 be a subgroup of the
translation complement fixing the point O of n . Clearly H fixes a point P on l^.
Let Ti be the subgroup of translations of II of direction P. Then 7"i fixes the line
PO and it acts regularly on PO — [P). Furthermore, H acts on T\ — {1} and on
PO — [P, 0} in the same way, by [51, Proposition 4.2]. In particular, H leaves a
subgroup T2 of Tx of order 8 invariant, since To — {1} = PG(3, 2) and Z7 fixes exactly
a non incident point-plane pair in PG(3, 2) by [50, Table I]. Clearly Z7 is transitive
on r, - {1}. Set & = OTl and G = T2.H. Then G = AGL(1, 8) acts 2-transitively
on & and \0\ = 8.

We remark that in the other known projective planes of order 16 there are no
examples of 2-transitive orbits of length 8 on a line (see [52, Table 1]).

4. Preliminaries

Let G be a coUineation group having an orbit & of points of FI on which G acts 2-
transitively. We call G a 2-transitive G-orbit, or just a 2-transitive orbit. Furthermore,
we say that & is non trivial if \&\ > 1. Note that v > 3 since G is 2-transitive. In
what follows, we assume that v > 5. It is a plain that n > 8.

The following numerical and group-theoretical lemmas will be useful hereafter.

LEMMA 4.1. Let t>, j > 0, and pr, r > 0, be two powers of primes such that
pr = 3 mod 4. Then the following holds:

(1) lft> = 2pr + 1 then j = 1.
(2) Ift' = 2{pr + 1) then t = 2, r = 1 and p is a Mersenne prime.
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PROOF. The assertion (2) follows by [54, Result (Bl.l)], since t = 2. Hence,
assume that t> =2pr + l. Then t> = 3 mod4, since pr = 3 mod4. Thus t = 3 mod4
and j is odd. In particular 2pr = (t - l)[(tj - \)/{t - 1)]. Hence 2pr~h = t - 1 and
ph = (t> — l)/(t — 1), 0 < h < r, since t and j are odd. Assume that 0 < h < r.
Then p | gcd (t - 1, (tJ - \)/{t - 1)). Hence p \ j by [54, Result P1.2(ii)].
But this contradicts [54, Result A8.5(l)]. Assume that h = r. Then t = 3 and
(3' - l)/(3 - 1) = pr. Then (p, r, j) = (11, 2, 3) by [60, Theorem 3]. This gives
a contradiction, since pr — II2 and II2 ^ 3 mod4. Hence h = 0 and y = 1. This
proves the assertion (1). •

A class of solutions to the first Diophantine equation is furnished by the Sophie-
Germain primes (r — 1) (see [55]).

Denote by dj(H), j > 0, the primitive permutation representation degrees of a
group H in increasing order, so do(H) denotes the minimal one. If v is a 2-transitive
permutation representation degree of H then do(H) < v.

LEMMA 4.2. Let H be a2-transitive non-abelian simple group such that do(H) = v.
Then either dj(L) > do(L) + J2d0(L)for j > 0, or dx{L) = do(L) + 1 and one of
the following occurs:
(1) H = A5 and v = 5;
(2) H = PSL(2,7)andv = l;
(3) H = PSL(2, 11) and v = 11;
(4) H = Mnandv = 11.

PROOF. The assertion is true when H is sporadic by a direct inspection of [11].
Elementary calculations with [59] and with [42] show that the assertion is also true
when H is exceptional of Lie type. When H is alternating, the assertion follows
by a straightforward calculation by [34, Satz IV.4.6] for v > 9 and by [11] for
5 < v < 9. Assume that H is simple classical group. Then the assertion follows by
[34, Haupsatz H.8.27] when H = PSL(2, q). Furthermore, the assertion follows by
[25] and [49] when H = PSL(3, q). It remains to resolve the cases H = PSL(d, q),
d > 4, and H = Sp(d, 2), d = 2h and h > 3, by the list given in Theorem 2.1.
As a consequence of the structure theorems given in Kleidman and Liebeck [43],
every maximal subgroup of H lies in the classes U?=1^ or in the class y , where
the structure of every member of % is shown in [43, Tables 3.5.A-C]. Let M be a
maximal subgroup of H such that [H : M) > do(H). If M e y , then \M\ < q3d

by [46]. Then [H : M] > 2v + 1 by an easy calculation. If M e Uf=1^ then a
straightforward calculation of [H : M] with [43, Tables 3.5.A-C], with the structure
proposition members of % given in [43, Chapter 4], in conjunction with [12] and with
Lemma 4 and Table II of [45], shows that the assertion is true also in this case. •
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LEMMA 4.3. Let H be a2-transitive non-abelian simple group such that do(H) < v.
Then the following holds:

(1) dj(H) > v + V2vforj > 1;
(2) 2d0(H) > v + 1, except

(a) H = Alt where 2do(H) =v-\andv= 15;
(b) H = A8, where 2do(H) =v+landv = 15;
(c) H = PSU(3, 5), where 2do(H) = v - 26 and v = 126.

PROOF. In Table 1 the non abelian simple groups such that do(H) < v are listed
(see Theorem 2.1):

TABLE 1.

PSL(2
PSL(2
PSL(2
PSL(2
PSU(3
A7

A&

Mn
HS
Sp(2h,

5)
7)
9)
11)

,5)

2),h > 3

v = 6
u = 8
v = 10
v = 12
v = 126
v = 15
u = 15
v = 12
v = 176
u = 2/-1(2" + 1)

dQ(H) = 5
do(H) = 7
*( f l ) = 6
<*o(H) = l l
db(ff) - 50
do(H) = 7

do W = 8
do(H) = 11
db(H) = 100
do(H) =2"-l(2h- 1)

The assertion (1) easily follows by a direct inspection in [11] of the primitive
permutation representations of the groups H listed in Table 1 and not isomorphic
to Sp(2h,2), h > 3. When H = Sp(2h, 2), h > 3, a similar argument to that
in Lemma 4.2, / / being classical, also proves the assertion in this case. Now the
assertion (2) can be easily read off from Table 1 •

Let N be the kernel of the action of G on & and set G = G/N. We may also
assume that G is the minimal preimage of G. We now present some preliminary
reductions for the structure of N.

LEMMA 4.4. N = O(G), where 4>(G) is the Frattini subgroup ofG.

PROOF. Let S be any Sylow r-subgroup of N. Then G = NC(S)N by Frattini's
argument. Thus 5 < G by the minimality of G. Therefore N is nilpotent. Suppose
that N 2: $(G). Then there exists a maximal subgroup M of G such that G = ./VM
by [34, Satz 3.2(b)]. Clearly M < G and A//(M n N) = G. This contradicts
the minimality of G. Hence we may assume that N < 4>(G). Note that GP is
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maximal in G for each point P e 6, since N < GP and G is primitive on G. Hence
<J>(G) < GP for each point /> e C. Therefore N = <i>(G). D

LEMMA 4.5. IfN ^ (1), then one of the following occurs:

(1) G fixes a unique point Q on FI — I, N is semiregular on FI — (/ U {Q}) and
\N\\n- 1;

(2) N is semiregular on Tl — I and \N\ \ n2. In particular one of the following
occurs:

(a) \N\ | n and N is semiregular on [Y] — [l}for any point Y e 6;
(b) n | \N\, n = u', j > I, N is a u-group and [N : Na] = nfor any line a

of FI intersecting I in G;
(c) n \ \N\, n = 2J+1, j > I, N is a 2-group and [N : Na] = n 12 for any

line aofW intersecting I in 6;
(d) \N\ > n,n = 3\S\/2, S is a Sylow 2-subgroup of N and S < N < S x A,

where A is a group of order a divisor of 9.

PROOF. Suppose there exists a e N, a 7̂  1, such that or is planar on n . Then
o(Fix(or)) > n/2 — 1, since a fixes & pointwise and v > n/2. So (n/2 — I)2 < n by
[33, Theorem 3.7]. This gives a contradiction, since n > 8. Thus Af does not contain
any non trivial planar collineation of FI.

Assume that there exists an element a e N,a ^ 1, such that a fixes a point P of
n — /. Actually, P is the unique point on n - / fixed by a since Af does not contain
any non trivial planar collineation of n . Furthermore, P is the unique point on FI — /
fixed by Z(N). Thus G fixes P, since Z{N) < G and Z{N) £ (1) being N nilpotent
by Lemma 4.4. This proves the assertion (1).

Assume that N is semiregular on Fl — /. Hence \N\ \ n2. If N is semiregular on
[YQ] - {/}, for some point Yo e &, then \N\ \ n and / / is semiregular on [Y] — {/} for
any point Yet?, since G is transitive on C. This proves the result (2a).

Assume that there exists bx e [X] - {/} such that Nbx £ (1) for each X e 6. If
Ne D Nc 5̂  (1) for some couple of lines e and c intersecting / in distinct points of @,
then there exists y e N, y ^ 1, fixing the point e D c which lies in n - /. This
gives a contradiction, since Af is semiregular on FI — /. Therefore we may assume
that Nh D Nz = (1), with Nh, Nz 7̂  (1), for any couple of lines h and z intersecting 0
in distinct points. In particular, N, < N for each line t of Tl intersecting 6. Thus
[P] — {1} consists of nontrivial N-orbits for any point P of 0. Let a e [O] — {/},
0 € G, be such that Na ^ (1). Let Sa be the Sylow M-subgroup of Na, where u
is a prime dividing \Na\, and let 5 be the Sylow ^-subgroup of N. Assume that
5 = Sa. Then Sa < G as N is nilpotent. Let g e G be such that Og 5̂  O. Since
Sa <3 G, Sa fixes the line ag and hence the point a f\ag which lies in FI — /. This
gives a contradiction, since N is semiregular on FI — /. Therefore Sa < S.
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Furthermore, \S\ - 1 > v(|5a| - 1) since Sa ^ (1), 5 < G and G is transitive on 6.
Then [5 : Sa] > [v(\Sa\ - 1) + l]/ |5a | . Hence either \Sa\ > 3 and [S : SJ > 2u/3, or
|5fl| = 2 and [S : Sa] > (u + l)/2. Denote by k the number of 5-orbits on [O] - {/},
where O 6 £?. Arguing as above with 5 in the role of N, as S < G, we see that
[O] — {1} consists of nontrivial 5-orbits. Let* e [O] - {1} be such that \xs\ < \ys\
for any y e [O] -{I}. Then k\xs\ < n.

Assume that |S, | > 3. Then k < 2 as \xs\ > 2u/3 and n < 2u. If k = 1 then
|xs| = n. Hence « = uJ, j > 1, as \xs\ = uj. Thus A7 = 5 as \N\ \ n2, and we
have the assertion (2b). Assume that k = 2. Then [O] — {/} = xs U bs for some
line b of [0] - ({/} U **). Hence n = \xs\ + \bs\. Assume that \xs\ < \bs\. Then
|JC5|M < |fts|, since 5 is a w-group. Hence \bs\ > 2vu/3 as |*s| > 2u/3. Then
2vu/3 + 2D/3 < n, as n = |*5| + |Z?5|. This gives a contradiction, since M > 2 and
n < 2D. AS a consequence |*5| = \bs\. Hence n = 2uj since |x5| = uJ. Then w = 2
and n = 2J+1 by [33, Theorem 13.18]. Then N = S since \N\ \ n2. In particular,
\xN\ = \bN\ = n/2. This proves the assertion (2c).

Assume that |5^| = 2. Then k < 3 as \xs\ > (v + l)/2 and n < 2v. Note that
Sx = S(x fl /, 0, since |5j | = 2, Sx < A7 and N cannot contain non trivial planar
elements. Thus \Sy\ > 2 and l / l < |^5| for any y e [O] - {I}. Hence | / | = |JCS|,

since |*s| < \ys\ for any y e [O] - {/}. Then n = k\S\/2, k < 3. If fc < 2, then
N = 5 as |TV 1 | «2, and we again have the assertions (2b) and (2c). If k = 3 then
n = 3|S|/2. Hence 5 < N < S x A, where A is a group of order a divisor of 9, since
| TV j | n2. This proves the assertion (2d). •

Recall that soc(G) denotes the socle of G. Also, recall that either G is almost simple
or of affine type, since G is 2-transitive on 6. We treat these two cases separately.

5. G is almost simple.

Assume that G is almost simple. We treat the cases N ^ (1) and N = (1)
separately.

5.1. The unfaithful case Assume that N ^ (1). We continue investigating the
structure of N.

LEMMA5.1. IfG is non abelian and simple, then one of the following holds:

(1) G is a covering group for G;
(2) There exists a Sylow t-subgroup S of N such that G < SL(V), where V =

S/®(S). In particular, \S\ > 1 + do(G).

PROOF. Assume that N < Z{G). Then G' is a covering group for G by [1,
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Theorem 11.33.3], since G is a non abelian simple group. Furthermore, G' = G by
the minimality of G. This proves the assertion (1).

Assume that N £ Z(G). Then there exists a Sylow r-subgroup S of N such
that S £ Z(G), since N is nilpotent. Set V = S/4>(S), where <&(5) is the Frattini
subgroup of 5. Clearly G acts on V. Let fl be the kernel of the action of G on V. If U
is the Sylow w-subgroup of N, where u is a prime, u ^ t, then [5, U] = (1), since TV
is nilpotent. This yields N < R <IG, since S' < O(5), S being a r-group. If fl = G,
then each Sylow r-subgroup of G, with r ^ f, centralizes S by [22, Theorem 5.1.4].
That is CG{S) £ N. Furthermore, CG(S) < G as S < G. Then N <CG(S)N < G.
Hence G = CC(S)N, since G is non abelian and simple and CG(5) ^ N. Actually,
G = CG(S) since N = <*>(G) by Lemma 4.4. This gives a contradiction, since
5 2: Z(G). Hence R < G. Then fl = N as G is non abelian simple. Then
G < FL(V), since V is a vector space over GF(t). Actually G < SL(V), since G
is non abelian and simple. In particular, G acts non trivially on the points of PG(V)
and hence | V| > 1 + do(G). This proves the assertion (2). •

We point out that the condition in (2) of Lemma 5.1, in conjunction with the
information contained in the paragraphs 5.3 and 5.4 of [43], furnishes a lower bound
for V and hence for N. This lower bound is generally greater than 1 + do(G).

