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PROLONGATIONS OF CONNECTIONS TO TANGENTIAL
FIBRE BUNDLES OF HIGHER ORDER

AKIHIKO MORIMOTO

§ Introduction.

In the previous paper [3] we have studied the prolongations of G-
structures to tangent bundles of higher order. “The purpose of the present
paper is to study the prolongations of connections to tangential fibre bundles
of higher order, and to generalize the results due to S. Kobayashi [1] for
the case of usual tangent bundle —— in fact, the arguments in [1] will be,
in a sense, more or less simplified and clarified by using the notion of
tangent bundles of higher order. In addition, as a consequence of our
results, we shall obtain the prolongations of linear (affine) connections to
tangent bundles of higher order.

In §1, we construct a diffeomorphism a%° of TTM onto TTM and
prove its naturality. In §2, we give some properties concerning with the
linear parts of zero-preserving differentiable maps of a vector space into
another vector space. In §3, we shall construct the prolongations of con-
nections by making use of the diffeomorphism «%* and the results in §2.
In §4, we apply the results in §3 for the case of linear connections and
construct the prolongation I'"” of a linear connection I" of order 7.

We shall investigate the relationships between I' and I'” in a future
paper.

In this paper, we keep the same notations as in [3] and all manifolds
and mappings are assumed to be differentiable of class C=, unless otherwise
stated.

§1. Diffeomorphism «o°.
Let M be a manifold of dimension #. For any function feC~(M) we

define the p-extension f® of f to 7:M as follows:
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(L) £l =[]

for [go],e“sf‘M and v = 0,1, --,7. It is easy to see that f® = f® is a well-
defined differentiable function on TM.

For any map ¢: R?—> M, we difine ¢, and ¢* of R into M by the
following equalities:

Po(u) = $(t,u) = ¢*(2)

for t,usR.

Lemma 1.1. Let ¢: R—)fIr"M be a differentiable map of R into YV“M.
Then, there exist a differentiable map ¢: R?——> M and a positive number
& such that ¢(¢) = [¢.], holds for |#] < 4.

Proof. Let ¢(0) = X, f‘M and ;Xo =2'€M. We take a coordinate
neighborhood U of #z° with coordinate system {z,, - - -,2,} such that z,(z° =0
(i=1,---,n) and denote by {%Z]i =1, «++,n;v=01, -, 7} the induced
coordinate system on U =(1rr)“(U). Put Fi() = gcyi)(so(t)) for ¢ such that
e(t)elU. Thus Fi(t) is defined for [¢#| <e with some positive number e.
Let ¢: U~ R™ be the diffeomorphism of U onto @(U) defined by &(p)=
(#y(p)y + + =, 2,(p)) for peU. Now, define the map ¢ as follows:

L4

H(t,u) = 071(- - -, ’E{)F”i(t)“”, cee)
for small |#] and |«]|. Since F(#) r-(a(;)igo(t)) = x,(p(t)), there is, for any given
& >0, a positive number §, such that Iy‘réon(t)wl < g, for any ¢, u satistying
|t], lu] <&, Therefore, the map ¢ is well-defined for any |[¢], |u] <5,
with some positive number §;. Now, it is easy to find a map ¢: RZ—>M
such that ¢(¢,u) = §(¢t,u) for any |[#], [#| <& with some positive number
6 <d,. For this map ¢ we have the following equalities:

d”(E}F’;(t)w)
du’ o

) (5 0 ¢ _
e = 5[ Aot - L [

2
= Fi(8) = x,(¢(1))

for any |¢#] <8, which proves [¢,], = ¢(¢) for |#] <. Q.E.D.
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Take and fix two positive integers » and s. We shall prove the fol-
lowing.

Lemma 1.2, Let ¢ (resp. ¢') be a map of R into TM. We take a map
¢ (resp. ¢') of R® into M and a positive number & such that o(¢) =[¢], and

©'(¢) = [¢71, for any |¢| < 8. Consider the map ¥: R=TM (resp. W) defined by
U(u) = [¢*]s (resp. U (u) = [¢'*]s) for uR. Suppose o~¢’. Then T~¥" holds.

