
Proceedings of the Design Society, Volume 5: ICED25
https://doi.org/10.1017/pds.2025.10278

Print fidelity assessment for 3D food printed designs
using manual and automated approaches

A K M Ahasun Habib1, , Md Ibrahim Khalil1, Farnaz Maleky2, Ranadip Pal3

and Paul F Egan ,1

1 Department of Mechanical Engineering, Texas Tech University, USA,
2 Department of Food Science and Technology, Ohio State University, USA,
3 Department of Electrical & Computer Engineering Texas Tech University, USA

akhabib@ttu.edu

ABSTRACT: The ability to modify designs, personalize nutrition, and improve food sustainability makes 3D food
printing (3DFP) an exciting emerging technology. Food materials’ complex chemistry and mechanics make it
difficult to consistently print designs of different shapes. This research uses two methods to assess printed food
fidelity: Manual and automated image analysis with custom-developed algorithm. Fidelity based on printed area
was measured for three overhang designs (0°, 30°, and 60°) and three food ink mixtures. The manual method
provided a baseline for analysis by comparing printed images with CAD images. Both methods showed consistent
results with only ±3% differences in analyzing printed design areas. While the computational method offers
advantages for efficiency and bias reduction, making it well-suited for fidelity assessment to assess designs.
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1. Introduction
Additive manufacturing is of significant interest for 3D food printing (3DFP) applications due to the wide
range of possibilities concerning customization, personalized nutrition, and creation of novel designs
(Chirico Scheele et al., 2023; Zhou et al., 2024). However, these advancements are hindered by a need to
ensure that food designs are reliably fabricated and assessed for geometric fidelity (Alghamdy et al.,
2024). The inherent complexities of soft food materials and design variations often result in printed
objects that deviate significantly from their digital counterparts (Hussain et al., 2022). Addressing this
challenge is vital for the broader adoption of food printing by consumers and practical application of
3DFP technology in food design innovation (Chirico Scheele et al., 2022). 3DFP offers flexible design
creation for many applications in food including medical need and culinary creativity (Dankar et al.,
2018; Zhang et al., 2022). Additionally, 3DFP is poised to aid in medical applications for eating
disorders, swallowing difficulties, and providing consistent food delivery in clean environments to
reduce allergens (Sundarsingh et al., 2024). Here, we consider the creation of an automated tool to
efficiently assess the fidelity of printed food designs. The automated method directly supports quicker
assessment in food ink formulations and geometric fidelity, leading to consistent 3D food printing
assessments when directly compared to manual measurements that are potentially labor-intensive and
subjective. These advancements may benefit a range of applications, including personalized nutrition,
specialized medical diets, and culinary innovation, ultimately facilitating broader commercial and
clinical adoption of 3D food printing technology.
3DFP is a process that applies a layer-by layer manufacturing technique based on a predesigned digital
model created through a computational aided-design (CAD) software (Tan et al., 2018). Multiple
different methods exist for 3D printing food: Extrusion-based, selective sintering, inkjet, and binder
jetting (Jiang et al., 2022). These processes enable printing of a wide variety of food ingredients. One of
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these technologies that has recently gained visibility in the food business is extrusion-based printing
(Lazou, 2024). A three-dimensional design is created by first layer-by-layer deposition using food inks
that are extruded via a nozzle. Screws, pistons, or pneumatic systems (compressed air) provide the
necessary force to extrude the material (Wang et al., 2023). Even though extrusion printing is becoming
more popular for use in the food industry, there are new challenges to overcome in terms of making sure
that soft food components retain their form once printed (Hussain et al., 2022; Sharma et al., 2024). One
of the common defects in extrusion-based 3D food printing is under- or over-extrusion of filaments due
to improper extrudability and the creation of a “die swell” (i.e. expanded extruded filament width) by
food materials which drives a need for quality control on assessing print fidelity.
Assessing fabrication accuracy and shape fidelity rely on comparing the printed product’s dimensions with the
original CAD design. Unfortunately, structural instability in many 3D-printed foods results in shapes that do
not accurately reflect their digital designs (Alghamdy et al., 2024; Kadival et al., 2023). Shapes printed from
different food ink mixtures reach different levels of accuracy and fidelity based on their physical properties,
for instance too high of water content can lead to unstable structures while adding ingredients that increase
firmness, such as proteins, can lead to higher structural stability (Chirico Scheele et al., 2023).
Typically, research in food printability has relied on manual measurements of structural dimensions to assess
printability (Huang et al., 2020; Lu et al., 2023; Wen et al., 2024). While 3D scanning is used in 3D printing
for geometric comparisons, it presents several challenges when applied to 3DFP. The soft and deformable
nature of food materials makes it difficult to capture an accurate scan, while surface reflectivity issues, high
equipment costs, and complex data processing also make 3D scanning less practical for rapid assessments in
food printing (Derossi et al., 2021; Nachal et al., 2019). In comparison, a 2D image-based analysis approach
has greater computational efficiency and ease of use making it highly suitable for initially evaluating
geometric fidelity in 3DFP. These measurements provide an assessment of howwell different shapes print but
are time consuming to conduct and can also introduce subjectivity from how different people may measure an
object, thus suggesting automated assessment with image analysis could address this problemmore efficiently
(Mustač et al., 2023). Several machine vision methods have been developed to keep up with the digitalization
and smart processing revolution in the food production industry (Ding et al., 2023), thus demonstrating the
importance of automation for food quality assessment. Thus, in the case of 3D food printing, automated image
analysis shows promise for improving printing efficiency and quantifying printing mistakes. To better
understand and quantify these challenges, this study proposes a systematic workflow for evaluating the
geometric fidelity of printed food structures, as depicted in Figure 1.

