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Prime and Primary Ideals in a Prüfer Order
in a Simple Artinian Ring
with Finite Dimension over its Center
H. Marubayashi and A. Ueda

Abstract. Let Q be a simple Artinian ring with finite dimension over its center. An order R in Q is said to be
Prüfer if any one-sided R-ideal is a progenerator. We study prime and primary ideals of a Prüfer order under
the condition that the center is Prüfer. Also we characterize branched and unbranched prime ideals of a Prüfer
order.

0 Introduction

Let D be a domain with quotient field F and let Q be a simple Artinian ring with finite
dimension over its center F. A subring R with D = Z(R), the center of R, is called an
order in Q if FR = Q. Then, of course, R is a prime Goldie ring with quotient ring Q.
Following [AD], R is a Prüfer order in Q if any one-sided R-ideal is a progenerator.

In this paper, we shall study prime and primary ideals of a Prüfer order R in Q under the
condition that D = Z(R) is Prüfer. Particularly we give in Theorem 2.7 a generalization of
well-known results about branched and unbranched prime ideals of commutative Prüfer
domains (cf. [Gi, Theorem 23.3]). If D = Z(R) is a Prüfer domain, then R is a Prüfer order
in Q if and only if Rm is a semi-local Bezout order in Q for any maximal ideal m of D (cf.
[D3, Theorem 3] and [M2, Theorem 2.5]). In [G2], Gräter has characterized a semi-local
Bezout order R as follows; R = R1∩· · ·∩Rn, where R1, . . . ,Rn are incomparable Dubrovin
valuation rings of Q having the intersection property. By using this property, it is shown
in Theorem 1.5 that there exists a bijective correspondence between the set of all primary
ideals of R and the set of all primary ideals of Ri , 1 ≤ i ≤ n. This theorem will be applied
in Section 2 to characterize branched and unbranched prime ideals of a Prüfer order.

We use⊂ for proper inclusion and⊆ for inclusion.

1 The Case of Semi-Local Bezout Orders

In this section, we shall study prime and primary ideals in a semi-local Bezout order in a
simple Artinian ring with finite dimension over its center.

First, we shall investigate primary ideals and prime radicals of a prime Goldie ring and its
central localization. An element a of a ring R is called strongly nilpotent if every sequence
a0, a1, a2, . . . , such that a0 = a, an+1 ∈ anRan is ultimately zero. Clearly, every strongly
nilpotent element is nilpotent. Let A be an ideal of R. Then we denote by

√
A the prime

radical of A, that is,
√

A =
⋂
{P : prime ideals of R | P ⊇ A}. It is well known that the
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prime radical
√

A of A is the set of all elements of R which are strongly nilpotent modulo A
(cf. [L, p. 56, Proposition 1]). So, we have

Lemma 1.1 Let R ⊆ S be rings and let A ′ be an ideal of S with A = A ′∩R. Then
√

A ′∩R ⊆√
A.

An ideal A of a ring R is called a right (
√

A)-primary ideal if xRy ⊆ A and y /∈
√

A, then
x ∈ A. It is easily shown that an ideal A is right primary if and only if BC ⊆ A implies
B ⊆ A or C ⊆

√
A for ideals B and C of R. Similarly, a left primary ideal is defined. An ideal

A of a ring R is said to be (
√

A)-primary if it is right and left primary.

Lemma 1.2 Let R be a prime Goldie ring, let S(63 0) be a multiplicatively closed subset of
Z(R) and let A be an ideal of R such that A ∩ S = ∅. Then

(1)
√

A ∩ S = ∅,
(2) if A is one-sided primary, then

(i) AS ∩ R = A,

(ii)
√

AS = (
√

A)S and

(iii)
√

AS ∩ R =
√

A.

Proof (1) is clear since any element of
√

A is nilpotent modulo A.
(2) (i) is obvious. To prove (ii), let P ′ be any prime ideal of RS such that AS ⊆ P ′.