Proof. By the assumption, we have fogp~fo¢’ for any differentiable

~ r . .
function f on TM. Take a function f on M, then the y-extension f®=f{

7 ”
of f to TM is a differentiable function on 7M for » =0,1,---,7. Hence
we get

(1.2) FPop~fPo¢
for any feC*(M) and v=0,1,:-:,r. In the same way, we see that we

s
have to prove §o ¥'~go ¥” for any §e C*(TM) and hence to prove gl ~~g® o ¥’
kd v

for every geC=(M), where ¢ = g¢ 1is the p-extension of g to TM with
r=<s. Now, we have the following equalities:

@@ W) (u) = g W (u) = [ dp(g:fbu) ] [ ety dt“ l,o

Therefore, we get the following

w3) [ )= i G2 1L
[ au;‘g%ti" 2 ](o.o)’

and the similar equalities for ¥’. On the other hand, since

(f® 0 @) (8) = fOUP],) =1d"f o ¢o/du’Tuz
= [d’f¢(t, u)]du]u=y, it follows from (1.2) that

(1.4) (L9 ], - [

and the left hand side is equal to

(;Jt”“ ( df¢tu :|uo>:|to
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the right hand side being equal to

;;”< df¢ t“ ]u o>lo

Therefore, from (1.3) and (1.4) we obtain

(] ]

u=0

for every £ =0,1,--+,s and » =0,1, - - -,7, which shows that g®”o¥ ~g®oy’
v
for any pg<s. Since geC*(M) is arbitrary, we see that go¥~go¥’ for
r

every geC“(%M), and hence T~¥’. QED

THEOREM 1 3. For any manifold M, there exists a cononical diffeomorphism

a™ = ay’ of TTM onto TTM Jor any positive integers v, s such that the following
diagrams are commutative

TTM ———>TTM
&) 7 , /T«
N/
s 7 s v S
TTM — TTM
2 Ys‘yz' s 7
\ s,
where =, %, =’ and %' are natural projections,
af 8
TTN —_— TTM
) rer\ e
R

Jor any feC(M) with any p=0,1,+++,r and v = 0,1, + - +,s.

Proof. Take an element [¢], of f?‘:;’M, where ¢ is a map of R into
%M. By Lemma 1.1., there is a map ¢ : R2— M and a positive number &

such that ¢(¢) =[¢.], holds for |#] <4. Consider the map W:R—)f‘M
defined by ¥(u) = [¢*], for u=R. Then, by Lemma 1.2, we see that the

r-tangent [Ilf],e%f;‘M is independent of the choice of the map ¢. Therefore,
we can define the map «a%* of TTM into TTM by
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oy’ (¢1) = [7],.

By this very definition of a%* we see that «%" (¥1,) =[¢]. and hence we
have the following relation

(1.5) ay’ cay® =1z,

for any positive integers » and s.

To prove the defferentiability of the map a%°, we first prove the com-
mutativity of the diagram (3). Keeping the above notations we calculate
as follows:

W o 7 e ( a: fmo?lf
(FO 0 af ([l = (F° () = [FUL2T) ]
=[ d"((f© o ¥) (u) ] [ d“(f“([¢"1,)) }

du” du” o

fr (i L)) = G L

D) L L)L

[d f(ZtE¢z] ] [ a f(:r)zfo(t)) ]0

= (f*)¥(¢1,)

for every [¢l,€TT M, and hence we get (f®)*®oa%y® ([¢l) = (f*)* (el,),
which shows the commutativity of the diagram (3). Since f is an arbitrary
function in C=(M), the commutativity of (3) implies that Foay® is always
a differentiable function on ’Is‘%M for every f EC“(TTM), which proves
that the map a%° is differentiable. From (1.5) it follows that % is a
diffeomorphism of TTM onto TT M.

Next we shall prove the commutativity of the diagram (1). Take an

element [¢], of YS“YT‘M with ¢ : R—+§‘M. By making use of the above nota-
tions we have a%° ((¢],) = [¢],. Since (zo¥) (u) =x({[¢"])=¢"(0)=¢(0, u) = by(u),
we get 7o¥ = ¢,. Therefore, we have (Yr‘n) [@1,) =[zo¥], =[¢y,. On the
other hand, we have #([¢]s) = ¢(0) = [¢,],. Hence we obtain }z(aﬁf ([ely)) =
(YV‘n-) ([71,) = #([¢l;), which proves the commutativity of (1).