LEMMA 5.2. Let Q be a set ofnontrivial N-orbits of points (respectively lines) of FI
having the same length. If G leaves Q invariant then \Q\ = ^2j>0^-jdj(G), where
Ay > Ofor j > 0, and J2j>o*-j > °- In particular \Q\ > do(G).

PROOF. Assume that G fixes an element in Q. Then G = GXN for some point X
of n such that XN e Q. Actually G = Gx, since N = cJ>(G) by Lemma 4.4. This
yields \XN\ = 1. This gives a contradiction, since XN e £2 and Q is a set of non
trivial N-orbits of points of FI. Thus G acts on Q as G and this moves each element
of Q. Therefore S2 is union of non trivial G-orbits. Since each non trivial G-orbit has
length a multiple of some primitive permutation representation degree d>,(G) of G,
h > 0, we have that | fi | = X\>0*;^(G), where A.;- > Ofor; > 0, and J2j>o XJ > °-
In particular \Q\ > do(G). •

LEMMA 5.3. G £ PTLQ., 8).

PROOF. Assume that G = /TL(2, 8). Clearly 28 < n < 56. Set L be the minimal
preimage of PSL(2, 8) in G and set H = LDN. Assume that H = (1). Then
L = PSL(2, 8). It is known that any involution £ in L fixes exactly four points
on &, since \C\ = 28. Then £ is a Baer collineation of FI. Thus either n = 36 or
n = 49, since n must be square and 28 < n < 56. The former is ruled out by [33,
Theorem 3.6], since o(Fix(£)) = 6, and the latter is ruled out by [30]. Hence, we
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may assume that H ^ (1). Then H = 4>(L) by the argument of Lemma 4.4 with H
in the role of N, since L/H = PSL(2, 8) is primitive on <? as \G\ = 28.

Now assume that H ^ Z(L). Note that the assertion of Lemma 5.1 is still true if
we replace G with L/H, since the 2-transitivity is actually not required in that lemma.
Thus there exists a Sylow r-subgroup S of H such that PSL(2, 8) < PFL(V), where
V = S/<t>{S), since L/H = PSL(2, 8). Then either |V| > 37 or 82 | | V| by [43,
Theorem 5.3.9 and Proposition 5.4.13 respectively]. Therefore either \H\ > 37 or
82 | \H\, since V = S/<&(S). Then \H\ > n in any case, since n < 56. Thus n and
| / / | are powers of the same prime, n | \H\ and \H\ \ n2 by Lemma 4.5 with / / in
the role of N, since H is transitive on {?. This rules out the case \H\ > 37, since
n < 56. Then 82 | \H\ and hence n = 25, since 28 < n < 56. Let Q be the set
of //-orbits on n - /. Then \Q\ = 24/6>, since « = 25, |/f | = 820, with 9 a power
of 2, and since / / is semiregular on FI - /. On the other hand, \Q.\ = X09, with
^o > 0, by Lemma 5.2, with L in the role of G and // in the role of N, since 9 is the
unique primitive permutation representation degree of L/H less than 16. This gives
a contradiction. Hence L is a covering group for PSL(2, 8) by Lemma 5.1. Then
L = PSL{2, 8), since the Schur multiplier of PSL(2, 8) is trivial by [43, Theorem
5.1.4]. This gives a contradiction by the above argument. •

Since G =£ PTL(2, 8), it follows, by a direct inspection of the list given in
Theorem2.1, thatsoc(G) is 2-transitive on 6. Thus we may assume that G = soc(G).
Hence G is a 2-transitive non abelian simple group.

Let K be the kernel of the action of G on l-@. Clearly K < G. Since KN/N < G
and since G is non abelian and simple, either G = KN or K < N. Actually G = K
in the first case, since iV = <I>(G). So either G = K and G fixes / — & pointwise, or
K < N. We now investigate the relationship between N and K.

LEMMA5.4. IfG ¥ PSU (3, 5) then either N = N(l,l)orN = N (Q, I) for some
point Q e l l - /. In particular N <K.

PROOF. Assume that N £ K. Then there exists a point P e / - 6 such that
\PN\ > 1. Let Q, be the set: of N-orbits on PG. Then \Q\ > do(G) by Lemma 5.2,
since N < G and \PN\ > 1. Hence \PN\d0(G) < \PG\, since | ^ | = \PG\/\PN\.
This yields 2do(G) < u + 1, since |P" | > 2, P c c / - 0 and |Z - ^ | < v + 1.
Then do(G) < v. In particular \PN\ = 2 and either G = PSL(4, 2) or G = A7, by
Lemma 4.3 (2), since G ^ PSU(3, 5) by our assumption.

Assume that G = PSL(4, 2) or G = A7. Note that n + 1 > v + 2do(G) in any
of these cases. Thus either n = 30 and G = P5L(4, 2) or n € {28, 29, 30} and
G = A7, since n < 2v. The case n = 30 is ruled out by [33, Theorem 13.18]. Hence
G = A7 and n e {28, 29}. Assume that 2 | \N\ and 22 \ \N\. Then N contains a Baer
collineation of n , since N fixes ^ pointwise and \PN\ = 2. This gives a contradiction,
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so 22 | \N\. Let L be a Sylow 2-subgroup of G. Then 25 | \L\, since 23 | \A7\ and
22 | \N\. It is easily seen that there exists a non trivial subgroup Lo of L fixing at least
two points on n - /, since n2 # 0, 1 mod25 as n e (28, 29}. Then Lo n TV = (1),
since N fixes at most one point Fl — / by Lemma 4.5. Then Lo and hence G contain
an involution £ acting faithfully on 6'. In particular £ is a Baer collineation of fl,
since £ fixes at least three points on G by [50]. So n must be a square. This gives a
contradiction, so N < K and the assertion follows by Lemma 4.5. •

At this point we study the cases when either N = N(l, I) or N = N(Q, I) for some
point Q e n — /, for do(G) = v and do(G) < v, separately.

5.7.7. The case do(G) = v In this subsection, under the assumption do(G) = v,
we prove that for N = N(l, I) or TV = N(Q, I), where Q e n - /, the group G
is a perfect central extension of G and that each involution of G lies in N. From
this we deduce that the Sylow 2-subgroups of G are dihedral and then we use the
Gorenstein-Walter Theorem [23] to complete our treatment of this case.

PROPOSITION 5.5. IfN = N(Q, I) where Q e TI - I, then N = K. Furthermore,
the following occur:

(A) n = 2v — 1 andG acts onl — €' as G in its2-transitivepermutation representation
of degree v;
(B) G is a covering group for G;
(C) each involution of G lies in N.

PROOF. We proceed in a series of steps.

(A) G acts on / — & as G in its 2-transitive permutation representation of de-
gree v. In particular N = K and n = 2v — 1.

Assume that G fixes a point A on / — ff. Denote by £ the set of TV-orbits
of points of AQ — {A, Q}. Then | S | = (n — 1)/|/V|, since N is semiregular on
AQ - {A, Q}. In particular, |E| > do(G) by Lemma 5.2, since G acts on E. This
yields do(G)\N\ < n — 1, since |E| = (n — 1)/|/V|. This gives a contradiction, since
do(G) = v, n < 2v and \N\ > 2. Thus G fixes no points on / - &. Hence N = K,
where K is the kernel of the action of G on / - @, by Lemma 5.4. Moreover, G acts
on / — C as G and G fixes no points on / — @. This yields n + 1 - v = X!;>o ^y^; (^)>
where the A; > 0, j > 0, and X^>o A,,- > 0, since each G-orbit on / - & is a multiple
of some dh(G), h > 0, and since |/ — ^ | = n + 1 — v. Actually, either Ao = 1 and
Xj = 0 for j > 0, or there exists j > 0, such that X.j = 1, dj(G) = v + l and A, = 0
for each j > 0 such that y 7̂  j , since do(G) = v.

If the latter occurs then n = 2v. Furthermore, G is one of the exceptions listed in
Lemma 1.1. Nevertheless, no one of these exceptions really occurs, since v must be
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even by [33, Theorem 13.18]. Hence Xo = 1 and kj = 0 for j > 0 for any admissible
case. Then n — 2v — 1 and hence G acts on I — € as G in its 2-transitive permutation
representation of degree v.

(B) G is a covering group for G.

Assume that N ^ Z(G). Then there exists a Sylow f-subgroup S of N such that
\S\ > 1 + v by Lemma 5.1, since do(G) = v. Furthermore, either 2|5| < n - 1
or |5 | = n — 1 since S < N and \N\ \ n — 1. The former is ruled out, since
2 0 + 1) < n - 1 as \S\ > 1 + v andn < 2i>. Hence 5 = N and \S\ = n - 1. Thus
n — I — tk, k > I, since S is a r-group. This yields t = 2 and hence v = 2k~1 + 1,
since « = 2u — 1.

Assume that G contains a Baer collineation of FT. Thus n must be a square. Then
n = 9 and k = 3 by [54, Result A5.1], since n - 1 = f*. This gives a contradiction
by [30, Theorem A]. Hence G contains no Baer collineations of n .

Now let S be any Sylow 2-subgroup of G. Then S fixes a point C on ^ , since u is
odd and v > 2. Thus 5 = SSN and £„ n iV = (1) for some point B e QC - {Q, C],
since Â  is regular on QC — [Q, C) because A' = N(Q, I) and \N\ = n — 1. In
particular, each involution in SB is a homology of FT with centre lying on / and axis
distinct from /, since G fixes /, G contains no Baer collineations of n , n is odd and
SB n N = (1). Moreover, any involution in SB commutes with some involution in N
since N < S. Then N contains exactly one involution by [39, Lemma 2.1 (ii)], since
N = N(Q,l). Actually, the previous argument shows that there exists at most one
involutory homology in G with given centre and axis. Then G = PSL(2, q), q odd,
by [14, Theorem 1], since G is non-abelian and simple. Then v — q + 1, q odd, since
do(G) = v. This gives a contradiction, since v = 2k~l + 1.

(C) Each involution of G lies in N.

Suppose that there exists an involution a e G — N. Assume that a is a Baer
collineation of n . Then ^fn + 1 = 2ka, where ka denotes the number of points of n
fixed by o on & and on / — 0, since G acts on & and on / — 6 as G in the same
way by (A). Hence ka = (V2u — 1 +1)/2. Note that v is known and ka can easily be
recovered from the structure of G and the action of G on @ for each 2-transitive non
abelian simple group G listed in Theorem 2.1. Hence, we may filter the list given in
Theorem 2.1 with respect to ka = (V2v — 1 + l)/2. So it remains to investigate the
following admissible cases:

(i) G = Au, v > 5;
(ii) G = PSL{d, q),d>2,q= pr, (d, q) £ (2, 2), (2, 3).

Assume that G = Av, v > 5. Note that v £ {6, 7}, since n = 2v — 1 must be a
square. Thus N = Z2 by (B) and by [43, Theorem 5.1.4], since N £ (1). Let Y e ff
and denote by T the set of A -̂orbits on QY - [Q, Y). Then |T| = (n - 1)/\N\,
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since N is semiregular on QY — [Q, Y}. Furthermore GY acts on F, since N <3 G.
In particular GY = Av_x. Assume that Gy fixes an element on F. Then GY = GYiON
and GY0 n N = (1) for some point O e QY — {Q, Y}, since N is semiregular on
QY — {Q, Y}. In particular GY,o acts on / - {Y} as GY. Now, pick a 3-cycle £ in
GY0. Clearly £ fixes v — 3 points on ^ , since Gyi0 acts on / — {Y} as GY. Then f
fixes u — 3 points on / — G, since the action of G on & and on / — & is the same. So, £
fixes exactly « — 6 points on /, since n = 2v — 1. Furthermore, f fixes the points <2
and O, with 0 , g e n — /, since £ lies in GY<0- Therefore, £ fixes a subplane of n
of order n - 7. Then (n -I)2 <n by [33, Theorem 3.7]. This yields either n = 9
or n = 10, since n > 9 by our assumption. Nevertheless, these cases cannot occur
by [30, Theorem A] and [33, Theorem 13.18] respectively. As a consequence, GY

moves each element on F. Therefore F is a union of non trivial Gy-orbits. Since each
Gy-orbiton F is a multiple of somerf;-(Au_i), j > 0, we have J2j>o^jdj(^v-i) = |F| .
That is 2J2j>o*-Jdj(Av-O = n - 1, since |F| = (n - 1)/|W| and W = Z2. Then
XQ = 1 and Xj = 0 for j > 1, since do{Av_\) — v — 1 and n = 2v — 1. Hence
Gy = Av-\ acts in its 2-transitive permutation representation of degree v — 1 on F.
Then there still exists a 3-cycle £ in G fixing n — 6 points on / and at least 2 points
on QY — {K}. Hence £ fixes a subplane of n of order n — 7. Again, this gives a
contradiction.