Figure 1 outlines the step-by-step approach undertaken in this research. It begins with the preparation
of food inks that include a starch-based potato ink and a protein-based pea ink, followed by the design of
3D shapes using CAD software, then printing, and finally fidelity analysis. The printing process
involves the layer-by-layer deposition of food materials to create physical samples, which are then
captured as images. Image processing techniques, such as grayscale conversion and binary thresholding,

Figure 1. Workflow for 3D printing fidelity assessment with manual or automated analysis
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are used to compare the CAD model to the printed object. The fidelity of the printed samples is
assessed through both manual and automated computational methods, enabling the identification of
geometric deviations and structural inconsistencies. The study systematically varies the overhang
angles of printed designs from no overhang to a 60-degree overhang. By analyzing varying overhang
geometries and material compositions, this study highlights the strengths and limitations of different
inks to create structurally stable objects and the accuracy of both manual and automated analysis
methods.
For this work the following two research questions are investigated: Q1. How accurately can 3D food
printers reproduce complex geometries, such as overhang designs, compared to their original CAD
models under varying design complexities for different ink materials? Q2. How well does automated
computational analysis perform compared to manual processing in assessing geometric fidelity and how
can automation make 3D food printing assessments faster and repeatable? Answering these questions
will provide significant advances in design for assessment of 3D printed foods that will result in
generalizable approaches applicable to further 3D printing technologies. The paper proceeds as follows:
Section 2 describes the food ink materials, 3D printing process, and methods for fidelity evaluation.
Section 3 presents and discusses results from manual and automated methods. Section 4 highlights key
findings, and implications when comparing both methods, while Section 5 concludes with contributions
and future research directions. For designers, the findings provide actionable insights into optimizing
material formulations and design parameters, enabling more accurate and reliable fabrication of intricate
structures for food printing.

2. Materials and methodology

2.1. Design generation
Three-dimensional (3D) design models were developed using CAD software (SolidWorks 2024). The
initial objective of the design process was to portray the impact of varying overhang angles on structural
stability by developing three models with 0°, 30°, and 60° overhang dimensions. Based on other 3D
printing processes, the maximum feature size of overhangs is approximately 45 degrees for standard
fused deposition modeling (Alabd & Temiz, 2024; Eryıldız, 2021). These designs were selected to
evaluate the capability of 3D food printing systems to reproduce structures with angular features while
maintaining geometric fidelity by changing moisture and ink composition. CAD models were exported
as STL (Standard Tessellation Language) files, which were subsequently imported into the printing
platform for layer-by-layer manufacturing.