Finally we shall prove the commutativity of the diagram (2). Keeping
the notations as above, we have #({¥],) = ¥(0) = [¢'],., On the other hand,
we calculate as follows: (x' o 9) (¢) = 2'(¢(2)) = 2’ ([¢.],) = ¢.(0) = ¢(¢,0) = ¢*(¢#)

https://doi.org/10.1017/50027763000013878 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013878

90 AKIHIKO MORIMOTO

and hence we have 7’ o ¢ = ¢°. Therefore, we get (5‘7:') ([els) = [ o ¢, = [¢°],
and hence we obtain #(a%® (¢l) = #([(¥],) = (78‘7:’) ([¢l,), which shows the
commutativity of (2). Q.E.D.

CoroLLARY 1.4. For any positive integers r and s we have the following
equality :
@k’ © i’ = Lpjy

) Y 7 LY e
in particular, oy o a%y” =1z, .

Remark 1.5. The diffeomorphism «%* is, in fact, characterized by the
commutativity of the diagram (3). We also note that a}! is the same
automorphism as ay in [1].

ProrosiTiON 1.6. Let @ : M— N be a map of a manifold M into a manifold

N. Then, we have the following commutative diagram :

ayt

TTM—= 5 TTM
(1.6) TTo TTo

s 7 C(;,}s 7 s

TTN—2 > TTN.

Proof. Take, as before, an element [¢], of 73‘ f’M, where ¢ : R—)f‘M
is a map. By Lemma 1.1 there is a map ¢ : R?*— M and a positive number
5 such that ¢(¢) =[¢.], for [¢] <. Putting ¥(u) = [¢"],, we have
ay* ([¢1y) = [¥], and hence

.7 TT 0 (a3 (1) = (T 9) o 71,

Now, we have i"Tr‘tp ([els) = [(7r‘ ) o ¢l,, We define : R®—~N by §=00¢.
Then, we can calculate as follows: ((Yr‘Q)ogo)(t) = ’.;@(go(t)):f‘(b([sbt],) =[@o¢,],=[6:],
for |t] <é. Putting O(u) =[6"],, we have, by the very definition of the
map ay’,

(1.8) ot (TT 0 ([9),) = [6],.

We shall show the following

(1.9) (TO) ¥ = 0.
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For, we compute as follows: (T0)o¥)(w) = TOW@ («) = TO([$"],) =[@op*],=[0"], = O/(u).
Finally form (1.7) ~ (1.9) the commutativity of (1.6) follows. Q.E.D.

Let G be a Lie group. We know that TG is again a Lie group with
the natural group multiplication (cf. [3] §2).

ProposiTioN 1.7. Let G be a Lie group. Then, the diffeomorphism
g’ : TTG - TTG is an tsomorphism of Lie groups.

Proof. Take two elements [¢],, [¢'], of i‘f‘G where ¢, ¢’ are maps of

R into f‘G. By Lemma 1.1, we find maps ¢, ¢’ of R, into G such that
o(t) = [¢:d,, ¢'(t) =[¢',], for small ¢. Put ¥(u) = [¢"], and ¥’ (u) = [¢'ul,. By
the definition of af®, we get the following

(1.10) ag’ ([el) = [¥],, ag’ [¢']) = [¥'],.

Now, we have (¢-¢’) (t) = ¢(t) - ¢'(t) = [¢.], - [¢], = [¢ - ¢11, = [¢7],, where we
have put ¢'(¢,u) = ¢(¢,u)-¢'(t,u). Putting ¥’ (u) = [¢''*],, we have

(1.11) ag’[e-9') = [¥'"],.

Since [¢-¢'], =[¢]:-[¢'], and since ¥"'(u) = [¢"""], = [¢* - ¢'*), = [¢"], - [¢""], =
Tlu) ¥ (u) = -V (w), it follows, from (1.10), (1.11), that ai* (¢, -[¢'],) =
az® ([ely) - a¢® ([¢'),), which shows that «f* is a homomorphism and hence
an isomorphism. Q.E.D.

§2. Linear parts of zero preserving mappings.

DeriniTION 2.1, Let V be a finite dimensional real vector space. We
define the map 6y of V into the tangent space T,(V) to V at zero as follows:

Oy(V) = [2]s.

for veV, where the map 1,: R—V is defined by 2,(¢) = t-v for teR. Itis
trivial to see that 6, is a linear isomorphism of V onto T,(V).