Assume that G = PSL(d, q), d > 2, q = pr, {d, q) ^ (2, 2), (2, 3). Note that
(d, q) ^ (2, 5), (2, 9), since the cases PSL(2, 5) = A5 and v = 5, PSL(2, 9) S A6

and t; = 6 have been ruled out above. Also the case (d, q) — (2, 7) and v = 1, or
(d, q) = (2, 11) and v = 11 are ruled out since in these cases n is a nonsquare. Thus
do(G) = (qd - \)/{q - 1) by [12]. Hence n = 2[(qd - \)/{q - 1)] - 1. Let E be
an elementary abelian subgroup of G of order qd~l which induces on & a group of
projective transvections with the same fixed hyperplane. Let B be a point on & fixed
by E. If there exists a nontrivial element S in E fixing a point on Q B — {Q, B}, then S
is planar on n . In particular 8 fixes exactly 2(qd~l — l)/(q — 1) points on /, since the
action of G on G and / — & is the same, and since <5 fixes exactly (qd~l — \)/{q — 1)
points on 0. So (2[(qd-1 - l)/(q - 1)] - l)2 < 2[{qd - \)/(q - 1)] - 1 by [33,
Theorem 3.7]. Thus d = 2 and hence G = SL(2,q) by [41, Theorem 7.1.l(i)],
since q £ {5, 7, 9, 11). This gives a contradiction, since the unique involution of
G = SL(2,q)\iesinN. Hence £ is semiregular on QB-[Q, B). Thus^"1 | n-\.
Then either d = 2 or (d, q) = (3, 2), since n = 2[{qd - \)/{q - 1)] - 1. Again, this
gives a contradiction.

The above argument leads us to assert that each involution in G — N must be a
homology of n as n is odd. Assume that iV has even order. Any involution in G
commutes with N as G is a covering group for G by (B). Thus N contains exactly
one involution by [39, Lemma 2.1 (ii)], since N = N(Q, I), N has even order and
since G — N contains involutions. Actually, the previous argument yields shows that

https://doi.org/10.1017/S1446788700036880 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036880


244 Alessandro Montinaro [18]

there exists at most one involutory homology in G with given centre and axis. Then
G = SL(2, q), q odd, by Theorem 1 of [14] and by [41, Theorem 7.1.1(i)], since G
is a covering group for G and since q £ {5,7,9}. This gives a contradiction, since
there are no involutions in G — N. Hence N has odd order. Let a be any involution
of G — N. Then a fixes exactly 2 points on /, since a is a homology and a fixes /.
In particular, a fixes exactly one point on & and one on / — C since the action of G
on & and / — & is the same. Thus GD/N has even order for any D e 6. Moreover,
GDUD2/N has odd order for any two distinct points D\ and D2 of &, since N has odd
order and each involution in G — N is a homology of n . Then G = PSL(2, 2s) or
G = Sz(2s) or G = PSU(3, 2s) by [3]. Actually, G = SL(2, 5) or G = 5z(8) or
G = PSUO, 2s) and N = Z3 by [43, Theorem 5.1.4], as AT £ (1). Nevertheless,
the case G = SL(2, 5) cannot occur, since N = Z2 and any Sylow 2-subgroup of G
is isomorphic to Q%. The case G = Sz(8) cannot occur by [33, Theorem 3.6] since
n = 129. Finally, the case G = PSU{3, 2s) cannot occur, since n = 23s+l + 1 while
\N\ = 3 must be a divisor of n — 1. •

PROPOSITION 5.6. IfN = N(l, I), then N = K. Furthermore, the following occur:

(A) G fixes exactly one point X on I — 0;
(B) n = 2v and G acts on I — {& U {X}) as G in its 2-transitive permutation
representation of degree v;
(C) N = N(X, I);
(D) each involution of G lies in N;
(E) G is a covering group for G.

PROOF. Assume that N = N(l, I). We proceed in a series of steps.

(A) G fixes at least a point X on / — €?.

Assume that G fixes no points on / — @. Then / — 6 is union of nontrivial G-orbits.
This yields n + \-v = Y.j>o eidi (6). where 0, > 0, ; > 0, and J2j>o 6J > °- s i n c e

each G-orbit on l — G is a multiple of some dh(G),h > 0, and since \l — 0\ = n + \ — v.
At this point we may use the same argument as in part (A) of Proposition 5.5 to show
that n = 2v — 1 and G acts on / — & as G in its 2-transitive permutation representation
of degree v. Set \N(l,l)\ = ph with h > 0, \N(C,l)\ = p' with i > 0, for any
C e 0, and set |N(D, l)\ = pJ, j > 0, for any D e I - G. Clearly i + j > 0, since
Â  ̂  (1). Furthermore h> i, j . Then

(5.1) ( | / _ l ) * l + i ) + { ^ _ 1 ) $ i + J 2 + , _ , . .

since G has the same 2-transitive permutation representation on G and 1 — 0, and
since v = (n + l)/2. By manipulating (5.1), we have that

(5.2) (p' + p>)(n+l) = 2(ph + n).
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Asp | nandh > O.thenp | (p'+pJ)(n+l) and hence /, j > 0. Furthermore/?' | n
and pJ | n, since N(C, 1) is semiregular on [D] — {/} and N(D, /) is semiregular on
[C]-{/}. Thus/?' | n, where/ = max{i, j}. Then/?' | (p'+pJ), since pf \ (ph+n).
Hence / = y, with /, j > 0. Then n is a translation plane and N is regular on n - / by
[33, Theorem 4.26]. Therefore G = NGO for some point O eU-l. Then G = G0,
since N = 4>(G) by Lemma 4.4. So N fixes O, which is a contradiction, since N is
semiregular on n — /. Thus N, and hence G, fix at least a point X on / — 6.

(B) G acts on / — (0 U {AT}) as G in its 2-transitive permutation representation
of degree v. In particular N = K and n = 2v, v even.

Suppose that G fixes / — ^ pointwise. Assume that there exists a point P of
/ - C such that N(P, /) = (1). Let A be the set of the //-orbits on [P] - {I}. By
Lemma 5.2, we have that |A| > do(G). By an argument similar to that used in (A) of
Proposition 5.5 we deduce that n = 2v and N = Z2, since |A| = n/\N\, do(G) = v
and v < n < 2v. Thus N < Z(G). Let x e G, x £ 1, be such that o{x) \v-\. Note
that v— 1 is odd by [33, Theorem 13.18], since n — 2v. Then x fixes v + 1 points on/,
since G fixes 1 — 0 pointwise and |/ — G\ = v + 1. Furthermore, x fixes a point R
on n - /, since n = 2v. Let a e N. Then Ra e FixQc), since N < Z(G). Note
that Ra ^ R, since a 6 N, /? 6 n - / and N = N(l, I). Thus x is planar on FI and
o(Fix(;t)) > v. Then u2 < n < 2v by [33, Theorem 3.7]. This gives a contradiction,
since v > 2.

Assume that N(B, I) £ (1) for each B el - 6. Let Y be any point of / - 6.
Let r be the set of the TV-orbits on [Y] - {/}. Then | r | = n/[N : N(Y, I)], since
N(Y, I) < N as N(B, /) ^ (1) for each B e I - 6. A similar argument to that used
above yields n = 2v and [/V : N(Y, /)] = 2 for any Y e I - &, since do(G) = v and
v < n < 2v. Thus N = E4 and hence \l-G\ = 3. That is n + 1 - v = 3, which is a
contradiction, since n = 2v and u > 5.

(C) N = N(X,l).

Assume that N(X, 1) < N. We may repeat the previous argument on the set of the
N-orbits on [X] - {/} to show that [N : N(X, /)] = 2. Hence N is an elementary
abelian 2-group, since N = N(l, I) and N(X, I) < N. Set \N(X, l)\ = 2f, f > 0,
and set \N(C, l)\ = 2', i > 0, for any C e 0. Set also \N(D, l)\ = 2>, j > 0, for any
Del-(0U {X}) by (B). Then

(2' - l)v + (2J - l)v + 2s = 2f+l.

Furthermore (/, j) = (1, 1), (1,0) or (0, 1), since [N : N(X,l)] = 2. In the
case where (/, j) = (1, 1), / = 1 and v = 1 by [33, Theorem 4.26], which gives a
contradiction. Hence, either (/, j) = (1,0) or (0, 1). It is easily seen that v = 2f and
n = 2 / + 1 in any of these two cases. In particular \N(X, l)\ = n/2. We may assume that
('. j) = (0. 1). since the role of i and j can be exchanged in the following argument.
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Note that N(X,l) < G, since G fixes X. Assume that N(X,l) ^ Z(G). Then
|N(X, 01 > 1 + v, since G acts on N(X, Z) as G since N is abelian and <io(G) = v.
This gives a contradiction, since \N(X,l)\ - 2f = v. Hence N(X, I) < Z{G).
Let £ be an element of prime order dividing v — 1. Then f must a 2-element by [22,
Corollary 5.3.3], since N/N(X,l) = Z2andN(X,l) < Z(G). This is a contradiction,
since v — 1 is odd. Hence N = N(X, I).

(D) Each involution of G lies in N.

Suppose that there exists an involution a e G — N. Assume that a is a (Ca, la)-
elationof n. If Ca = X,thenN < G(X, X) < G. This gives a contradiction, since G
is non-abelian and simple. Hence Ca £ X. Furthermore aa ^ /, since a £ N. Denote
by R the normal closure of (a) in G. Then G = RN, since G is non-abelian and
simple. Actually, G = R by the minimality of G. Hence G is generated by involutory
elations. Moreover N = F{G), where F(G) denotes the Fitting subgroup of G,
since N is nilpotent and G is non-abelian and simple. Since 4 | \G\ by [21], it follows
that G is isomorphic to PSL(3, q) or PSU(S, q) or SL(2, q) or Sz(q) or A6, where
# = 2r, by [27]. This is a contradiction in all cases except A6, since v must be even
by [33, Theorem 13.18]. Nevertheless, the case G = A6 is ruled out by [36], since
n = 12.

Assume that a is a Baer collineation of FT. Then Jn + 1 = 2ka + 1, where ka

is the number of points of n fixed by a both on 6 and on / — {6 U {X}). Hence
ka = Vu/2- Now, arguing similarly to part (C) of Proposition 5.5, we may reduce
our investigation to the following admissible cases:

(i) G = Av,v>5;
(ii) G = PSL(d, q), d>2,q= pr, (d, q) # (2, 2), (2, 3).

Assume that G = Av,v > 5. LetK e ^ and denote by * the set of N-orbits on
[Y]- {/}. Then | * | = n/\N\ as N issemiregular on [Y]-{/}, since N = N(X, I) with
X j£= Y. Furthermore, GY acts on * , since N < G. In particular GY = Av-\. Assume
that GY fixes an element on vl>. Then GY = GY,rN and GYr (1IV = (1) for some
point r e [Y] — {I}. So a may be picked in GYj as a product of two transpositions
on @. Then cr fixes exactly n — 1 points on /, other than X, since G acts on ^ and
on / - {6 U {X}) in the same way. Then (n - I)1 = n by [33, Theorem 3.7]. This
gives a contradiction. As a consequence, GY moves each element on *I> and 4* is
a union of non trivial Gy-orbits. Since each Gy-orbit on ^ is a multiple of some

«0(AB_,), ; > 0, then E ; - > O ¥ J ( ^ I ) = 1*1- T h a t is l^lE;>oM;(A»-i) = 2v

as | * | = n/\N\ and n = 2D. This gives a contradiction for v ^ 6, 8, by Lemma 4.2
applied to Gj- = Av_\ as do(Au_i) = v — 1 and |N| > 2. Actually, the case v = 6
and Gy = A5 cannot occur by [36], since n = 2v. Hence G = A& and n = 16. In
this case a fixes 4 points on *? and 4 points on / — &. So a fixes at least 8 points on /
and a q-. N, which is a contradiction by [33, Theorem 3.7].
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Assume that G = PSL(d,q), d > 2, q = pr, (d,q) ^ (2,2), (2,3). Note
that (d, q) ^ (2, 5), (2, 7), (2, 11), since u must be even by [33, Theorem 13.18].
Also, the case (d, q) = (2, 9) is ruled out, since PSL(2, 9) = A6. Thus by [12]
do(G) = (qd - \)/{q - 1) and hence n = 2(qd - \)/{q - 1). Note that q is odd and d
is even, since v must be even. Moreover n ^ 0, 1 mod p. Thus a similar argument
to that used in part (C) of Proposition 5.5 shows that G always contains planar p
elements fixing 2(qd~l — l)/(q — 1) points on / — [X], as n ^ 0, 1 mod p. This yields
d = 2 by [33, Theorem 3.7]. Hence G = SL(2, q) by [41, Theorem 7.1.1.(i)], since
q £ {5,7,9, 11}. This is a contradiction, since the unique involution of G = SL(2,q)
lies in N.

(E) G is a covering group for G.

Assume that N ^ Z(G). Then there exists a Sylow r-subgroup 5 of N, such that
\S\ > 1 + v by Lemma 5.1. On the other hand, |5| | 2v since S < N, \N\ \ n by
(C), and n = 2v by (B). Thus \S\ = n, since |5| > 1 + v. Hence S = N. Then N
is a 2-group and n is a power of 2, since n = 2v and |N| | n2. Let A e &. Then
N(A, I) = (1) by Lemma 4.5, since |iV| = n. Thus N is regular on [A] - {/} and
hence GA = GAiSN and GAj D N = (1) for some point s e [A] — {/}. Furthermore
GAs = GA. Then GAs must have odd order, since each involution in G actually lies
in TV by (D) and since N = N(X, I) with X ^ A. This implies that each involution
in G fixes no points on 6. Then G = PSL(2,q) with q = 3 mod 4, by [2]. By
Lemma 5.1(2), we have that PSL(2, q) < PSL(V), where V = 5/0(5) and this
implies |5 | > 1 + v as do(G) = v. Actually, in this case |5 | > 2(<?~1)/2 by [43,
Theorem 5.3.9], since q = 3 mod4. Then 2(«~1)/2 < 2(q + 1), since \S\ \ 2{q + 1) as
S < N,\N\ \ n and n = 2(q + 1) with q = 3 mod4. This gives a contradiction, since
q £1, 11 as 9 s3mod4andd0(G) = v. •

THEOREM 5.7. Let Tl be a projective plane of order n and let G be a 2-transitive
G-orbit of length v on a line with n > v > n/2. IfG is almost simple and do(G) = v
then one of the following occurs:

(1) n is the Hall plane of order 9 or its dual, G = SL(2, 5) and \&\ = 5;
(2) n = 2q + \,G = SL(2, q) with q = 3 mod4, q £ 7 , and \&\ = q + 1;
(3) n = 2(q + 1), G = SL(2, q) with q = 3 mod4, and \G\ = q + 1.