Then we have A ⊆ AS ∩ R ⊆ P ′ ∩ R and P ′ ∩ R is a prime ideal of R, because RS is a
central localization. Hence

√
A ⊆ P ′ ∩ R and so (

√
A)S ⊆ (P ′ ∩ R)S = P ′, which implies

(
√

A)S ⊆
√

AS. To prove the converse inclusion, let x = as−1 ∈
√

AS, where a ∈ R and
s ∈ S. Then, since a = xs ∈

√
AS, a is strongly nilpotent modulo AS, and so is modulo A,

because AS ∩ R = A. Thus a ∈
√

A and hence x ∈ (
√

A)S. (iii) follows from Lemma 1.1
and (ii).

Let Spec(R) be the set of all prime ideals of a ring R and let Pr(R) be the set of all right
primary ideals of R. Then, from Lemma 1.2, we easily obtain the following.

Lemma 1.3 Let R be a prime Goldie ring and let S(63 0) be a multiplicatively closed subset of
Z(R). Then

(1) The mappings P → P ′ = PS and P ′ → P = P ′ ∩ R give a bijective correspondence
between {P ∈ Spec(R) | P∩S = ∅} and Spec(RS), where P ∈ Spec(R) with P∩S = ∅
and P ′ ∈ Spec(RS).

(2) The mappings A → A ′ = AS and A ′ → A = A ′ ∩ R give a bijective correspondence
between {A ∈ Pr(R) | A ∩ S = ∅} and Pr(RS), where A ∈ Pr(R) with A ∩ S = ∅ and
A ′ ∈ Pr(RS).

In the remainder of this section, let Q be a simple Artinian ring with finite dimension over
its center F and let R be an order in Q. An order R in Q is said to be Bezout if any one-sided
finitely generated R-ideal is principal. We say that R is semi-local if R/ J(R) is a semi-simple
Artinian ring, where J(R) is the Jacobson radical of R.

If R is a semi-local Bezout order in Q, then, by [G2, Corollary 3.5], we have R = R1∩· · ·∩
Rn, where each Ri is a Dubrovin valuation ring of Q and R1, . . . ,Rn have the intersection
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property, that is, the mapping S → J(S) ∩ R is a well-defined anti-ordered isomorphism
between B(R1) ∪ · · · ∪ B(Rn) and Spec(R), where S ∈ B(Ri) = {S : overring of Ri}
(1 ≤ i ≤ n). Further, by [G2, Theorem 2.6], for any prime ideal P of R, C(P) = {c ∈ R |
[c + P] is regular in R/P} is a regular Ore set of R and RP is a Dubrovin valuation ring of Q
such that J(RP) ∩ R = P. Then we have the following.

Lemma 1.4 Let R = R1 ∩ · · · ∩ Rn be a semi-local Bezout order in Q. Assume that A and
A ′ are right primary ideals of R and Ri (for some i) respectively satisfying A = A ′ ∩ R and
P =

√
A =

√
A ′ ∩ R, and P is a prime ideal of R. Then AP = A ′ and it is a J(RP)-primary

ideal of RP.

Proof Set P ′ =
√

A ′, a prime ideal of Ri by [MMU, Lemma 1], and set S = RiP ′ . Then it
follows from [D2, Section 2, Theorem 1], [MMU, Lemmas 6 and 8] and [G2, Theorem 2.5]
that P ′ = J(S), S = RP and A ′ is a J(RP)-primary ideal of S. Hence AP = (A ′ ∩ R)P =
A ′P ∩ RP = A ′ ∩ RP = A ′.

If R = R1 ∩ · · · ∩ Rn is a semi-local Bezout order in Q, where R1, . . . ,Rn are Dubrovin
valuation rings of Q having the intersection property, then, by [D2, Section 2, Theorem 1]
and the definition of the intersection property, the mapping P ′ → P = P ′ ∩ R is a well-
defined inclusion preserving bijective correspondence between Spec(R1) ∪ · · · ∪ Spec(Rn)
and Spec(R). Concerning primary ideals, we have the following.