2.2. Ink preparation and printing
For the preparation of food inks, mashed potato flakes (Great Value), pea protein powder (Now
SPORTS), and bottled water (kirkland) were used. The pea protein powder contains 3% carbohydrates
and 73% protein, while the potato flakes consist of 82% carbohydrates and 9% protein. The
percentages provided account only for carbohydrates and protein, as these were the key components
analyzed in this study. The mashed potato mixture was prepared by combining mashed potato flakes
with water in a 1:6 ratio. The pea protein mixture was prepared by mixing pea protein powder with
water in a 1:3 ratio. In a recent study, minor adjustments were made to the component mixture ratios
and moisture content to evaluate their impact on printability (Khalil et al., 2024). For this study, we
followed the same mixture and ratios. The weight of each component in a 100-gram mixture is
presented in Table 1.

Table 1. Mass of components in 100 g food ink mixture

Mixture Type Water Mashed Potato Pea Protein

Mashed Potato (MP) 85.7 14.3 0.0
Mashed Potato w/Pea
Protein (MP+PP)

80.4 7.1 12.5

Pea Protein (PP) 75.0 0.0 25.0
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The mashed potato combination served as the control food ink against food inks enriched with pea
protein. For improving nutrition and printability, two experimental samples were prepared: one with a
pea protein combination (PP) and another with a 50% mashed potato and 50% pea protein mixture (MP
+PP). The mashed potato (MP) combination was first made by mixing the pre-packaged mashed potatoes
with water. At the same time, a combination of pea protein (PP) and water was made. Afterwards, a
mashed potato and pea protein blend (MP+PP) was made by combining the two combinations in equal
weights, with each mixture accounting for one third of the total weight. The water was preheated to 65°C
to facilitate consistent mixing of the ingredients. To ensure the mixture was at a consistent temperature
before putting it into a syringe for printing, it was given 20 minutes to cool down to room temperature
(25°C). The proposed combinations, depicted in Table 1 were printed using a Procusini 3.0 Double
System (Procusini, Germany) as shown in Figure 2.

The printing setup uses a layer-by-layer build-up technology, allowing precise control over food structure
formation (Tan et al., 2018).The printer is equipped with two 60 mL stainless steel cartridges, specifically
designed to work with a variety of edible materials, ensuring optimal performance in handling
temperature-sensitive ingredients. It allows users to import CAD files from conventional CAD programs.
During the printing process, a nozzle with a diameter of 1.2 mm was used and the printing speed was
10 mm/s. The nozzle movement speed varied between 5 mm/s and 200 mm/s. Throughout the printing
process, the extrusion temperature remained at 25°C. The infill density was set at 50% and each layer has
a height of 0.55 mm.

2.3. Print fidelity assessment
2.3.1. Image acquisition and preprocessing
Once printed, images were captured for sampling purposes. A digital camera (Olympus Tough TG-6 4 K)
was used to take photos of the printed samples. The camera was placed steady on a tripod and angled at a
fixed position throughout the imaging to guarantee that the photographs were taken consistently with a
black background. Within 10 minutes of the printing process being completed, all the photos were
captured for each print. The setup ensured controlled lighting and a fixed camera-to-sample distance to
maintain image consistency. Calibration steps included white balancing and scale reference integration
for accurate measurements.