PROOF. Note that iV = Zz, unless G = PSL(3, 4) or G = 5z(8), by Proposi-
tion 5.5 (B) and (C), by Proposition 5.6 (D) and (E), and by [43, Theorem 5.1.4], since
do(G) = v.

Assume that G = PSL(3,4) or G = 5z(8) and assume that iV ^ Z2. Note that the
case n = 2v cannot occur by [33, Theorem 13.18], since v is odd in both cases. Then
n = 2v — 1 and N = N(Q, 1) for some point Q e U—l fixed by G, by Proposition 5.6.
Nevertheless, the case G = 5z(8) cannot occur by [33, Theorem 3.6], since n = 129
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in this case. Hence G = PSL(3, 4) and n = 41. Let U be a Sylow 2-subgroup of Gj,
where J is any point of 6. Then U must be semiregular on QJ — {Q, J}, since each
involution in G lies in N by Proposition 5.5(3). Hence \U\ \ n — 1. This gives a
contradiction, since 26 | \U\ and n =41.

Assume that Af = Z2 in any admissible case. Thus each Sylow 2-subgroup S
of G is isomorphic either to Z2». or to <22m for some positive integer m in any case by
Proposition 5.5(C) and Proposition 5.6(D). In the first case we have S/(SDN) = Z^m-k,
where 0 < k <m. Nevertheless this case is ruled out by [21, Theorem 4] applied to G,
since this one is non abelian and simple. Hence 5 = Qi* and hence S/(SC\N) = £)2m-i,
since 5 n N = Z2. By [23], either G = PSL(2,q) with q odd, or G = A7. If
G = A-i then n = 28 or 29, and this case cannot occur by the same argument as in
Proposition 5.4. Hence, we may assume that G = PSL(2, q) with q odd. Assume
that q = 5. Then n = 9 or n — 10, since do(G) = 5. Actually, the latter is ruled
out by [33, Theorem 13.18]. Hence n = 9 and either n = PG(2, 9) or n is the Hall
plane of order 9 or n is the dual of the Hall plane of order 9 by [58]. This proves the
assertion (1).

Assume that q = 1. Then either n = 13 or n = 14 since do(G) = 7. The latter
is ruled out by [33, Theorem 13.18]. Hence n = 13. Then n = PG(2, 13) by [48],
since do(G) — 1. Hence G < PGL{2, 13), since G fixes/. This gives a contradiction.

Now assume that q = 9. Then either n = 11 or n = 12, since do(G) = 9. The
latter is ruled out by [36]. Hence n = 11 and n = PG(2, 11) by [47]. Hence
G < PGL(2, 13), since G fixes /. This gives a contradiction, hence q £ {7, 9}. Thus
G = SL(2, q) by [41, Theorem 7.1.1.(i)], for q £ 5, as q £ {7, 9}.

Assume that n = 2v — 1. Let R be a Sylow 2-subgroup of GB, where B is any
point of @. Then R must be semiregular on QB — [Q, B}, since each involution in G
lies in N. Hence |/?| | « - 1. Then|i?| = 2 and hence/? = N . s i n c e n - l = 2 mod 4,
since « = 2u — 1 and v = q + 1. Thus <? = 3 mod 4 and we have the assertion (2).

Finally, assume that n = 2v. Then v is even by [33, Theorem 13.18]. Thus q
must be odd. Assume that q = 1 mod 4. Let R be denned as above. In this case
8 | 2(q + 1), since R = Q2™, m > 3, must be semiregular on [B] — {/}, n = 2(q + 1)
and the unique involution in G is an (X, /Relation, where X is the unique point on
/ — & fixed by G. This gives a contradiction, hence q = 3 mod 4. This proves the
assertion (3). •

It should be stressed that if there exist planes of type (2) with n a prime power
then n is actually a prime by Lemma 4.1(1). Furthermore, if there exist planes of
type (3) with n a prime power then n is a power of 2 and q is a Mersenne prime by
Lemma 4.1(2). Nevertheless, as we shall see in Section 7, in these cases n cannot be
the projective extension of a translation plane.
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5.1.2. The case do(G) < v In the following we assume that G £ PSU(3, 5).
Then either N = N(Q, I), Q e II - I, or N = N(l, /) by Lemma 5.4. We treat
these two cases separately. In particular, for each of them, we show that G is a perfect
central extension of G. Now, since the groups satisfying do(G) < v are listed in
Table 1 of Lemma 4.3, we complete this subsection with a case by case investigation.

LEMMA 5.8. IfN = N(Q, I), QeTl-l, then n = 23 and G = SL(2, 11).

PROOF. Assume that N = N(Q,l), where Q is a point of n—/ fixed by G. Assume
also that G fixes a point P oil- & and let Q be the set of N-orbits on Q P - {Q, P}.
Then \Q\ = (n - l)/\N\, since N is semiregular on QP - {Q, P). Hence

(5.3) n = l + \N

where Xj >0,j> 0, and £,->n Xj > 0, by Lemma 5.2.
Assume that N ^ Z(G). Then \N\ > 1 + do(G) by Lemma 5.1. By compos-

ing the previous inequality with (5.3) and bearing in mind that n < 2v, we obtain
1 + do(G) + do(G)2 < 2v. Now, filtering the groups of Table 1 with respect to the
previous inequality, it is easily seen that no cases arise.

It remains to investigate the case where G is a covering group for G by Lemma 5.1.
The groups G = M,,orG = Sp(2h, 2), h > 3, are ruled out by [43, Theorem 5.1.4],
since TV ̂  (1) by our assumption. For the remaining groups, we have Ao < 2 and
Ay = 0 for j > 0 by Lemma 4.3, since N ^ (1). In particular, \N\ < 3 again by
Lemma 4.3(2). Thus either N = Z2 or N = Z3 for the groups of the Table 1 by
[43, Theorem 5.1.4]. Hence n = 1 + \N\X0d0(G), Xo e {1,2} and \N\ e {2,3}.
By Lemma 4.3 and since v < n < 2v, it is easily seen that the admissible cases
of Table 1 are G/Z2 = PSL(2, 5) and n = 11, G/Z2 = PSL(2, 7) and n = 15,
G/Z2 = SL(2, 9) andn = 13, G/Z3 = PSL(2, 9) and/i = 19, G/Z2 = PSL(2, 11)
and n = 23, G/Z2 = PSL(4, 2) and n = 17, G/Z3 = A7 and n = 21, G/Z2 = An

and n = 29, G/Z2 = / /S and n = 201, and G/Z2 = Sp(6, 2) and n = 57.
Actually the cases G/Z3 = A-, and n = 21, G/Z2 = Sp(6, 2) and n = 57,

and G = HS/Z2 and n = 201 cannot occur by [33, Theorem 3.6]. The case
G/Z2 = PSL(2,1) and n = 15 cannot occur by [31]. If G/Z2 = PSL(2, 5) and
n = 11 then n = PG(2, 11) and hence G < PSL(2, 11) by [47]. Nevertheless, this
case cannot occur, since G = PSL(2,5) contains involutions fixing a point on 6 and
hence on /, while PSL(2, 11) does not.

Assume that G/Z2 = 5L(2, 9) and n = 13. Then G < PGL(2, 13) by [48]. This
gives a contradiction, hence G/Z3 = PSL(2, 9) and n = 19. In this case there exists
an involution S in G fixing at least 4 points on /, since n + 1 = 20 and \tf\ = 10.
Clearly 8 £ N. Therefore 8 is a Baer collineation of II, which is a contradiction.
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Assume that G/Z2 = PSL(2, 11) and n = 23. Then G = SL(2, 11) by [41,
Theorem 7.1.1.(0]- Since 8 f n — 1, there exists an involution fixing a point on
PQ — {P, Q}. Such an involution must lie outside N, which is a contradiction.
Assume that G/Z2 = PSL(4, 2) and n = 17, or G = A1 and n = 29. Let J be
a Sylow 2-subgroup of G. Then 26 | | / | for G/Z2 = PSL{4, 2) and | / | = 24 for
G/Z2 = A-,. Furthermore, J fixes a point X of C, since | ^ | = 15. Then Jz £ (1)
for some Z e XQ - {X, Q], since | / | f n — 1. In particular, Jz n N = (1) and
[J '• Jz\ < 23. Hence / z acts faithfully on 6. In particular, 7Z contains involutions
fixing at least 3 points on & by [50]. Such involutions are Baer collineations of FI,
since 7 z n W = (1). Hence n must be a square. This gives a contradiction and
therefore G cannot fix points on / — 6. Then I — & consists of nontrivial G-orbits,
since G acts on / — C as G. Since each G-orbit is a multiple of some dt(G), i > 0,
we have that n + 1 = v + ^Zj>0 /j.jdj(G), where \Xj > 0, j > 0, and J^j>0 IJLJ > 0.
Hence either n = v + do(G) — 1 or n = 2v — 1 or n = 28 and G = A7 or n = 30
and G = PSL{A, 2) by Lemma 4.3, since n < 2v. The latter is ruled out by [33,
Theorem 13.18].

Assume that n = 28 and G = A-,. Then N has odd order as \N\ | n — 1, so
there exists an involution fixing 3 points on C by [50] and not lying in N. Such an
involution must be a Baer collineation of n and hence n must be a square. This gives
a contradiction.

Assume that n = v + do(G) — 1. Then all the groups of Table 1, except G =
PSL(2, 9) and n = 15, G = A-, and n = 21, G = Sp(2/i, 2) and n = 22h - 1,
G/Z2 = HS and « = 275, are ruled out by [33, Theorem 13.18]. Nevertheless, the
groups G = PSL(2, 9), G = A-, and G = 5p(2/i, 2) cannot occur by [31], by [33,
Theorem 3.6], and by [26], respectively. Hence G/Z2 = HS and n = 275. Let X
be a point on G. Then Gx = PSU(i, 5).Z2 by [17, Appendix B]. Now, let 5 be a
Sylow 2-subgroup of Gx. Clearly |5| = 26, since N = Z2. Then S fixes a point B on
6 — {X}, since \0\ — 176. Furthermore there exists a non trivial subgroup of So of S
such that [S : So] < 22, which fixes 3 points on G and a point on n - (/ U {£>})• Thus
So n N = (1). Therefore So contains a Baer collineation of IT and hence n must be a
square, which is a contradiction.

Assume that n = 2v — 1. The above arguments rule out the cases G = PSL(2, 5)
and n = 11, G £ PSL(2, 7) and n = 15, G = S/?(2/i, 2) and n = 2/l(2/l - 1) - 1
and G = //S and n = 351. Furthermore, the same argument as in Theorem 5.7 rules
out the case G = PSL(2, 9) and n = 19, and the above argument used to rule out
G = A1 and n = 29 may be applied to rule out also the case G = PSL(4, 2) and
n — 29. Finally, the case G = Mu and n = 23 cannot occur by [43, Theorem 5.1.4],
since N < Z2 x. Z\\ in this case, which is a contradiction. Thus G = SL(2, 11) and
n = 23. •

https://doi.org/10.1017/S1446788700036880 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036880


[25] Large doubly transitive orbits on a line 251

LEMMA 5.9. IfN = N(l, I) then either n = 16 and G = SL(2, 1) orn = 24 and
G = SL(2, 11).

PROOF. Assume that G does not fix any point on / — &. Then I — C consists of
nontrivial G-orbits. At this point we may use the same argument as in Lemma 5.8 to
show that either n = 2v — 1 or rc = u + do(G) — 1 or n = 28 and G = A7. Actually,
the case n = 2v — 1 is ruled out by the same argument as in Proposition 5.6 part (A).
Hence, either n = v + do(G) — 1 or n = 28 and G = A7.

Assume that n = 28 and G = A7. If \N\ > 4, we may apply the same argument as
in Lemma 5.4 to rule out this case. Hence N = Z2. Then | / | = 24, where / is any
Sylow 2-subgroup of G. Furthermore, J fixes a point O of @, since | ^ | = 15. Then
Jm ^ (1) for some m e [0] — {/}, since | / | f n. In particular, Jm n N = (1) and
[J '• Jm] < 23. Hence /m acts faithfully on 6. In particular, 7m contains involutions
fixing at least 3 points on & by [50]. Such involutions are Baer collineations of FI,
since ymnA' = (l). Hence n must be a square. This gives a contradiction.

Assume that n = v + do(G) - 1. Then each case of Table 1, except G = HS
and n = 275, is ruled out by the same argument as in Lemma 5.8. In the remaining
case, N has odd order as \N\ \ n2 and n is odd. Hence, it is easily seen that there
exists an involution in G which is Baer collineation of n . This gives a contradiction,
since n = 275, so we may assume that G fixes at least a point X on / — G. Assume
that \N\ > n. Then N(X, /) < N. Let * be the set of N-orbits on [X] - {/}. Note
that each W-orbit on [X] - {/} has length [N : N(X, /)], since N = N(l, /) and
N(X, /) < N. Clearly G acts on * as N < G. Then | * | > do(G) by Lemma 5.2.
This gives a contradiction, since | ^ | < 3 by Lemma 4.5, as \N\ > n. Thus \N\ \n.