Theorem 1.5 Let R = R1 ∩ · · · ∩Rn be a semi-local Bezout order in a simple Artinian ring Q
with finite dimension over its center F, where R1, . . . ,Rn are incomparable Dubrovin valuation
rings of Q having the intersection property. Then the prime radical of any right primary ideal
of R is a prime ideal, and the mappings A′ → A = A ′ ∩ R and A→ A ′ = AP give a bijective
correspondence between Pr(R1) ∪ · · · ∪ Pr(Rn) and Pr(R) satisfying

√
A =

√
A ′ ∩ R, where

A ′ ∈ Pr(Ri) for some i and P =
√

A.

Proof We defineϕ : Pr(R1)∪· · ·∪Pr(Rn)→ Pr(R) by ϕ(A ′) = A ′∩R, where A ′ ∈ Pr(Ri)
for some i. First of all, we have to show that ϕ is well-defined. To do this, let A ′ ∈ Pr(Ri)
and let P ′ =

√
A ′, a prime ideal of Ri by [MMU, Lemma 1]. If we set S = Ri P ′ , then S is

a Dubrovin valuation ring of Q with J(S) = P ′ and A ′ is a P ′-primary ideal of S by [D2,
Section 2, Theorem 1] and [MMU, Lemmas 6 and 8]. Thus P = P ′ ∩ R is a prime ideal of
R and RP = S by [G2, Theorem 2.5]. Set A = A ′ ∩ R. Then it is clear that

√
A ⊆ P. On the

other hand, P =
√

A ′ ∩ R ⊆
√

A by Lemma 1.1. Hence P =
√

A, a prime ideal. To prove
that A is a right primary ideal of R, suppose that aRb ⊆ A and b /∈ P. Since R is a PI ring,
RbR ∩ C(P) 6= ∅. This implies that a ∈ aRP = a(RbR)P ⊆ (aRbR)P ⊆ AP = A ′. Thus
a ∈ A ′ ∩ R = A, proving that A is right primary. Hence ϕ is well-defined.

To prove that ϕ is one-to-one, suppose that A ′ ∩ R = A = A ′1 ∩ R, where A ′ ∈ Pr(Ri)
and A ′1 ∈ Pr(R j) for some i and j. Set P =

√
A. Then, by Lemma 1.4, A ′ = AP = A ′1,

proving that ϕ is one-to-one.
Next, we shall prove that ϕ is onto by induction on [Q : F]. Since the case of [Q : F] = 1

is clear, we may assume that [Q : F] > 1 and let A be a right primary ideal of R. Let D =
Z(R) and let m1, . . . ,mk be the full set of maximal ideals of D. Since A = Am1 ∩ · · · ∩ Amk ,
we may assume that Am1 ⊂ Rm1 , that is, A ∩ (D \ m1) = ∅. Then, by Lemma 1.3, Am1 is
right primary with Am1 ∩R = A, and

√
Am1 ∩R =

√
A by Lemma 1.2. There are two cases.
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Case 1 In the case Rm1 is a Dubrovin valuation ring of Q. Then, since R1m1
, . . . , Rnm1

are
linearly ordered by inclusion, Rm1 = Ri m1

for some i. By [MMU, Lemma 1], P ′ =
√

Am1

is a prime ideal of Ri m1
. Set S = (Ri m1 )P ′ , a Dubrovin valuation ring with J(S) = P ′ by

[D2, Section 2, Theorem 1], and Am1 is a J(S)-primary ideal of Ri m1 which is an ideal of
S by [MMU, Lemma 6]. Hence Am1 ∈ Pr(Ri) by [MMU, Lemma 6] and A = Am1 ∩ R
by Lemma 1.3. P =

√
A is a prime ideal of R, because

√
A =

√
Am1 ∩ R = J(S) ∩ R by

Lemma 1.2 and the intersection property.

Case 2 In the case Rm1 is not a Dubrovin valuation ring. Then Rm1 = R1m1
∩ · · · ∩Rnm1

=
R1m1

∩ · · · ∩Rlm1
, where R1m1

, . . . ,Rlm1
are incomparable and Z(Rm1 ) = Dm1 is a valuation

ring. By [G1, p. 835, Case 2], there exists a Dubrovin valuation ring S of Q integral over
W = Z(S) such that

(a) S ⊇ R1m1
, . . . ,Rlm1

and
(b) [Q : F] > [S̄ : Z(S̄)], where S̄ = S/ J(S).