Figure 2. Procusini 3.0 dual-system food printer exhibiting food printing
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2.3.2. Manual measurement
ImageJ (Software version 1.54g) was used to measure and compare the areas of a CAD model and a
corresponding printed object. The manual measurements of printed parts, obtained using calipers for
ground truth validation, have been previously reported in Khalil et al. (2024) that provide a reference for
dimensional accuracy in 3D food printing and complement the fidelity analysis presented in this study.
The analysis began with resizing both images to the same pixel dimensions to standardize the scale across
the datasets, ensuring accurate area comparisons. The CAD image, which had known real-world
dimensions, was used as the reference for scale calibration. Using a global scaling approach, pixel-based
measurements were converted into meaningful physical units, ensuring standardized comparisons across
all datasets. This process provided a consistent framework for evaluating dimensional discrepancies
between CAD models and printed objects. CAD model dimensions are known and used to set the global
measurement scale. This global scale was then applied consistently to all subsequent measurements for
the print images. The scaling step was used only to establish a consistent unit scale across CAD and
printed images, without altering or normalizing shape discrepancies inherent in the printed parts. To
mitigate the risk of losing discrepancies due to scaling, it was ensured that preservation of the original
aspect ratios remains unchanged during image preprocessing. The boundaries of the regions of interest in
both the CAD and printed item pictures were created by the user utilizing a manual boundary selection
approach using polygons. Once polygons are drawn and enclosed, the measurement provides areas for
both CAD and printed images. The degree to which the printed item conforms to its CAD design may be
determined by comparing these two region areas, the percentage of area error (P) is a direct reflection of
the print fidelity that was calculated using below equation:

P �
�ACAD � APRINT

ACAD

�
� 100 (1)

where ACAD is the area of the original CAD model and APRINT is area of printed part. The method
provides a basis for evaluating dimensional discrepancies and assessing the accuracy of the printing
process by manual measurement techniques.

2.3.3. Automated computational analysis
This automated analysis follows a systematic approach consisting of three key steps: Preprocessing,
feature extraction, and contour area analyses. This approach was implemented using Python with
OpenCV and NumPy libraries, which enabled efficient and consistent evaluation of the geometric fidelity
of printed samples.
The first preprocessing step in the automated pipeline involved preparing the images for analysis. The
captured images were converted to grayscale, reducing the computational complexity by eliminating
color information while preserving the intensity details necessary for contour detection. Next, Gaussian
blurring was applied to minimize high-frequency noise, which can interfere with edge detection. This
process retained the key structural features of the object. Subsequently, during the smoothing process,
binary thresholding was applied using Otsu’s method. Otsu’s algorithm automatically computes an
optimal threshold, which divides the image into foreground (object) and background (non-object) regions
based on pixel intensity distributions. This thresholding resulted in a clean binary image where the object
was represented in white (pixel value 255) and the background in black (pixel value 0), providing clear
segmentation of the object’s shape. Additionally, to ensure that the images of the CAD model and the
printed object could be compared accurately, dynamic resizing and padding were employed. Both images
were resized to a common target size while preserving their aspect ratios. When necessary, padding was
added to the images to ensure consistent dimensions between the two, avoiding any distortion that might
arise from direct resizing. This process guaranteed that the structural details of the images remained intact
while allowing for a fair comparison.
Once the preprocessing steps were complete, the next stage involved identifying and extracting the
contours of the objects. Contours, which represent the boundaries of objects in an image, were
detected using OpenCV’s ‘find Contours’ function. The algorithm traced the outermost boundaries
of the objects from the binary image. From the detected contours, the largest contour was selected, as
it corresponded to the primary structure of interest—the main geometric shape of the object.
Although the largest contour was selected, multiple contours were occasionally detected due to
minor internal inconsistencies such as air bubbles, slight surface irregularities, and subtle noise in
images. By specifically isolating and analyzing the largest contour which represents the outermost
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boundary—these inconsistencies are minimized, ensuring accurate measurement of the primary
shape’s geometric fidelity. These points are used to describe the contour’s boundary and provide the
necessary data for the next phase of analysis. By focusing on the largest contour, the algorithm
isolated the most significant geometric feature of the object, ensuring that extraneous details (such as
noise or internal features) did not interfere with the analysis. Forms like stars, convex or basic
concave forms, polygons, and circles with well-defined, closed contours may be utilized with this
process, provided discernible outlines in the binary image.
With the contours extracted, the next step was to quantify the geometric properties of the objects by
calculating the area enclosed by the largest contour. The area for both the CAD model and the printed
object was computed using OpenCV’s contour Area function, which provides an area measure of the
region enclosed by the contour. The difference between the CAD and print image measurements serves
as the primary metric for comparing the geometric fidelity of the printed objects. By integrating
preprocessing, contour extraction, and area calculations into an automated pipeline, this automated
analysis method successfully quantified the geometric fidelity between a CAD model and its printed
counterpart.