Assume that N ^ Z(G). There exists a Sylow /-subgroup S of N such that
G < SL(V), where V = S/<t>(S) by Lemma 5.1. We have \V\ > b, where b = rr(<5)

and r(G) is a suitable lower bound for dimGf(,)(V). Indeed, such a lower bound can
be easily recovered from [43], in particular it can be recovered from Theorem 5.3.9
and Proposition 5.4.13 when G is classical, from Proposition 5.3.7 when G = A7,
and from Proposition 5.3.8 when G = HS or G = M\\. This information must be
combined in some cases with [11] in order to determine b as follows: pick G = Mu

for example, then r(Mu) = 5 by [43, Proposition 5.3.8]. Hence |V| > t5. From
[11], we see that t > 2. Hence b = 35 and | V| > 35. The same argument can be
repeated for each group listed in the Table 1. Then | V\ > b and hence \N\ > b as
V = S/<f>(S) and S < N. On the other hand, we must have b < n, since \N\ | n.
By a direct inspection of the Table 1, we see that G = PSL(2, 7) and \N\ e {8, 16},
G = PSL(4, 2) or G = A7 and |iV| = 16, G = Sp(2h, 2), h > 3, and 22h \ \N\ are
the unique cases satisfying the inequality b < n.

Assume that G = PSL(2, 7). Then n = 16, since 9 < n < 16, \N\ | n and
|iV| e (8, 16}. Let C < G be such that C = Z7. Then Fix(C) fixes a subplane
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of n of order at least 2, since n = 2 mod7. Actually, Fix(C) = PG(2, 2) by [33,
Theorem 3.7], since n = 16. Thus G cannot fix / — 6 pointwise. Hence / — @ consists
of either a G-orbit of length 7 plus two points fixed by G, or a G-orbit of length 8 plus
one point fixed by G by [17, Appendix B], since G = PSL(2, 7). Let T < NC(C)
be such that T = Z3. Then Fix(C) c Fix(T), since T fixes two points / D Fix(C) at
least in any of the two possible orbital configurations of I — 6. This implies that T
must fix a further point on /, since |/ - (/ n Fix(C))| = 14. So Fix(T) = PG(2,4)
by [33, Theorem 3.7], since n = 16. Since a Z3 normalizes exactly one Z7 in G,
there exists a point A e Fix(T) - (Fix(C) U /) such that Z3 < GA jt ZT.Z3. Then
Z3 < GAN ^ Z-j.Z^. Let £2 be the setofN orbits o n l l - / . Thenl62/|N| = A,7-t-A28,
with ku k2 > 0 and Xr + X2 > 0, by Lemma 5.2, since |fi| = 162/|N|. Note that
A.! > 0 since Z3 < GA« ^ Zy.Z^. Also X2 > 0, since GBN = Z7.Zi for any
B 6 Fix(C) — /. It is a straightforward calculation to show that the above Diophantine
equation has solutions only for |iV| < 4 which is a contradiction.

Assume that G = PSL(4, 2) or G = A7and|N| = 16. Then/i = 16as|A^| | nand
15 < n < 30. Hence there exists H < Go, where O € 6, such that H = PSL(2, 7)
and H (1 N = (1), since iV is regular on [0] — {/} as \N\ = 16. Clearly n cannot be
Desarguesian, since the full collineation group induced on a line is PTL(2, 16) and
A7 ft PFL(2, 16). Then fl is either the Lorimer-Rahilly plane or the Johnson-Walker
plane or their duals by [15]. This gives a contradiction, since the full collineation group
induced on a line in any of these planes is isomorphic to PSL(2,1) x 53 by [37].

Assume that G = Sp(2h, 2), h > 3, and 22h | \N\. Then n = 2lh, since |A |̂ | n
and t; < n < 2v with v = 2*-1(2/l + 1). Then Go = G0,(W and Go,, n N = (1)
for some line e 6 [O] — {/}, since N is regular on [O] — {1} as A: = N(X, I) with
X e I — &. Then there exists an involution in G0,e fixing 2lh~2 points on € by
[17, Example 5.4.3]. This gives a contradiction by [33, Theorem 3.7]. Hence G is a
covering group for G by Lemma 5.1.

Note that the groups G = Mn and G = Sp(2h, 2), /i > 3, are ruled out by
[43, Theorem 5.1.4], since N ^ (1) by our assumption. In particular, N is cyclic
and \N\ < 3 for the remaining groups of Table 1 by [43, Theorem 5.1.4]. As a
consequence, N = N(X, I). Assume that G fixes a further point Y on / — &. Then G
acts on the set * of TV-orbits on [Y] - {/}. Then \V\ = n/\N\ as N(Y, I) = (1). Then
n = \N\ X\iO0,d,(G),with0, > 0, ; > O,and£\>o0, > 0byLemma5.2. Actually,
9j = 0 for j > 1 and (|iV|, 60, 9X) = (2, 0, 1) or (2, 1, 0), or (|JV|, % 0i) = (3, 1, 0)
and G = PSL(2,9), or G = A7, or (|W|,0o.0i) = (2,2,0) and G = A7 by
Lemma 4.3, since N ^ (1) and v < n < 2v. Let r € [K] - {/}. Then Gr« = GrA^
and GrnAf = (1). In particular, Gr = Gr«, where G>« is the stabilizer in a G-orbit
on * of length do(G) or 2rfo(G) or v.

If |Gr| is even then Gr contains involutions which are Baer collineations of FI,
since they fix the points X and Y on / and n is even. So n = \N\(90d0(G) + 9}v)
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must be a square. It is a plain to see that the only groups in Table 1 satisfying one
of the previous numerical conditions are G = SL(2, 7) or G/Z2 = PSL(4, 2), and
n = 16. Nevertheless, the latter is ruled out by the same argument as above, since
PSL(2, 7) < Gr. Therefore G = SL(2, 7) and n = 16. Let C and T be defined
as above. The above argument still works to show that Fix(C) C Fix(r), with
Fix(C) = PG(2, 2) and Fix(r) = PG(2, 4). This, in particular, still forces / - & to
consist of a G-orbit of length 7 plus 2 points fixed by G, again by the above argument.
Now, Let D < NG(T) be such that D = Z4 as G = SL(2, 7). Clearly D acts on
Fix(T) and D fixes exactly 3 points on / n Fix(T). In particular, D < PVL(3, 4) as
Fix(7) = PG(2, 4). This gives a contradiction, since PVL(3, 4) contains no cyclic
subgroups of order 4 fixing exactly three points on a line.

Assume that \Gr\ is odd. Then G = SL(2, 11) and n = 24 by a direct inspection
of Table 1. Let L < G be such that L = Zu. Then L fixes a subplane of FI of
order at least 2, since n + 1 = 25 and since G fixes the points X and y on / — £?.
Actually, o(Fix(L)) = 2 by [33, Theorem 3.7], since n = 24. Let T < NG(L) be such
that T = Z5. Clearly r acts nontrivially on Fix(L). Hence T < PSL{2>,2), since
Fix(L) = PG(2, 2). This gives a contradiction, hence X is the unique point on / — &
which is fixed by G. Thus either n = v + do(G) or n = 2v or n = 29 and G = A7.
Assume that the latter occurs. Then G — N contains an involution, as \N\ \ n and n
is odd. This involution is a Baer collineation of n , since it fixes three points on @ by
[50]. This gives a contradiction.

Assume that n = v + do(G). The cases G = A7 and n = 22 and G = A8 and
n — 23 are ruled out by [33, Theorem 13.18] and by [26], respectively. Again, we
may apply a similar argument to that of Lemma 5.8 in order to rule out the cases
G = SL(2, 11) and n = 23 or G = HS and n - 276 (in this case n is even and
there also exists a 2-subgroup of GA, A e G, of order at least 4, fixing two points
on & and two on n - /). Hence G = SL(2, 9) and AJ = 16. Let U < G be such that
U = E9. Clearly NC(U) = U.T, where T = Z8, since G = 5L(2, 9). In particular
NC(U) fixes a point on R on ^ , since \£?\ = 10. Then U fixes at least a line r of
[7?] - {/}, since n = 16 and U = Eg. Note that T acts semiregularly on [R] - {/},
since the unique involution of T generates N and N = N(X, 1) with X e I — @. Thus
\rT\ = 8. Moreover, rT c Fix(£/) since T < NC(U) and r e Fix(f/). Hence T fixes
at least one point on s — [R] for each s e r r , since n = 16. In particular there exists
a non trivial subgroup Uo of {/ such that [U : f/o] < 3 fixing at least three points
on /. Therefore Fix([/n) is a subplane of II, since Fix(f/) c Fix(f/0). In particular
o(Fix(f/0)) > 7, since rTU {/} c [fl] n Fix(C/0). This gives a contradiction by [33,
Theorem 3.7] since n = 16.

Assume that n = 2v. Note that any admissible case of Table 1, except G = SL(2, 7)
and n = 16 or G = SL (2, 11) and n = 24, is ruled out by arguments similar to those
used above. This proves the assertion. •
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Now assume that the case G = PSU(3, 5) is admissible. The following theorem
completes this subsection and shows that the assertions (2) and (3) of Theorem 1.1
are true when d0(soc(G)) < v.

THEOREM 5.10. One of the following occurs:

(1) n = 16 and G = SL(2,1);
(2) n = 23 or 24 and G = SL (2, 11).

PROOF. It remains to rule out the group G = PSU(3, 5) in order to prove this
theorem by Propositions 5.8 and 5.9. Assume that N ^ Z(G). Then there exists a
Sylow f-subgroup 5 of N such that G < SL(V), where V = S/Q(S) by Lemma 5.1.
Then either |V| > 220 by [43, Theorem 5.3.9] when 5 \ |V|, or 56 | |V| by [43,
Proposition 5.4.13]. Hence either \N\ > 220 or 56 | \N\. On the other hand, either
\N\ | n — 1 or |N | | n1 by Lemma 4.5. By composing all these bounds on the
order of N, we see that the unique admissible case is 56 | |iV| and \N\ \ n2, since
n — 2v and v = 126. This yields n = 250, since 53 | n and 126 < n < 252.
This gives a contradiction by [33, Theorem 13.18]. Hence G is a covering group for
PSU(3, 5). ThusN = Z3 by [43, Theorem 5.1.4], since N ^ (1) by our assumption.
Thus any involution 0 in G actually lies in G — N, so, it is well known that <p fixes
exactly six points on C'. Hence n is a square. Therefore -y/n e {12, 13, 15}, since
126 < n < 252 and since ^/n = 14 cannot occur by [33, Theorem 3.6]. Note
that CG{<t>) is non solvable, since it has a section which is isomorphic to PGL(2, 5).
Thus the cases y/n = 12 or 15 are ruled out by [36] and [31], respectively. Hence
y/n = 13. Then Fix(0) = PG(2, 13) by [48]. Denote by CG(<p) the group induced
on Fix(0) by CG(0). Then CG(0) acts trivially on Fix(0), since 5 | \Cc(<p)\ while
5 { \PGL(3, 13)|. Thus there exists an element of order 5 in PSU(3, 5) fixing the
same 6 points on & fixed by 0. This gives a contradiction. •

5.2. The faithful case In this subsection we deal with case N = (1). Since G is
simple, either K = (1) and hence G has a non trivial orbit on / — £?, or G = K and
hence G fixes I — & pointwise.

This subsection is structured as follows. If G has a non trivial orbit on / — &,
we reduce to the case do(G) < v by using the arguments of parts (C) and (D) of
Proposition's 5.5 and 5.6, respectively. Then we show that the involutions in G are
Baer collineations of Fl by using the results of Ho and Gon?alves [32]. Finally, a
case by case investigation shows that FI is the Johnson-Walker translation plane of
order 16 or its dual, and G = PSL(2, 7). If G fixes I — G pointwise, we reduce
to the case n = v + 1 by using Lemma 4.2. At this point we show that G admits
another 2-transitive orbit of length v not contained in a line which is in contrast with
the order n of FI.
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PROPOSITION 5.11. If there exists a non trivial G-orbit on I — 6 then Fl is the
Johnson-Walker translation plane of order 16 or its dual, and G = PSL(2, 7).

PROOF. Assume there exists a non trivial G-orbit C on / — G, so n > v + do(G). If
do(G) = v then either n = 2v — 1 or n = 2v. At this point we may use the arguments
of parts (C) and (D) of Propositions 5.5 and 5.6, respectively, to rule out these cases.
Hence do(G) < v.

Assume that G contains an involutory perspectivity. If there exists a point P e U—I
such that GP = (1) then \G\ < |I1 — l\. This yields v(v - 1)0 < 4v2, since n < 2v
and since \G\ = v(v —1)0,0 > 1. Thus either 0 = 5andu = 5, or# < 4. Then either
G = PSL(2, 5) and n = 11 or n = 12, or G = PSL{2, 7) and n = 15 or n = 16 by
direct inspection of Table 1. Nevertheless the former cannot occur, respectively, by
[47], since \&\ = 6 , and by [36]. Also the latter cannot occur, respectively, by [31], and
by [15], since G contains involutory perspectivities and \G\ = 8. Hence G is totally
irregular on II. Then G = PSL(2, 5) and n = 11 or n = 12, or G = PSL(2, 7) and
n = 15 or n = 16 by [32, Theorems 1 and 2]. Again this gives a contradiction.