By [G1, Lemma 6.4], we have the following two cases:
(i) In the case Am1 ⊇ J(S). If Am1 = J(S), then Am1 ∈ Pr(Ri), 1 ≤ i ≤ l. Thus we

may assume that Am1 ⊃ J(S). Since R̃1 m1 , . . . , R̃n m1 have the intersection property by [G1,
Proposition 6.3] where R̃i m1 = Ri m1/ J(S), there exists an Ã ′ ∈ Pr(R̃i m1 ) for some i with

Ãm1 = Ã ′ ∩ R̃m1 and
√

Ãm1 =
√

Ã ′ ∩ R̃m1 by induction hypothesis. It follows from [MMU,

Lemmas 6 and 8] that there exists an overring T̃ of R̃i m1 such that Ã ′ is a J(T̃)-primary
ideal of T̃. By [D2, Section 1, Proposition 2], there exists a Dubrovin valuation ring T of
Q such that S ⊇ T ⊇ Ri m1 with T̃ = T/ J(S). Let A ′ be the inverse image of Ã ′ in T.
Then A ′ is a J(T)-primary ideal of T since J(T̃) = J(T)/ J(S). Hence A ′ ∈ Pr(Ri) by
[MMU, Lemma 6]. It is easy to see that Am1 = A ′ ∩ Rm1 and

√
Am1 = J(T)∩ Rm1 , because√̃

Am1 =

√
Ãm1 = J(T̃) ∩ R̃m1 = J̃(T) ∩ R̃m1 . Therefore, by Lemmas 1.2 and 1.3, we have

A = Am1 ∩ R = A ′ ∩ Rm1 ∩ R = A ′ ∩ R and
√

A =
√

Am1 ∩ R = J(T) ∩ R, a prime ideal
of R by [G2, Theorem 2.5].

(ii) In the case J(S) ⊃ Am1 . Since
√

Am1 is a semi-prime ideal of Rm1 and J(S) ⊇
√

Am1 ,√
Am1 is an ideal of S by [G1, Lemma 6.4]. We claim that Am1 is also an ideal of S. Before

proving this claim, we note that S = (Rm1 )p, where p = J(W ). It is clear that S ⊇ (Rm1 )p

and Z
(
(Rm1 )p

)
= (Dm1 )p = W . Thus (Rm1 )p is a Bezout W -order and hence S = (Rm1 )p

by [M1, Theorem 3.4]. Thus, to prove the claim, it is enough to show that c−1Am1 ⊆ Am1

for any c ∈ Dm1 \ p. Since c−1Am1 ⊆ S · J(S) = J(S) ⊆ Rm1 , c−1Am1 is an ideal of Rm1 . Now
Am1 = c · c−1Am1 and c /∈

√
Am1 imply that c−1Am1 ⊆ Am1 . In particular, Am1 = (Am1 )p.

Hence, by Lemma 1.3, Am1 is a primary ideal of S = (Rm1 )p. Set P ′ =
√

Am1 , a prime

ideal of S by [MMU, Lemma 1], and set T = SP ′ . Then J(T) =
√

Am1 by [D2, Section 2,

Theorem 1] and thus, by Lemma 1.2,
√

A =
√

Am1 ∩ R = J(T) ∩ R, a prime ideal of R
by [G2, Theorem 2.5]. Since T ⊇ S ⊇ Ri m1 ⊇ Ri(i = 1, . . . , l), it is clear from [MMU,
Lemma 6] that Am1 ∈ Pr(Ri) and A = Am1 ∩ R. Thus ϕ is onto. We have also proved that
P =
√

A is a prime ideal of R for any A ∈ Pr(R).
To completes the proof, it only remains to show that A ′ = AP for any A ∈ Pr(R) and

for any A ′ ∈ Pr(Ri) with A ′ ∩ R = A, where P =
√

A. However, this always holds by
Lemma 1.4, completing the proof.
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We conclude this section with the following results deriving from Lemma 1.4 and The-
orem 1.5.

Corollary 1.6 Let A be a right primary ideal of a semi-local Bezout order R in Q with P =√
A. Then AP is a J(RP)-primary ideal of RP with A = AP ∩ R.