DeriniTION 2.2. Let V and W be vector spaces and let ¢ : VW be
a differentiable map such that ¢(0) =0. Define the linear map ¢ :V>W
by ¢° = 03'c (Top) o 6y, where Typ is the tangent to ¢ (or the differential of
@) at zero, i.e, the following diagram is commutative:
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¢0
V—— W

ol e

Ty
T (V)——T (W),
The linear map ¢° will be called the linear part of the map ¢.
Lemma 2.3, Let ¢ : V=W be a lincar map of V into W. Then, ¢ = oo,

Proof. Since ¢ is linear, we see that ¢ o 2, = 2, for any v =V. There-
fore, we calculate as follows: ¢°@®) = 87 o (T@) 0 0y(v) = 051 (Tee) ([A,)) =
0% ([ 0 l) = 05 [2my])) = 05 (Ow(p(v))) = ¢(v) for veV, and hence we get
© = o, Q.E.D.

LemMa 1.4. Let U, V, W be vector spaces, and let ¢ : UV and ¢ : V—>W
be differentiable maps such that ¢(0) =0 and ¢(0) =0. Then we have the following

(2.2) (Pop) = oo,

Progf. Since Ty(¢ o @) = (Ty¢) o (Typ), the equality (2.2) follows from the
following commutative diagram:

o ¢°
U > V > W
0Ui ‘9"l 0Wl
T.(U) > Ty (V) ——> T (W) . Q.E.D.
Top T

LemMA 2.5, Let o : VW be a map of V into W. Suppose there is a
vector subspace Vy of V such that the restriction ¢, of ¢ to V, is a linecar map of
V, into W, in particular ¢(0) =0. Then, we have the following

(2.3) 'V, = 9,

Proof. Let 5:V,—V be the inclusion map. Since ¢, = ¢ o7, it follows
from Lemma 2.3 and 2.4 that ¢, = ¢ = (po7) = oy = @0y = *|V,.
Q.E.D.

§3. Prolongations of connections.

Let P{M,z,G) be a principal fibre bundle with bundle space P, base
M, projection = and structure group G. Consider a connection on P whose
connection form will be denoted by w. For each point #€P,  is a linear
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map of the tangent space T,(P) to P at u with values in the tangent space
T.(G) to G at unit element e. This form o can be considered as a different-
iable map of TP into TG satisfying the following conditions (cf. [11),

3.1) o(u-35) =s1.3,
(3.2) o(igs)=s"1-o0@-s

for every ucP, s€G, acT,(P) and 5&T,(G), where i-s is, by definition,
(TR,) (&) with right translation R,: P— P and where u-5 is defined as fol-
lows: Consider the map L, : G— P defined by L,(@) = u-a= R,(u) for acG,
then -5 is defined to be (TL,) (5).

DeriniTiON 3.1, Let w : TP— TG be a connection form on a principal
fibre bundle P(M,r,G) as above. Define the map o, : T%‘P—) T%G as fol-

lows:

k4

(3.3) o, =at"o(Tw)oap!.

Let YV"P(ZIT‘M, 5‘7:, T G) be the tangential principal fibre bundle of order
r to the bundle P(M, z, G) (cf. [3] §6). We shall prove, for w,, equalities
similar to (3.1) and (3.2).

Lemma 3.2, Let i Yr“P, e ’Ir‘G and 3€ Tg(%‘G). Then we have the following
equality :

(3.4) 0 (-5 =313

n particular, »,(0z) =0 for any zero tangent vector Oy at i

Proof. Since § is an element of YI‘YY‘G, there exist, by Lemma 1.1,
maps ¢ :R— 7r‘G and ¢ : R*— G such that § = [¢];, ¢(0) = § = [¢,], and
o(t) = [¢,], for small ¢£. Define ¢': R2—>G by ¢'(¢,u) = ¢0,u)¢(t,u) for
t,ucR. Consider the left translation L; of TG by the element se TG, i.c.

(x) =5.% for ze TG Then we have the following equalities: (L;-,o9)(¢)=
i-1(9(2)) = o(t) = [¢o‘]1 [Pl = [¢01¢t]1—[¢,]1 Put ¥/(u) = [¢"*], for ucR.
Smce we have §571.5= TLs (3) = TLs ([e]) = [L;-;0¢];,, by the definition
of ai*, we get the following relation

(3.5) ag' (s71-3) = [¥"],.
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On the other hand, since # is an element of fIl‘P, there is a map
7 : R— P such that & =[y],. Define v’ : R*—> P by y'(¢,4) = n(u)- $(¢,u) for
t,usR. Then we have the following equalities (L;o ) (#)=4 -+ ¢(t)=[9], - [¢¢],
=[y-¢.], =[], for small . Put Y'(u) =[»*], for ucR. Then, since we
have #.5 = ’iI"L,;(’s") = %‘L,;([ga]l) =[L;o¢l,, we get, by the definition of a}?,
it (#+5) =[Y'"],. Therefore, we obtain the following relation