Assume that each involution is a Baer collineation of FI. So n must be a square.
TheneitherG = PSL(2,7)orG = PSL(2,9)&ndn = 16,orG = A7orG = A8and
n = 25, or G = PSU(3, 5) and n e {132, 142, 152}, or G = HS and n e {172, 182},
or G = 5p(2/i, 2), h > 3 and n = 22/l. Actually, the cases G = PSU(3, 5) and
« e {132, 142, 152} cannot occur by the same argument of Theorem 5.10. The case
G = Sp(2h, 2), h > 3, and n = 22h cannot occur by [33, Theorem 3.7], since G
contains Baer involutions fixing 22h~2 points on & by [17, Example 5.4.3].

Assume that G = A-, and n = 25. Then there exists an involution in G fixing at
least seven points on / by [50] and since |/ — {ff U (?') \ = 4 . This gives a contradiction
by [33, Theorem 3.7]. Assume that G = A% and n = 25. Then there exists an
involution in G fixing at least 10 points on / by [50] and since |/ — {& U G')\ = 3.
This gives a contradiction by [33, Theorem 3.7].

Assume that G = PSL(2, 9) and n = 16. Set {X} = I - (6 U C"). Let S be a
Sylow 2-subgroup of G. Then 5 = (a, yS) with a4 = 1, fi2 = 1 and afi = a'1. Note
that|Fix(a)D/| = 3, |Fix(a2) n / | = 5 and |Fix(0)n/| = 5, since/ = ^ U £"U {X},
and since G = PSL{2, 9) acts in its 2-transitive permutation representations of degree
10 and 6 on ff and on 0', respectively. Furthermore, |Fix(a2) nFix(yS) D/| = 3. This
yieldsFix(a2) = Fix(^) = PG(2,4)andFix(a) = PG(2, 2) withFix(a) c Fix(a2).
Moreover, Fix(a2)nFix(y3) = PG{2, 2) and Fix(a)nFix(y3) consists of three collinear
points of Fix(a2) including X. Thus |Fix(a2) - (Fix(a) U Fix(/3) U/)| = 10. Let
U < G be such that U = Eg. It is easily seen that Fix(U) fixes exactly two points
on /, since the permutation y = (123) (456) lies in U and y is fixed point free on @'.
Thus Fix(t/) cannot be a subplane of FI. Then there exists a line r of FI such that
Fix(£/) - / c r. In particular Fix(G) C Fix({/) and |Fix(f/) D Fix(a) - l\ < 3.
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Hence, there are at least two points of Yl — I (lying in Fix(a) — /), say X\ and X2,
such that GXl = Z2 and GXl = Z4, since Fix(G) c Fix(f/) and Fix(tZ) - / c r
and Fix(a) Pi Fix(/3) consists of 3 collinear points of Fix(a2) including X and there
are no proper subgroups of G of order divisible by 20. Then | FI — /1 > 270, since
Xf U Xf c n - / with |Xp| = 180 and \XG | = 90. This gives a contradiction, since
n = 16.

Finally, if G = PSL(2, 7) and n = 16 then n is the Johnson-Walker translation
plane of order 16 or its dual and the G-orbits on / have lengths 8, 7, 1 and 1 by [15].
This proves the assertion. •

THEOREM 5.12. Let Yl be a projective plane of order n and let 6 be a 2-transitive
G-orbit of length v on a line with n > v > n/2. If G is almost simple and G is
faithful on 0 then FI is the Johnson-Walker translation plane of order 16 or its dual
andG = PSL{2,1).

PROOF. Assume that G fixes / — ^pointwise. Assume also that n > v+2. Thus any
involution in G is aBaer collineationof n , since \l — &\ > 3. Thenn + l — v < -Jn-\-1
and hence v + 2 < n < v + *j2v, as n < 2v. Suppose there exists a point Y on / — 6
such that G admits an orbit &* of length v on [Y] — {/}. If G also admits a further non
trivial G-orbit on [Y] - {1} then n has order 16 and G = PSL(2,1) and v = 8 by
the dual of Proposition 5.11. This gives a contradiction by [15], since G fixes I — &
pointwise and |/ - 0\ = 9 in this case. Then G fixes [Y] - ({/} U &*) linewise. If there
exists a liner in [Y] — ({/}U^*) such that G fixes two points on r — {Y] thenG is planar
on FI. In particular o(Fix(G)) = |/ - @\ — 1 since G is transitive on & and G fixes
/ — €? pointwise. Then Go is planar on n since Fix(G) c Fix(G0). Furthermore,
o(Fix(Go)) = \l-G\ since G is 2-transitive on 0. So o(Fix(Go) = o(Fix(G)) + 1.
This gives a contradiction by [33, Theorem 3.7]. Note that G and Go are still planar
if G fixes a point, other than Y, on at least two distinct lines of [Y] — ({/} U &*), so
this case also cannot occur. Hence there exists at least a line m in [Y] — ({/} U O*~)
on which G does not fix any point, since \[Y] - ({1} U &*)\ > 2 as n > v + 2. Then
m — [Y] consists of nontrivial G-orbits. It should be stressed that G cannot admit
orbits of length v on m — [Y], otherwise II has order 16 and G = PSL(2, 7) and
v = 8 by Proposition 5.11, in contrast with the above argument. Let P e m — {Y}.
Then|PG| > 1, since m-{Y] consists of nontrivial G-orbits. Clearly |P G | = kdk(G)
for some primitive permutation representation degree dk{G), k > 0, of G.

Assume that do(G) = v. Clearly G & Sp(2h, 2), h > 3, by the same argument
as in Proposition 5.11. Then Xv < \PG\ < v + \/2t>, since PG C m - {Y} and
n < v + V2v and dk(G) > v. Thus X = 1 and \PG\ = v + 1 by Lemma 4.2. Since
n > v + 2, there exists Q em- ({Y} U PG). Then \QG\ > 1, since m - {Y} consists
of nontrivial G-orbits. Then \QG\ = v + 1 by the previous argument with Q in the
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role of P. So n > 2v + 2, since PG U QG c m - {Y}. This gives a contradiction.
Assume that do(G) < v. Note that the above argument yields \PG\ = kdo(G) by

Lemma 4.3 and since G cannot admit orbits of length v on m — {Y}. Therefore every
admissible nontrivial G-orbit on m — {Y} must be a multiple of do(G). This implies
n = OdQ(G), 9 > 1. Moreover, n must be a square and u + 2 < / z < v + -v/2~u.
Now by a direct inspection of the Table 1, it is easily seen that no cases arise. Thus
[Y] — {1} cannot contain an orbit of length v for any Y e I — G. At this point we
may use the previous argument to show that for any Z e / — G, the set [Z] — {/}
consists of a G-orbit of length v + 1 plus a line fixed by G, since G cannot be planar
on FI. In particular G is one of the exception groups listed in Lemma 4.2. Then n = 9
and G = PSL(2, 7), since n must be a square. This gives a contradiction by [30,
Theorem A], since G contains Baer collineations of n.

Assume that n < v + 2. That is n = v + 1, since n > v. Note that G fixes exactly
a triangle A having / as its side. In particular each side of A consists of the vertices
of A which are fixed by G and of a 2-transitive G-orbit of length v. This implies
that Go fixes a subplane of n isomorphic to PG(2, 2). Then there exists a point
Q e Fix(Go) - (/ U A) such that \QG\ — v. Clearly QG is not contained in a line,
since QG C I l - ( /UA) and Fix(G) = A. If Q° is a v-arcthen <2CUA isahyperoval.
Then G = PSL(2, 2s), s > 2, or G = Sz(2s), s > 3, s odd, or G = PSL{2, 2s),
s > 2, by [7, Main Theorem]. Thus n = 2" + 2, / € {1, 2, 3}, respectively, and
s > 2. This yields « = 2 mod4. This gives a contradiction by [33, Theorem 13.18].
Hence QG is the set of points of a nontrivial 2-(v, fc, 1) design @ (see the preliminaries
of [4]). By [40, Theorem 1], we have that either 9 = PG(2, q), G = PSL(3, q)
and hence n = q2 + q + 2, or @ is Hermitian Unital, G = PSU(3, q), q > 2, and
hence n = q* + 2, or 9 is Ree Unital and G = 2G2(q), q - 32m+1, m > 1, and hence
« = q3 + 2. If q is even, then rc = 2 mod4 as # > 2 (clearly the case G = PSL(3, 2)
and n = 8 cannot occur). This is impossible by [33, Theorem 13.18]. Hence q is odd.

Now, it is easily seen that G contains an involution fixing the 2 points of / — & and
either exactly q + 1 points on 6 when Q is a Unital, or exactly # + 2 points on &
when ^ = PG(2, q). So, either n = (q + 2)2 orn = (q + 3)2 by [33, Theorem 3.7].
This gives a contradiction in any case. Thus G cannot fix / — C pointwise and hence
the assertion follows by Proposition 5.11. •

This completes the proof of parts (2) and (3) of Theorem 1.1.

6. The affine case

Throughout this section soc(G) is assumed to be an elementary abelian p-group for
some prime p. Hence G is endowed with the structure of a GF(p)-vector space and
the zero vector in G is denoted by O. Let \G\ = pd, p prime, d > 1. Then G = TGO,

https://doi.org/10.1017/S1446788700036880 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036880


258 Alessandro Montinaro [32]

where f is the whole translation group of 0 and Go < TL{t, p). By [28], a structure
of d*-dimensional vector space V over a field L = GF(pH), h \ d, d = hd*, may
be defined on 0 in such a way that G < ATL{d*, ph) and O is identified with the
zero-vector of V.

6.1. The faithful case. Assume that N = (1). Then G = G and hence G = TG0-
In this subsection we prove the following result whose proof relies essentially on

Theorem 2.1.

THEOREM 6.1. Ifv£ {52, T, 112,292, 592} then G < ArL(l, v) and one of the
following occurs:

(1) n = v + 1, v = 2d or v = 3 mod 4;
(2) n = 2v - 1;
(3) n = 2v, v = 2d;
(4) n — yfn + 1 = v and v is a prime.

PROOF. Let K be the kernel of the representation of G on / - 0. Since G is primitive
on 0, either K = (1) or T < K < G by [17, Theorem 4.3B], since r = soc(G).
Assume that K — (1). Then there exists X e I — C such that the kernel of the action
of G on XG is trivial, again by [17, Theorem 4.3B]. Set & = XG. Then v \ \6'\
by the O'Nan-Scott theorem (see, for example, [17, Theorem 4.1A]), since v = \T\.
Thus n > 2pd - 1, since C U ^" c / and u = /7d. Actually, either n = 2pd - 1
or n = 2/?rf, since n < 2pd. In particular, we deduce that the action of G on 6 and
on ^" is the same. Assume that G contains a Baer involution of n . Then n is a
square. If n = 2pd - 1 then either (n, /?, <i) = (2392, 13, 4) or p is odd and d < 2 by
[54, Results Al 1.1 and the result of page 141]. Nevertheless, the former is ruled out
by [30, Theorem A]. Thus d < 2 and hence d* < 2. At this point we may use [28,
Lemma 5.10] to show that G < AFL(1, v). This proves assertion (2). Assume that
n — 2v. Then v — 2d and d is odd by [33, Theorem 13.18], and since n is a square.
Thus d* is odd, since d* \ d. Therefore, by Theorem 2.1, either G < AFL(l, 2d) or
SL(d*, 2h) < Go, d* > 3. Assume that the latter occurs. Let y be any involution
of Go inducing a transvection on @. Then y fixes 2d~h points on & and the point in
/ - {0 U 0'). So 22(d-/l) < 2d+1 by [33, Theorem 3.7], since y is a Baer collineation
of n and n - 2d+l. This yields 2(d - h) < d + 1. Thus d* = 3 and h = 1, since
d = d*h and d* > 3. Hence 5L(3, 2) < Go and n = 16. This gives a contradiction
by [15], since \0\ = 8 and G is of affine type. Thus G < ATL{\, 2d) and we obtain
assertion (3).

Assume that each involution in G is a perspectivity of FT. If n = 2v — 1, then each
involution in G must fix exactly 1 point on 0 and 1 point on 0',nsn is odd. Thus v must
be odd. Then either G < APL(l, v) or 5L(2, ph) < Go or pd e {34, 36, 192, 232}
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by [28, Theorem 6.7], since pd <£ {52, 72, 1I2, 292, 592} by our assumption. Actually,
the cases pd e {34, 36, 192, 232} cannot occur by [33, Theorem 3.6]. Assume that
SL(2, ph) < Go- Then there exists an element <f> of order p inducing a transvection
on & and on 6'. Then </> fixes 2ph points on /. Clearly (n, p) = 1, since n = 2v — 1.
Furthermore (n — 1, p) = 1, since /? is odd. Therefore 0 fixes a subplane of n of order
2ph - 1. Then (2/?A - I)2 < 2/?2A by [33, Theorem 3.7], which gives a contradiction.
Thus G < AFL(l, v) and this proves assertion (2). If n = 2v then v = 2d by [33,
Theorem 13.18]. Then G is solvable by [2, Satz 1]. In particular G < An (I, v) by
[35, Theorem XII.7.3]. That is the assertion (2).

Assume that T < K < G. Assume also that \l - @\ < 2. Then \l - G\ = 2
and hence n = pd + 1, since n > v and v = pd. If 4 | \G0\, then G o contains
a Baer involution of n , since \l — &\ = 2. Thus n must be a square. Clearly
d > 2. Then n = 9 and t> = 8 by [54, Result A5.1]. This gives a contradiction
by [30, Theorem A]. Hence 2 | \G0\ and 22 \ \G0\. Then G < A r L ( l , u) by [28,
Theorem 5.15]. Furthermore, either p = 2 or pd = 3 mod4, as /?d — 1 | | G 0 | . This
proves assertion (1).