Corollary 1.7 Let A be an ideal of a semi-local Bezout order R in Q. Then A is right primary
if and only if A is left primary. In this case, AP = PA holds, where P =

√
A.

Proof Let A be right primary and assume that aRb ⊆ A for a ∈ R \ P and b ∈ R. Then

P(RaR) = PR = RP. Hence b ∈ RPb = P(RaR)b = RPRaRb ⊆ RPA ⊆ RPAP = AP since AP

is an ideal of RP, and so b ∈ AP ∩ R = A by Corollary 1.6. Therefore, A is left primary. The
converse is proved similarly. Because AP and PA are both ideals of RP, we have AP = PA.

2 Prime and Primary Ideals of a Prüfer Order

Throughout this section, let R be a Prüfer order in a simple Artinian ring Q with finite dimen-
sion over its center F and suppose that Z(R) is Prüfer. Then we note that RM exists and is a
Dubrovin valuation ring for any maximal ideal M of R by [D3, Theorem 3]. In this section,
we shall study primary ideals of R and characterize branched and unbranched prime ideals
of R.

Lemma 2.1 Let A be an ideal of R. Then A is right primary if and only if it is left primary. In
this case,

√
A is prime.

Proof Assume that A is right primary. Then for any maximal ideal m of D with A ∩ (D \
m) = ∅, Am is right primary by Lemma 1.3, so Am is left primary by Corollary 1.7. Hence,
by the left version of Lemma 1.3, A = Am ∩ R is left primary. The converse is proved
similarly. Further,

√
Am is prime by Theorem 1.5, and so

√
A =
√

Am ∩ R is also prime by
Lemmas 1.2 and 1.3.

Lemma 2.2 Let A be an ideal of R with P =
√

A prime. Suppose that AM is an ideal of RM

and is PM-primary for every maximal ideal M of R. Then A is P-primary.

Proof Assume that xRy ⊆ A, where x ∈ R and y ∈ R \ P. Let M be any maximal ideal
of R. If P * M, then P ∩ C(M) 6= ∅ and so A ∩ C(M) 6= ∅. Hence AM = RM 3 x.
If P ⊆ M, then C(M) ⊆ C(P) and RM ⊆ RP by [MM2, Lemmas 1 and 2]. So PM is a
prime ideal of RM . Since RM is a Dubrovin valuation ring and RP = (RM)PM , AM is an ideal
of RP by the assumption and [MMU, Lemma 6]. Hence we obtain that AM = AP. Now
RyR ∩ C(P) 6= ∅ because R is a PI ring, and so we have (RyR)P = RP. It follows that
x ∈ xRP = xR(RyR)P ⊆ (xRyR)P ⊆ AP = AM . Thus x ∈

⋂
AM = A by [M2, Lemma 2.4],

and so A is P-primary.

Lemma 2.3 Let A be a P-primary ideal of R. Then AM = MA for any maximal ideal M of R.
Further, if M is a maximal ideal of R with P ⊆ M, then AM is a PM-primary ideal of RM.
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Proof Let A be a P-primary ideal of R and let M be a maximal ideal of R. If P * M,
then A * M. So A ∩ C(M) 6= ∅ and we have AM = RM = MA. Next assume that
P ⊆ M and set m = M ∩ D, a maximal ideal of D. By [M2, Theorem 2.5] and [M1,
Lemma 2.4], Rm is a semi-local Bezout order. Thus, by Lemma 1.3, we may assume that
R is a semi-local Bezout order with D a valuation ring. By Lemma 1.4, Theorem 1.5 and
Corollary 1.7, AP is P ′-primary and PA = AP, where P ′ = J(RP). Set p = D ∩ P. Then
RP = (RM)PM = (RM)p by [D2, Section 2, Theorem 1] (note that Z(RM) = D = Z(R)).
Thus we have AP = (AM)PM = (AM)p. Now we show that AP ∩ RM = (AM)p ∩ RM = AM .
To show this, let x ∈ (AM)p∩RM . Then xd ∈ AM for some d ∈ D\ p. By the Ore condition,
there exists c ∈ C(M) such that xc ∈ R and xdc ∈ A. Then A ⊇ xdcR = xcRd and d /∈ P
imply xc ∈ A, and x ∈ AM follows. In a similar way, we have PA ∩ RP = MA and hence

MA = PA ∩ RM = AP ∩ RM = AM . Further, by Lemma 1.3, AM is a PM-primary ideal of
RM , because AP is P ′-primary.