3. Results and discussion

3.1. Manual analysis of print fidelity
The manual analysis in accessing geometric fidelity was highlighted by the error percentages across three
overhang angles (0°, 30°, 60°) for three mixtures: Mashed potato (MP), mashed potato with pea protein
(MP+PP), and pea protein (PP). Figure 3 showcases the images with manually drawn polygon used for
area calculations highlighted in yellow. The images illustrate the influence of overhang angle on the
fidelity of the printed samples. At lower angles (0° and 30°), the printed structures were more consistent
with their CAD models, exhibiting minimal deformation. However, at 60°, significant deviations were
observed, particularly in MP samples, which showed noticeable distortions and reduced geometric
accuracy. These findings also highlight the limitations of materials with lower protein content in
maintaining fidelity under complex geometric conditions.

Area error percentage for each sample was calculated by Equation 1. Data was organized by material
types (MP, MP+PP, PP) and overhang angles (0°, 30°, and 60°), enabling a structured comparison of
geometric fidelity for different experimental conditions shown in Table 2.

Figure 3. Printed images with areas traced using manual analysis (Scalebar: 5mm)
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As shown in Table 2, the error percentages change as overhang angles changes and as the ink mixture varies.
For example, the MP mixture performs poorly at 60° due to its high moisture content, which weakens its
structural integrity and causes significant sagging and deformation under the stress of the steep overhang
angle. PP has second higest error (7.38%) at 0° because high protein content in the ink is prone to forming
uneven or rough extruded filaments. This irregular flow results in surface inconsistencies as the material may
not spread or settle evenly. At 30° and 60° the higher protein content enhances its structural stability, allowing
it to better maintain shape at steeper angles. Due to its well-balanced composition, MP+PP mixture has
consistent error across all angles. It combines the structural rigidity of pea protein with the smooth extrusion
qualities of mashed potato in reducing distortion under greater angles, to ensure consistent layer deposition.
There also appears to be a systematic bias in data towards measuring structures as smaller than expected from
the CAD which could be due to non-optimized printing parameters.

3.2. Automated analysis of print fidelity
By employing a custom Python-based pipeline (discussed in Section 2.3.3) for CAD and printed images.
Thresholded images across all mixtures are shown in Figure 4 that isolate the structures from their
backgrounds and enabling contour detection. This automated approach ensured consistent and accurate
fidelity measurements while minimal user interactions.

Figure 4. Thresholded binary images for contour area calculations

Table 2. Manual print area percentage error (%) compared to CAD models

Manual Measurement Area Error (%)
Food Ink Mixture 0° 30° 60°

MP 3.58% 3.92% 7.93%
PP+MP 4.04% 3.35% 4.93%
PP 7.38% 3.87% 2.82%
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The thresholded images across various mixtures and angles are crucial in this analysis, as it ensures
clarity of structural boundaries, enabling accurate computation of the object’s area. Later, it provides a
quantitative comparison (Table 3) of how closely the printed structures match their corresponding CAD
models.

The results in Table 3 align closely with the trends found in Table 2 from the manual analysis. This
consistency highlights the reliability and robustness of the computational method in replicating the
findings of the manual approach. Both methods demonstrate that varying geometric overhang angle and
ink compositions influence print fidelity. As shown in Table 3, the error percentages in contour area
calculations follow a similar trend as observed in Table 2. For instance, the MP records the highest error
at 60° (10.20%), while the PP mixture has the second-highest error at 0° (6.32%) in area differences. The
MP+PP mixture maintains the most consistent errors across all angles, reflecting its balanced
composition, which combines the firmness of pea protein and the smooth flow properties of mashed
potato. This balance ensures uniform layer deposition and minimizes deformation for challenging
overhang geometries.