Assume that \l — @\ > 2 and that v is even. Then each nontrivial element in T is
a Baer collineation of n , since \l - &\ > 2 and T < K. Thus n + l - i ; = v/« + l,
since T fixes I — & pointwise and T is regular on 6. Hence v = ^fn{^fn — 1). This
gives a contradiction, since v = pd and v > 4. Hence i> is odd.

Assume that G o contains the involutory O-dilatation a. Suppose that T does not
contain planar elements. If there exists X e FI — / such that Tx ^ (1), then Tx = T,
since T is abelian and T fixes / — 6 pointwise and T does not contain any planar
element. Thus T is semiregular on XY — [X, Y) for any Y e I — & again by the
facts that T fixes / — 6 pointwise and T does not contain any planar element. Then
v | n — 1 and hence n = v + 1, since v < n < 2v. This gives a contradiction, since
\l — G\ > 2. Hence T is semiregular on n — /. In particular, p \n. Assume that a
is a (Ca, flo)-perspectivity of FL Let y e T, y ^ 1. Then ay is the <9/-involutory
dilatation of G. Furthermore, ay is a (Cay, ao)/)-perspectivity, where Cay e / and
a a y yt /. Clearly a x 5̂  or, as Oy ^ 6>. Then (a, ay) fixes aa n aa>< pointwise.
This gives a contradiction, since (a, a y ) fl F jt (1) and (aa D aar) D (FI - /) ^ 0 .
Hence a is a Baer collineation of FI. Then p \ */n, since p \ n and n is a square.
Assume that there exists a point P e I — G such that T is semiregular on [P] — {/}.
Then v | /i and hence n = 2v- since v < n < 2u. This gives a contradiction by [33,
Theorem 13.18], since u is odd. Hence, for each point B e / — @ there exists a line
rB 6 [Z?] — {/} such that TrB 7̂  (1). Assume that there exists a point D e I — £?
such that £>a ^ Z). Then Tro also fixes rDa, since a acts as the inversion on T.
Thus TTD fixes the point rD D rDo lying on FI — /. This gives a contradiction, since T
is semiregular on FI — /. As a consequence, / fl Fix(a) = (/ — <?) U {£>}. Then
« + 1 - v = y/n, since |/ — C\ = n + 1 — u. That is, n — V " + 1 = v. This gives
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a contradiction, since p \ «fn and v = pd. Hence T contains a nontrivial planar
element T.

Assume that a is a (Co, aa)-perspectivity. Then Ca e / and aa ^ I, since a is
the involutory O-dilatation in Go and € C /. Note that {Ca, aa) e Fix(r), since a
inverts r. So T fixes O, since either Ca = O or {0} = aa n /. This gives a
contradiction, since O e G, while T is semiregular on C

Assume that a is a Baer collineation of n. Then a fixes / — 6 pointwise, since r
is planar and r fixes I — & pointwise and a fixes only the point O on 6'. Thus
|/ - e\ = y/n. That is n + 1 - v = Jn and hence (Jn - I)2 + (V" - 1) + 1 = u.
Then either u = p or (,/n — 1, u) = (18,73) by [54, Result A7.1]. Assume that
(^/n - 1, v) - (18, 73). Clearly a acts trivially on Fix(r) by [33, Theorem 13.18],
as o(Fix(r)) = 18. Hence Fix(r) c Fix(a). This gives a contradiction by [33,
Theorem 3.7], since o(Fix(a)) = 19. Therefore v = p and we have assertion (4).

Assume that G does not contain involutory dilatations. Then SL(d*, ph) < Go

with d* odd by Theorem 2.1, since v is odd. Let £ be the involution in G0 represented
by the matrix A = diag(—72, Id--i)- Then £ is a Baer collineation of Fl fixing exactly
pd-lh points on C. Then p2^-^ < n, by [33, Theorem 3.7]. Thus d* = 3 as d*
is odd and d* > 1. Let L < COo(?). where L = (diag(C, 1) : C e SL(2,q)).
Let Lo be the kernel of the action of L on Fix(f). Clearly (£) < Lo < L. Actually,
Lo < L, otherwise L would contain planar /7-elements of n inducing transvections
on & (for example pick B = diag(fl0, 1) where BQ = („ {)). Then Lo = (?) and
L/Lo = PSL(2, q) acts on Fix(£), fixing q points on 6. It easily seen that L/Lo

contains a Baer collineation /3 of Fix(£) fixing a further point on Fix(f) C\l — C,
since L/Lo = PSL(2, q) cannot be a group of perspectivities of Fix(£) with axis
Fix(£) n /. Thus o(Fix(£)) > q2 by [33, Theorem 3.7]. Then n > q\ again by [33,
Theorem 3.7]. This gives a contradiction, since n < 2#3 and q is odd. •

6.2. The unfaithful 2-transitive orbits. Throughout this subsection we assume
that N jfc(l).

The proof of Theorem 6.3, which is the main theorem in this subsection, is structured
as follows. We firstly show that G can be written in a 'nice' form (see the following
lemma). Then we reduce to case N < Z(G), otherwise Lemma 5.1 provides a lower
bound for | Af | which is in contrast with the possible upper bounds given in Lemma 4.5.
At this point we essentially use the Schur multipliers (see [41]) to obtain the assertion.

LEMMA 6.2. The following hold:

(1) G = UGO, where U is a normal p-subgroup U ofG such that U/(U DN) = f;
(2) if Go = HN with H D N = {\) and H quasisimple then N < U.

PROOF. Let T be the full preimage in G of f. Then T = UN, where U is a Sylow
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p-subgroup of T. Furthermore, G = NG(U)T by Frattini's argument. Actually
G = NG(U), since T = UN and N = <J>(G). Hence U < G. Moreover, f/G0

induces G on 0, since N < Go- Then G = f/G0 by the minimality of G. This
proves assertion (1).

Assume that there exists H < Go such that Go = HN with H C\ N — {I) and H
quasisimple. ThenG = UH by (1), since N = <J>(G). Furthermore, UC\H = (l),by
[22, Theorem 3.1.3], since H = Go and UC\H isanormal /?-subgroup of H. Clearly
UN/U is isomorphic to a normal subgroup of H. Thus U/(U D A7) is isomorphic
to a subgroup of Z(G0), as / / = Go and the group Go is quasisimple and N is
nilpotent. In particular U/(U D A7) has order coprime to p by [22, Theorem 3.1.3].
Hence N — P x Z, where P = U Ci N and Z is isomorphic to a subgroup of
Z(G0), as A7 is nilpotent. In particular, Z is cyclic because Z(G0) is cyclic by [22,
Theorem 3.2.1]. Let W be the Sylow ^-subgroup of N, with t ^ p. Then W < Z as
N — P x Z. Thus W is cyclic. Moreover, W < G as A7 is nilpotent. Then G acts
on W with kernel Q and G/£> < Aut(W). Actually, Q = G by [22, Theorem 1.3.10
and Lemma 5.4.1], since W is cyclic and N < Q and G = £/// with H quasisimple.
Thus Z is central in G and hence UN = U x Z as (|f/|, |Z|) = 1. This yields
UN(1H = (1), since £/ n / / = (1) and Z n // = (1). As a consequence, Z = (1)
and N < U. This proves assertion (2). •

THEOREM 6.3. L e r , / = {24, 26, 32, 33, 34, 36, 52, 72, 112, 192, 232, 292, 592}.
Then one of the following occurs:

(1) G < AVL(1, v), or
(2) vejf.

PROOF. Assume that the theorem does not hold. By Theorem 2.1, we have that
if G = TG0 is 2-transitive on 6 then G = f soc(G0). Note that soc(Go) is still
2-transitive on & and soc(Go) is quasisimple. Thus, we may assume without loss of
generality that Go = soc(Go). Hence Go is quasisimple. In particular, we have the
following possibilities for Go:

(i) G0 = SL(d*,ph),d*>2;
(ii) Go = Sp(d*, ph), d* even and d* > 4;

(iii) Go = G2(p
h), d* = 6 and p = 2.

We treat the cases N £ Z(G) and N < Z(G) separately.

(I) The case A7 £ Z(G).

Assume that N ^ Z(G). Then, by the same argument as in Lemma 5.1, we
deduce that G acts on V with kernel R, where V = 5/O(5), 5 a Sylow t-subgroup
of N such that 5 ^ Z(G), and N < R < G. Assume that R = G. Then
each Sylow r-subgroup T of G, with r ^ t, centralizes 5 by [22, Theorem 5.1.4].
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Thus CG(S) ^ N and [G : CC(S)] =th,h> 0. Furthermore, CG(5) < G as 5 < G.
Hence TV <l CG(S)N < G. Set L = CG(S)N. Clearly, either L = G or [G : L] = tl

for some 1 < / < h. Actually, the former is ruled out by the same argument as in
Lemma 5.1. Thus [G : L] — tl and hence [G : L]- t' as N < L. Then LIT < GIT
and [G/7 : L/f] = t' as f < L by [17, Theorem 4.3.B]. This implies that Go

must contain a normal subgroup of index f. This gives a contradiction, since Go is
quasisimple. Then R < G. Hence, either R = N or f < fl < f.Z(G0), since

Assume that f <R < f.Z(Go). Set tf = G//?. Clearly H < PrL(V), since V
is a vector space over GF(r). Note that// = G/.R, since G/fl = (G/f)/(R/f). This
implies that / / is isomorphic to a central extension of G0/Z(G0), since G/f = Go

and since fl/7" is isomorphic to a subgroup of Z(G0)- Thus // < PSL(V), since
/ / < PFL(V) and H is quasisimple. Recall that Go is one of the groups listed
above. So, if the representation is in coprime characteristic then |V| > 2R"'(H) by
[43, Corollary 5.3.3, Theorem 5.3.9 and Corollary 5.4.14.(i)], since v £ / . This
implies | V| > 4v2 for v > 8. Hence \N\ > 4v2 for v > 8 as V = 5/<t>(S) and S is
a Sylow t-subgroup of N. This gives a contradiction, since \N\ < 4v2 as \N\ < n1

by Lemma 4.5 and n < 2v. Hence v < 8. Actually v = 8, since v = pd, d > 2
and w > 5. In particular, Â  is regular on Fl - / as \N\ = 26. Then G = GCN
for some C e l l - ! . Actually G = Gc, since A7 = <t>(G) by Lemma 5.10. This
gives a contradiction, since N is semiregular on n — /. Thus the representation of H
as a subgroup of PSL(V) is in the natural characteristic. Therefore v | |V| by [43,
Corollary 5.3.3 and Proposition 5.4.13], since G ^ AVL{\, v) and u ^ ^ . As a
c o n s e q u e n c e , v \\N\for N < R < G.

Finally, assume that R = N. Then G < P5L(V). Then, by the above argument
with Go, 0 e &, in the role of H, we still obtain u | |Af|. Hence v \ \N\ in every
admissible case.

Assume that | A' | | n — 1. Then G fixes a unique point Q on FT — / and N is
semiregular on n — (/ U {Q}) by Lemma 4.5. Then \N\ = n — 1, since v \ \N\
and v < n < 2v. Thus G o = G0,AN with Go,,4 DAf = 1, for some point
A e OQ - {O, Q}. ThenG = UG0,A by Lemma 6.2, as G = UG0, Go = GO,AN
and A' = <£>(G). Then the argument of Theorem 6.1, with G in the role of G, rules
out this case, since G ^ AFL(l, v), v £ J! and v = pd.

Assume that \N\ \ n. Then INI = n and n = 2v since v \ \N\ and v < n <
2v. Therefore v = 2d and n = 2d+l by [33, Theorem 13.18]. Furthermore, AT is
semiregular on [O] — {/} where O e & by Lemma 4.5. Let Q be the set of N-
orbits on [O] - {/}. Clearly |&| < 2, since v \ \N\ and n = 2v. Thus Go fixes Q
elementwise. Then Go = Go,aN for some line a e [O] - [I] and the argument of
Theorem 6.1, with Go,a in the role of Go, rules out the case d odd. Hence d is even
and n is a non square as n = 2d+l. Thus G0,a must have odd order, since v and n
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are even and G0,a = Go- Therefore Go must have odd order. Hence G is solvable
by [2, Satz 1]. In particular, G < ArL(\, v) by [35, Theorem XII.7.3], which is a
contradiction.

Assume that \N\ > n. Then either n \\N\ and n is a prime power, or n = 3\J |/2
where J is the Sylow 2 -subgroup of TV by Lemma 4.5. Then either n — 2v, or
n = 3v/2 and v even, since v | n2 as \N\ \ n2, and since v < n < 2v, respectively.
Note that v is also even in the first case by [33, Theorem 13.18]. Let Q be defined
as above. Then \Q\ < 3, since each TV-orbit on [O] - {/} has length at least n/3
by Lemma 4.5. Thus Go fixes Q. elementwise, since Go is quasisimple. Hence
Go = G0,bN for some line b e [0] — {/}. We stress that G0,b

 n N 7̂  0 ) , since
Nb ^ (1) as \N\ > n. Now, we may repeat the above argument, with G0,b in the role
of H and Nb in the role of N, to assert that either v \ \Nb\ or Nb < Z(Gob). Assume
that v | \Nb\. Then \N\ > ra/3, since [TV : Nb] > n/3 as \Q\ < 3. Let * be the
set of N-orbits of points on n — /. Then | ^ | < 6, since N is semiregular on FI — /
and \N\ > vn/3. It is a plain to see that G fixes ^ elementwise, since v > 8. So
G = GA/V for some A e Yl-l. Actually G = GA, since N - 4>(G) by Lemma 5.10.
This gives a contradiction, since TV is semiregular on II — /. Hence Nb < Z(GOib).
Then Go,b = G'o bN where G'o b is a covering group for Go by [1, Theorem 11.3.33].
Hence, G'ob n N is isomorphic to a subgroup of the Schur multiplier of Go. If
Go = SL(d*, ph), d* > 2, then G'Ob n N = (1) by [41, Theorem 7.1.1 (i)], since
v $ / . If Go = Sp(d*, ph), d* even, d* > 4, then G'o fc n N = (1) by [41,
Theorem 2.5.12] when p is odd, and by [43, Theorem 5.1.4] when p = 2, since Go is
perfect, d* > 4and v i J'. Finally, if Go = G2(p

h) and p - 2, then G'obnN = (1)
by [43], Theorem 5.1.4, since u £ ^Z- Thus G'o 6 D N = (1) in every admissible case.
Then the above argument, with G'o b in the role of G0,a, rules out this case. Actually,
such an argument works when we replace n = 2v with n = 3v/2. So, also the case
n = 3v/2 cannot occur.