Lemma 2.4 Let A1 and A2 be P-primary ideals of R. Then A1A2 is also a P-primary ideal.

Proof It is clear that
√

A1A2 = P. Let M be any maximal ideal of R. If P * M, then
A1A2 * M and so (A1A2)M = RM = M(A1A2). If P ⊆ M, then, by Lemma 2.3, we have
(A1A2)M = A1A2 · RM = A1RM · A2RM = RMA1 · RMA1 = RM(A1A2) = M(A1A2), an
ideal of RM . By Lemma 2.3, A1 M and A2 M are PM-primary ideals of a Dubrovin valuation
ring RM . This implies that (A1A2)M = A1 M · A2 M is a PM-primary ideal of RM by [MMU,
Corollary 7]. Therefore A1A2 is P-primary by Lemma 2.2.

Lemma 2.5 Let P be a prime ideal of R and let P ′ = PP. Then the mappings

P1 → P ′1 = P1 P and P ′1 → P1 = P ′1 ∩ R

give a bijective correspondence between the set {P1 ∈ Spec(R) | P1 ⊆ P} and the set {P ′1 ∈
Spec(RP) | P ′1 ⊆ P ′}. In particular, the set {P1 ∈ Spec(R) | P1 ⊆ P} is linearly ordered by
inclusion.

Proof If P is a prime ideal of R such that P1 ⊆ P, then C(P) ⊆ C(P1) by [MMU, Lemma 1].
Hence P1 P ∩ R = P1 and P1 P is a prime ideal of RP. Conversely, let P ′1(⊆ P ′) be a prime
ideal of RP. Then there exists a Dubrovin valuation ring S(⊇ RP) with J(S) = P ′1 by [D2,
Theorem 1, Section 2], and so P1 := P ′1 ∩ R(⊆ P) is a prime ideal of R such that P ′1 = P1 P

by [M2, Proposition 2.7]. The last statement follows from [D1, Section 2, Theorem 4].

A prime ideal P of R is said to be branched if there exists a P-primary ideal A of R such
that A 6= P. Otherwise, P is called an unbranched prime ideal.

Lemma 2.6 Let P be a prime ideal of R. Then

(1) P is branched if and only if PP is branched.
(2) P is idempotent if and only if PP is idempotent.

Proof As in the proof of Lemma 2.3, we may assume that R is semi-local Bezout. Then (1)
follows from Theorem 1.5 and Corollary 1.6.
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(2) If P is idempotent, then it is clear that PP is idempotent. The converse follows from
Corollary 1.6 and Lemma 2.4.

Now we are going to prove the main theorem of this paper concerning branched and
unbranched prime ideals of a Prüfer order which extend our earlier results in the case of
Dubrovin valuation rings.

Theorem 2.7 Let R be a Prüfer order in a simple Artinian ring Q with finite dimension over
its center F. Suppose that the center of R is a Prüfer domain. Let P be a prime ideal of R.

(1) If P is branched and P 6= P2, then

(i) {Pk | k > 0} is the full set of P-primary ideals of R, and

(ii) P0 =
⋂∞

n=1 Pn is a prime ideal and there are no prime ideals P1 such that P0 ⊂
P1 ⊂ P.

(2) If P is branched and P = P2, then

(i) for any P-primary ideal A(6= P),

P0 =
∞⋂

n=1

An =
⋂
{Aλ | Aλ : P-primary ideal },

(ii) P0 is a prime ideal of R, and

(iii) there are no prime ideals P1 with P0 ⊂ P1 ⊂ P.

(3) The following are equivalent:

(i) P is branched.

(ii) There exists an ideal C of R with
√

C = P and C 6= P.