3.3. Comparison of manual and automated analysis
Table 4 was created by finding the difference in the Area error (%) values presented in Tables 2 and 3,
which report the results of manual and automated methods, respectively. Specifically, the difference
between the error percentages of the manual and automated methods was calculated to quantify the
discrepancy between the two methods, allowing for a direct comparison of their performance across
varying levels of overhang angles and material compositions. The resulting values, as shown in Table 4,
provide insights into the degree of consistency between manual and automated assessments of 3D
printing fidelity. The closer the value to zero, the more similar both methods were, indicating high
agreement in fidelity assessment across all overhang designs and ink mixtures. This consistency
reinforces the reliability of the automated approach in replicating manual measurements.

Table 4. Error trends across manual and automated approaches

Manual vs. Automated:
Difference in Error Assessments

Food Ink Mixture 0° 30° 60°

MP 1.49% 0.10% −2.27%
PP+MP 0.14% 0.61% 1.39%
PP 1.06% −0.72% −1.74%

Table 3. Automated print area percentage error (%) compared
to CAD models

Automated Measurement Area Error (%)
Food Ink Mixture 0° 30° 60°

MP 2.09% 3.82% 10.20%
PP+MP 3.90% 2.74% 3.54%
PP 6.32% 4.59% 4.56%
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Negative and positive values in Table 4 represent the direction of the discrepancy between the manual
and automated error measurements, and their relationships enable assessment of the reliability and
consistency of the two methods. The computational approach closely replicated the manual results, with
minor differences in error percentages. The differences remain small across all angles and materials, with
values all within ±3%, reinforcing the reliability of the computational method to replicate manual
measurements. Positive values indicate that the manual method measured a slightly higher error
percentage compared to the automated method. This could be attributed to user subjectivity or challenges
in precisely defining boundaries during manual area calculations. A negative value implies that the
automated method produced a slightly higher error percentage, potentially due to sensitivity in detecting
edges or overemphasizing minor structural inconsistencies. Manual contours may overlook finer edges or
structural irregularities, while the automated approach may be more sensitive to minor details as key
sources of errors to consider. Overall, there was high agreement between the two methods which
highlights their capacity to assess food print fidelity compared to CAD models, and for the automated
method to complete the task with high efficiency.

4. Conclusion
This research investigated emerging 3DFP technology with a focus on geometric fidelity assessment.
Ensuring geometric fidelity in 3D food printing is critical for designers who want to deliver reliable,
customizable, and visually appealing products. From personalized nutrition to complex aesthetic designs,
fidelity directly impacts the functionality and consumer appeal of printed food structures. In addressing
Research Question 1, this study confirms that 3D food printers can reproduce overhang designs with
varying accuracy, where selection of the food ink composition and overhang angles play a pivotal role.
By optimizing the combination of material mixtures and overhang angles, overhang designs in 3D food
printing can achieve higher fidelity, as demonstrated by the consistent performance of balanced mixtures
such as the mashed potato with pea protein ink (MP+PP) across varying design complexities.
For Research Question 2 it is supported since there is comparable error (%) trend between the manual and
automated fidelity assessment methods. The automated approach can prove to be as effective as manual
measurements with differences in error percentages within ±3%. The automated approach offers
enhanced consistency, scalability, and reduced human variability, making it a robust tool for assessing
3D food print fidelity. In research and industry, the automated technique decreases analysis time and
labor, making it suited for analyzing larger datasets of print images or iterative design cycles. The
automated approach’s repeatable outcomes enhance reliability, making it a dependable alternative to
manual methods.
The study primarily assesses fidelity through area calculations; however, future work could expand the
scope to include additional geometric parameters such as height, surface smoothness, and structural
consistency to provide a more comprehensive evaluation. Furthermore, this method can be extended to
more complex 3D geometries by integrating multi-view imaging and AI-driven 3D reconstruction
techniques, which will enhance accuracy and applicability for intricate food structures. Overall, the
current work establishes a systematic and scalable means of determining print fidelity, automating the
assessment process, and laying the foundation for future innovations in food ink formulations and
geometric design within the evolving field of food printing.
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