(II) The case N < Z(G).

Assume that N < Z(G). Then Go = G'0N with G'o a covering group for Go

by [1, Theorem 11.3.33]. Hence G'o D N is isomorphic to a subgroup of the Schur
multiplier of Go. Actually, G'o D N = (1) in every admissible case by the above
argument, with G'o in the role of G'ob. Then /V < U by Lemma 6.2(2). Furthermore,
there exists £ 6 G'o such that o(£) is a primitive prime divisor of v — 1 by [43,
Theorem 5.2.14], since G j£ AFL(l, v) and v <£ ^'. Then £ acts irreducibly on
U/{LI fl N) = f by [28, Section 5 and Theorem 3.5] and each proper ^-invariant
normal subgroup of U lies in N. Therefore £ acts trivially on each proper f -invariant
normal subgroup of U, since N = Z(G0)- Then U is special and N = 0(10 by [22,
Theorem 5.3.7], since U/N = f and N ^ (1). Recall that K is the kernel of the
representation of G on / — 6 and TV" = 3>(G). If K < G then there exists a nontrivial
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G-orbit 0* on / - 0. Let A be the set of //-orbits on 0* and let F be the kernel of
the representation of G on A. Clearly N < F < G. If F = G then G = GXN for
some X e 0*. That is G = Gx, since TV = <t>(G). This gives a contradiction, since
X € <?* and <?* is a nontrivial G-orbit. Therefore R < G.

If R = N then G induces Gone*. Then v | \0*\ by the O'Nan-Scott Theorem,
since v = \f\. This forces N to fix / — 0 pointwise Then either n = 2v - 1
and N = N(Q, I) with Q e FT - /, or n = 2v and N = #'(/, /) by Lemma 4.5,
since n < 2v. Since G ^ AFL(\, v) and u £ ef, and since G'o C\ N = (1) and
G'o = Go, the arguments of Theorem 6.1 still work and hence we may rule out the
cases n — 2v — 1 and n = 2v.

Now, assume that N < R < G. That is (1) < R < G. Hence U < R, by [17,
Theorem 43.B], since N <U, 0 = f and f = soc(G). Thus £/ fixes A elementwise.
Then U = UYN for each F e ^ ' , since N < U. Furthermore, £/ fixes 0* pointwise
s i n c e N = 4 > ( [ / ) . H e n c e N < U < K < G and N = N ( l , l ) o r N ( Q , l ) w i th
g e n - / by Lemma 4.5. Assume that N = N(l, I). Clearly N(X, /) = (1) for
any X e tf, since N < Z(G). Hence there exists a point E e I — 6 such that
N(E, / ) ^ ( 1 ) , since N ,6(1).

Assume that N(£:, /) < Af. Then G acts on the set E of //-orbits on [E] - {/}, since
A' < Z(G). If U fixes some element in E then [/ = UrN for some r e [ £ ] - {/}, since
N < U. As a consequence, U = Ur since // = <t>(f/). This gives a contradiction,
since Afr = N(E,l) and N(E,l) < N. Thus [/ moves each element in S. In
particular, G induces G on £, and G does not fix any element in S. Then v \ \ S |
by the O'Nan-Scott Theorem, since v = \f\. Then n = v[N : N(E,l)], since
|E| = n/[N : N(E,l)]. Thus [// : N(E,l)] = 2 and n = 2u, since u < n < 2u.
Since G ^ ArL( l , v),v $ f and since G'oflJV = (l) and G'o = Go, it is easily
seen that the argument of Theorem 6.1 still works and we may again rule out the case
n = 2v. Therefore N = N(E, I).

Assume that v is even. If there exists an involution a e U — N then a is a Baer
collineation of n fixing the v + 1 points of / — 6, since n = 2v and since U fixes
I — C pointwise. Then v2 < n by [33, Theorem 3.7]. This gives a contradiction, since
n = 2v and v > 2. As a consequence U — N does not contain involutions. Thus
U must be semiregular on [Y] — {/} for any point Y on / — (& U {£}), since £/ fixes
/ - 0 pointwise, N < (/ and A7 = W(E, /). Thus |£/| | n. Thenw = 2v and N = Z2,
since |t/ | = v|A |̂ and N ^ (1). Hence v is even as N < U and [/ is a /?-group.
This gives a contradiction by the same argument as above. Assume that v is odd.
Assume also that U fixes a line / of [E] — {I}. If U is semiregular on / — {£} , then
n = 2u, since |£/1 = ulA'l. This gives a contradiction by [33, Theorem 13.18], since v
is odd. Thus UD ^ (1) for some D e f — {£}. Then f/D fixes DN pointwise, since
A' < Z(G). Then there exists a non trivial element x in U - N fixing DN U (/ - <?)
pointwise. Thus r is planar on n , since \l - 0\ > 2, \DN\ > 2 and D" c n - /.
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So o(Fix(r)) = n — v. If « + 1 — v = *fn then, by arguing as in Theorem 6.1, we
deduce that v is a prime. This gives a contradiction, since G £ AVL(l, v).

Assume that v is odd. So, n + 1 — v < -Jn. In particular, n < v + -J2v by [33,
Theorem 3.7], since n < 2v. Recall that G'o D N = (1). The argument of Theorem 6.1
implies that G'o contains an involution a inducing an involutory O-dilatation on 0.
So v is a square and hence n cannot be a square, since v < n < v + -J2v. Clearly a
cannot be a Baer collineation of n . Thus a is an involutory (Ca, aa) perspectivity.
Clearly Co e / and aa ^ I since a £ N and a fixes /. Thus there exists a point W on
/ - 0 such that \WH\> 1. Let T be the set of a-orbits on WH. Then \F\ = \WH\/2,
since a is central in H,aa £ / and H is transitive on WH. Then |T| > do(H/Z(H))
by [43, Proposition 5.2.1]. Hence 2do(H/Z(H)) < n - v + 1, since |T| = |W"\/2
and\WH\ <n-v+l. Actually, (2do(H/Z(H))- I)2 <2u, since u < n < v + Jl^.
At this point, bearing in mind that do(H/Z(H)) is given in [12], it is a straightforward
calculation to show that no case satisfies the previous inequality. Hence U does not
fix lines of [E] — {/}. Therefore [E] — {/} is a union of nontrivial G-orbits. Thus v | n,
since the length of each these orbits is a multiple of v by the O'Nan-Scott Theorem,
as v = \T\. Hence n = 2v. Again this gives a contradiction.

Assumed = N(Q, 1) for some Q e U—l. Then TV is semiregular on QB-{Q, B},
where B is any point of/ — G. If U is semiregular on QB — {Q, B], then \U\ \ n — 1.
Then 2v < n — 1, since \U\ = v\N\ and N ^ (1). This gives a contradiction, since
n < 2v. In particular there exists rt e U — N fixing a point C of QB — {Q, B}.
Then xx is planar on FI, since Ti fixes the points C and Q on n — / and since U fixes
1 — 0 pointwise. At this point the same argument used for the case /V = N(E, I),
with Ti in the role of r, still works and we may rule out this case. This completes the
proof. •

7. Translation Planes

In this section we investigate what Theorems 1.1 and 1.2 say when n is the
projective extension of a translation plane of order n and 0 is a 2-transitive G-orbit
of length uona line /, with n > v > n/2. The case when 0 has length v with v > n
is already contained in Section 2.

THEOREM 7.1. Let FI be the projective extension of a translation plane of order n
and let 0 be a 2-transitive G-orbit of length v on a line 1. Ifn > v > n/2 and G is
almost simple, then one of the following occurs:

(1) II is the Hall plane of order 9 or its dual, \0\ = 5 and SL(2, 5) <1 G, in
particular I is the line at infinity;
(2) ft is the Johnson-Walker translation plane of order 16 or its dual, and

PSL(2, 7) < G. In particular I is an affine line.
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PROOF. Suppose that n is the projective extension of a translation plane of order n.
Then n = t> where t is a prime and j > 1. Assume that n = 2q + 1, q s 3 mod 4,
q ^ 7, \0\ = q + 1 and SL(2, q) < G. Then j = 1 by Lemma 4.1(1), so n is
Desarguesian. Then PSL(2, q) < PGL(2, n), since G induces the group PSL(2, q)
on /. Since PSL(2, q) contains nontrivial elements fixing 4 points on /, namely
two points on 0 and two points on 6'', we have a contradiction. Now, assume that
n = 2(q + 1), q = 3 mod4, \0\ = q + 1 and SL(2, q) < G. Then n = V and tf
is a Mersenne prime by Lemma 4.1(1). Clearly G < PTL{2h, 2h), with j = jxh,
since G leaves invariant the line at infinity. Thus 5L(2, q) < PSL(2h, 2-"), since
5L(2, 9) < G. Then 2h > (q - l)/2by [43, Proposition 5.3.2 and Theorem.5.3.9],
since g ^ 5, 9 as <j is a Mersenne prime. Hence 2(g + 1) > 2(?~l)/4, since n = 2J and
n = 2(g + 1). An easy computation shows that the previous inequality is impossible
for q > 19, since q is odd. Hence q < \9. Actually q = 1, since q must be a
Mersenne prime. Thus SL(2, 7) < G and n = 16. A direct inspection of the list of
the full collineation groups of all translation planes of order 16 given in [16] (see also
[53]) rules out this case. So, the cases (2b) and (3b) of Theorem 1.1 cannot occur
when n is the projective extension of a translation plane of orderrc. Thus the assertion
follows by Theorem 1.1, since n > v> n/2. •

THEOREM 7.2. Let Fl be the projective extension of a translation plane of order n
and let & be a 2-transitive G-orbit of length v on a line I, with n > v > n/2.
IfG is ofajfine type and G acts faithfully on C and v i {52, 72, II2, 292, 592}, then
G < AVL(l, v). Furthermore one of the following occurs:

(1) n = 2v - 1, v = p d , in particular, either {pd, n) - (134, 2392) or n = tv and
d <2;
(2) n = 2v, v = 2d.

PROOF. Suppose that n is the projective extension of a translation plane. Then
n — tJ, j > 1, for some prime t. Assume that 6 is a 2-transitive G-orbit of length v
on a line, with n > v > n/2 and v $ {52, 72, 112, 292,592}. Assume also that G is a
collineation group of n of affine type acting faithfully on 6. Then G < ATL(l,v)
and n satisfies one of the relations (l)-(4) given in Theorem 6.1. Assume thatn = v+1
with v = 2d or v = 3 mod 4. If v = 2d then either d — 3 and n = 9 or n is a Fermat
prime by [54, Result (Bl.l)]. If n =9, then n is either Desarguesian or one of the
Hall planes. Nevertheless these planes cannot occur since 7 | |G|, as G is 2-transitive
on @, 6 c / and v = 8. Thus n is a Fermat prime and hence FI is Desarguesian.
Then G < PGL(2, n). Thus 2d(2" - 1) | 2d(2rf + l)(2d + 2), since G is 2-transitive
on & and n = 2d + 1. This gives a contradiction, since n > 5 by our assumptions.

Assume that n — «/n + 1 = v and v = p. Then G = AGZ,(1, p). In this case
the group G fixes I — G pointwise and the element p in G of order p is planar by
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Theorem 6.1 (see its proof). Hence p fixes a subplane of n of order tJ — p as n = t',
j > 1. Thenr; — p \ t> as n is a translation plane. So? = p = 2andn = t' = 4. This
gives a contradiction, since n — -,/n + 1 = p. Thus either n = 2v — 1 with v = pd, or
n = 2v with u = 2d by Theorem 6.1. The second case leads to assertion (2). Hence,
assume that n = 2v — 1 with v = pd. Then 2/?rf = t' + 1 as n = t>. Assume that j is
not a power of 2. Then fA + 1 | t>' + 1 for some integer 1 < h < j . Then p | f * + 1 and
hence / ; + 1 has no primitive prime divisors for j > 1, as 2pd = tj + I. Then t' = 8
by [54, Result (P1.7)(ii)]. This gives a contradiction, since t must be odd. Therefore
j = 1 and hence t = 2pd - 1, so n is Desarguesian. Then G < PGL(2,t), since G
leaves invariant /. Since pd = (t + l)/2 and the Sylow /j-subgroup of G is normal
in G, we have G < NPCLi2,,)(Z,+]). So pd(prf - 1) | 2(r + 1), since G is 2-transitive
on ^ . Then pd - 1 | 4, since f = 2pd - 1. Hence pd = 5 and n = 9, since v > 5.
This gives a contradiction, since n = t with r prime. Hence j = 2h, h > 0. If d > 2,
then (pd, tj) = (134, 2392) by [54, Result (Al 1.1) and result of Page 141]. This
proves assertion (1). D

We remark that, while there are no known examples corresponding to case (1) of
the previous theorem, Example 3 is an example for case (2). Indeed (2) and (6) in
Example 1 do not correspond to case (1) of the previous theorem but correspond to
particular cases of Theorem 6.3. Finally, we remark that there are no improvements
to Theorem 6.3 when n is the projective extension of a translation plane.
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