(iii) There exists x ∈ R such that P is a minimal prime ideal over RxR.

(iv) P 6=
⋃
{Pλ | Pλ ∈ Spec(R) with Pλ ⊂ P}.

(v) There is a prime ideal P0 of R such that P0 ⊂ P and there are no prime ideals P1

with P0 ⊂ P1 ⊂ P.

(4) P is unbranched if and only if P =
⋃
{Pλ | Pλ ∈ Spec(R) with Pλ ⊂ P}.

Proof As noted in the proof of Lemma 2.3, we may assume that R is semi-local Bezout.
(1) (i) By Lemma 2.6, P 6= P2 if and only if PP 6= P2

P. Thus {PP
k | k > 0} is the

full set of PP-primary ideals of RP by [MMU, Theorem 12]. It follows from Corollary 1.6
and Lemma 2.4 that {Pk | k > 0} is the full set of P-primary ideals of R. (ii) is clear from
Lemma 2.5 and [MMU, Theorem 12].

(2) (i) Let A be a P-primary ideal of R with A 6= P. By Corollary 1.6, AP 6= PP.
Also, by Corollary 1.6 and Theorem 1.5, {Aλ P | Aλ : P-primary ideal of R} is the full set
of PP-primary ideals of RP. Hence

⋂
λ Aλ P =

⋂∞
n=1 AP

n by [MMU, Theorem 12]. So we
have

⋂
λ Aλ = (

⋂
λ Aλ P) ∩ R = (

⋂∞
n=1 AP

n) ∩ R =
⋂∞

n=1 An = A0 by Lemma 2.4 and
Theorem 1.5. (ii) By [MMU, Theorem 12],

⋂∞
n=1 AP

n is a prime ideal of RP and so A0 is a
prime ideal of R by Lemma 2.5. (iii) follows immediately from [MMU, Theorem 12] and
Lemma 2.5.
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(3) (i)⇒ (ii) is clear from definition.
(ii)⇒ (iii): Let C be an ideal of R such that C ⊂ P and

√
C = P. Then there exists a

maximal ideal M of R such that CM ⊂ PM by [G2, Proposition 3.1]. It follows that P ⊆ M,
because CN = RN = PN for any maximal ideal N of R with P * N . Take any element
a ∈ P \ C with a /∈ CM and cN ∈ C ∩ C(N) for any maximal ideal N of R with P * N .
Set I = RaR +

∑
RcNR(⊆ P). Then I = RbR for any b ∈ I such that bR = aR +

∑
cN R

(note that we assume R is semi-local Bezout). To prove that
√

I = P, let P1 be any prime
ideal of R with P1 ⊇ I and let M1 be a maximal ideal of R containing P1. If M1 + P, then
RM1 = IM1 ⊆ P1 M1 ⊂ RM1 , a contradiction. If M1 ⊇ P, then either P1 ⊇ P or P ⊇ P1

by Lemma 2.5. If P ⊇ P1, then PM ⊇ P1 M ⊇ IM ⊃ CM by [D1, Section 2. Corollary to
Lemma 2] and so P ⊇ P1 ⊇ C . Hence P = P1, proving that P =

√
I, that is, P is the

minimal prime ideal over I.
(iii)⇒ (iv): Let a be an element of R such that P is the minimal prime ideal over RaR.

Then a /∈
⋃
{Pλ | Pλ ∈ Spec(R) with Pλ ⊂ P}. Hence P 6=

⋃
{Pλ | Pλ ∈ Spec(R) with

Pλ ⊂ P}.
(iv)⇒ (v) and (v)⇒ (i) follow from [MMU, Theorem 12], Lemmas 2.5 and 2.6.
(4) follows from (3).

Let R be a Prüfer order in a simple Artinian ring with finite dimension over its center.
If R is integral over its center Z(R), then Z(R) is a Prüfer domain by [MM1, Theorem 1.3]
and so Theorem 2.7 is valid for such Prüfer orders. But there exists a Prüfer order with
Z(R) not Prüfer (e.g. [G2, Section 3 Example 1]). In the case when Z(R) is not Prüfer, we
do not know whether Theorem 2.7 still holds or not.