(3.6) (Tooay?) (@-3) = [wo Y],

Now, since we have 7'*(¢) = 7/(¢t, u) = n(u)+ ¢(¢,u) = p(u) - $*(¢), we get [y'*],=
[Lywy o 9*) = T Lywy[¢"]) = (u)-[¢*], and hence we obtain (0oY’)(u)=
o(7'™]) = oly(u) - [¢*]) = ¢*(0)'-[¢*],, where we have used the condition
(3.1) in the last equality. On the other hand, we have ¢'*(#) = ¢'(¢t,u) =
D0, u) " - (2, u) = G0, u)" - ¢*(2) = ¢*(0)7- ¢*(¢). Therefore, we get ¥'(u) =
[¢"] = ¢*(0)"1+[¢*], = (@ o Y") (u) and hence ¥’ = woY’. Finally, by (3.5) and
(3.6) we obtain (f‘wo apyl) (@-3) = ap!(§1-5) and hence, by Corollary 1.4,
the equality (3.4) is proved. Q.E.D.

Lemma 3.3. Let @ be a map of R into T(G) such that &(R)c T.(G), and
let 7 be a map of R into G. Then the element ob” (@],) is am elenent of

Ter(%G), where e, is the unit element of 5‘6, and we have the following relation:

8.7 ai" [yt @+9),) =i - ai” (@) - [71,.

Proqf. First, we shall show that «}” (@],)€ Te,(f‘G). Applying Lemma
1.1. for @ = ¢, we get a map ¢:R*—G such that @&(¢) =[s;], and that
a,(0) = ¢ for small ¢. Since ¢*() = o(¢,0) = 6,(0) = e = 7,(¢), we get o*(t) = 7.(¢)
for small #, where we have used the notation of constant map 7., i.e. 7.(f)=e¢
for every teR. Put X(u) =[¢*],. Then, by the definition of af”, we see
that

(3.8 ai” ([8],) = [Z].

Now, since Y0) =[¢"], =[], = e, is the unit element of ’.7'G, we see that
DN f‘e,(TG), which proves our assertion.

. Next, consider the map 7™'-@:7:R— T(G). We have the following
equalities: (77 @) (£) =77'(t) - @(2) - n(t) =57(2) - [oe]y - 9(8)=[n~"(2) - 0, - 9()] =[]y
for small #, where we have put o'(¢,u) = 77%(¢)-o(t,u)-9(¢) for t,ucR. Put
>V(u) =[o’"],, then we get the following
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(3.9) ay” [rt-@-9],) =2

Now, since we have XY (u)=[¢""],=[y7" - 6" - 9], =[1];" - [6"], - 1], =[n]7* + X(u) - [9],,
we get [XV], = [y]; - [22]; - [],, and hence, by (3.8) and (3.9) we obtain the
relation (3.7). Q.E.D.

LEmMMA 3.4, Let 5= }G. ne T;,,.'S"P. Then, w,(ii) is an element of Te?(Yr"G)

and we have the following relation

(3.10) 0, (f+5) =51 o,.(a@)-5.

Proof. Since s& 7?‘ G, there is a map 7 : R— G such that § =[5],. Since
= %‘%P, there are maps ¢ : R— TP and ¢ : R2— P such that # =[¢], and
¢(t) =[¢.], for small ¢. Consider the right translation R; of 7r‘P by the
element 5= Yy‘G. Then, we compute as follows: (R; o ¢) (¢£)=[¢.],- 1], =[¢: 1]~
=[¢;1,, where we have put ¢'(t,u) = ¢(t,u) p(u) for t,usR. Define
¥ R— ’iI‘P by #'(u) =[¢'*], for u=R. Since we have #-5= TR;@) =
TR;([¢]) =[R; o ¢l,, and since (R;o¢) (¢) =[¢/],, we get the following
(3.11) ayt(@-8) =[71,.

In particular, we get ajp'! () = [¥¢],, where ¥(u) = [¢*], for usR.