Next we give some examples of Prüfer orders.

Example 1 Let Q̃ be the field of all algebraic numbers, let Z̃ be the ring of all algebraic
integers, and let D = Z̃S, where S = {2n | n = 0, 1, 2, 3, . . .}. Let σ be the automorphism
of Q̃ defined by σ(a + bi) = a−bi and let G = 〈σ〉 be the cyclic group generated by σ. Now
let R = D ∗ G be the skew group ring of G over D. If p is a prime ideal of D, then we set
pσ = {σ(a) | a ∈ p} and p0 = p∩pσ. Then we have D∗G =

⋂
p0

(D∗G)p0 =
⋂

p0
(Dp0 ∗G),

where p0 = p ∩ pσ and p runs over all prime ideals of D. It is checked that Dp0 satisfies
the conditions of [MY, Theorem 3.5], and so Dp0 ∗ G is a Dubrovin valuation ring. Hence,
for any finitely generated right R-ideal I, we have I−1I =

⋂
p0

(I−1I)p0 =
⋂

p0
(Ip0 )−1Ip0 =⋂

p0
(Dp0 ∗ G) = R. Also, we have II−1 = Ol(I). Similarly, we have J−1 J = Or( J) and

J J−1 = R for any finitely generated left R-ideal J. Thus R = D ∗ G is a Prüfer order.

Example 2 (cf. [G2, Section 3]) Let F be a commutative field and let K be a finite cyclic
Galois extension of F with Galois group 〈σ〉 and n = |〈σ〉|. Let V be a valuation ring of F
whose maximal ideal p is branched and idempotent (e.g. [H, Example 31]) and let W be the
integral closure of V in K, which is a semilocal Bezout domain. Consider the division ring
D = K

(
(x, σ)

)
of all twisted Laurent series where multiplication is defined by xk = σ(k)x

for all k ∈ K. Then F
(
(xn, σn)

)
(= F

(
(xn)
)
) is the center of D and D is finite dimensional

over its center. Now let B = {k0 + k1x + · · · | ki ∈ K}. Then B is an invariant valuation ring
of D, that is, for any non-zero element d ∈ D, either d ∈ B or d−1 ∈ B holds and we have
dBd−1 = B. xB is the unique maximal ideal of B. Further C = { f0 + fnxn + f2nx2n + · · · |
fi ∈ F} is the center of B and C = B ∩ F

(
(xn)
)
. Then R = W + xB is a Prüfer (actually
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Bezout) order in D and S = V + xnC is the center of R which is a valuation ring. If m is a
maximal ideal of W , then m + xB is a branched and idempotent prime ideal of R by [MMU,
Corollary 13] and Lemma 2.6 because (m+xB)(m+xB)∩S = (mm +xB)∩S = p +xnC , which
is a branched and idempotent prime ideal of S. If we take V to be a valuation ring whose
maximal ideal is unbranched (e.g. [H, Example 36]), then we can construct an unbranched
prime ideal in a similar way.

We close this paper with the following.

Proposition 2.8 Let A1 and A2 be primary ideals of a Prüfer order R. Then

A1 + A2 = R or A1 ⊇ A2 or A1 ⊆ A2.

Proof Assume that R ⊃ A1 + A2. Then these exists a maximal ideal M of R such that
M ⊇ A1 + A2. Let Pi =

√
Ai (i = 1, 2). Then Ai M is a Pi M-primary ideal of RM by

Lemma 2.3. So, by [D1, Theorem 4, Section 2], we have A1 M ⊇ A2 M or A1 M ⊆ A2 M . Now,
by [MM2, Lemma 1] and Theorem 1.5, Ai = Ai Pi ∩ R ⊇ Ai M ∩ R ⊇ Ai , so Ai = Ai M ∩ R.
Hence we have either A1 ⊇ A2 or A1 ⊆ A2.
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[D1] N. I. Dubrovin, Noncommutative valuation rings. Trans. Moscow Math. Soc. 45(1984), 273–287.
[D2] , Noncommutative valuation ring in simple finite-dimensional algebras over a field. Math. USSR-

Sb. (2) 51(1985), 493–505.
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