Now, we calculate as follows: (0o ¥”) (#) = 0[¢'*]) = o(¢"]; - n(u)) = p(u)?
< o{[¢"]) - n(w) = 9(u)™! - 0@ (u)) - (1) = (&)™ < (@ 0 ¥) () = (1) = ™"+ (@ 0 ¥) =) (u),
where we have used the condition (3.2) in the third equality. Therefore,
by (3.11) we get (Tooap')(@5) =lwo¥"], = 17+ (@0 ¥) -], = [11* [0 o ¥, -
7, =§'[wo?],-5. In particular, we get Yr‘ax oapt (@) = [wo¥],. Put
@=owo¥ and apply Lemma 3.3 for this @ and ». Then we can conclude
that ,(@) = «l" ([@],) is an element of %e,(TG) and that o,(@-3) = at" [y

@ - 7]]7) = [77];1 * a(l;.r ([(D]r) * [ﬂ]'r =5§"1. wr(ﬁ) . 8. Q.E.D.
Summarizing Lemma 3.3 and 3.4, we obtain the following

ProrositioN 3.5. The map o, : TTP— TTG defined by (3.3) have the fol-
lowing properties :

v

(0) Ima)rc Te,.( G),

1) 0, (@#+3) =585,

wn
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(2) 0 (@5 =51 aw, @) §

Jor every §EYr“G, A= Yr‘P, §ET:(YV‘G) and ﬁeTg’fP.

Now, consider a principal fibre bundle P(M,r,G) and a map 7 :TP— TG
such that »(TP)c T,G and that 3(0,) =0 for every tangent zero vector 0, to
P at z&P. We note that the restriction 7, =3|7T,(P) of 7 to the tangent
space T,P is not necessarily a linear map of 7,P into T,G. Take the linear
part 7% of 5, for each zeP (cf. §2)). It is easy to see that {5},., defines
a differentiable map 7° of TP into TG.

DerFintTion 3.6, We call 9° the linear part of 7.

ProrositioN 3.7. Let 9 be a map of TP into TG such that »(TP)cT,G
and that 1(0,) =0 for any z€P. Suppose that vy satisfies the following conditions:

(3.12) 7(z-5) =s71.5,
(8.13) NEZ+s)=st-p(E) s

Sor every s€G, zeP, s€T,G and 2 T,P. Then, the linear part 7° of 7 satisfies
the following conditions :

(3.14) 7%(z-5) =s71.§
(3.15) 7°(E-s) =57 -7°2) s,
namely 7° is a connection form on P.

Proof. Fix zeP and seG and consider the vector subspace V, = {z-5]
§€T,G} of the vector space T7,..P. Since %(z-5)=s"1.5 for 5&€T,G, the
restriction 7, of 7 to V, is a linear map of V, into 7,G. Therefore, by
Lemma 2.5, we have 7°|V, =»,, which shows that (3.14) holds.

Next, from (3.12) it follows that 7,.,0 TR, = ad(s!) oy, on T,P, where
we have defined ad(s™!) by ad(s)X = s1-X.s for X T,(G). Since the maps
TR, : T,P— T,..P and ad(s™) : T,G — T,G are both linear, we have by Lem-
ma 2.3 and 2.4 the following equalities: 7%.;0 TR, = 73,0 (TR,)® = (,.,0 TR,)®
=(ad(s) o7, = ad (s) o5? = ad(s™') op), and hence 7l.,0 TR, = ad(s™!) 07!,
which shows the condition (3.15). Q.E.D.

DEeriniTION 3.8. Let o be a connection form on a principal fibre
bundle P(M,r,G). We denote by o7 the linear part of the map w,, i.e.
o = (w,)" (cf. Def. 3.1 and 3.6).
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By virtue of Proposition 3.5, we can apply Proposition 3.7 for o, and
TP and we conclude that (" is a connection form on 7P. Thus we have
proved the following

THEOREM 3.9. Let w be a connection form on a principal fibre bundle P.
Then there exists canonically a connection form o™ on the tangential fibre bundle

Id
TP to P of order v for every positive integer v. We shall call o™ the prolongation
of the connection w of order r.

Remark 3.10. For the case »r =1 we see that o coincides with the
connection tangential to o due to Kobayashi (cf. [1] p. 152). We note that
o, itself is not in general a connection form for » = 2, although o,=(0,)"=0®.

§4. Prolongations of linear (affine) connections.

In this section we apply the result in the previous section to the linear

connections on a manifold. As in [2] we denote by FM(M,z,GL(n)) the
frame bundle of M.

THEOREM 4.1. Let I' be a linear connection on a manifold M. Then, there

,
exists canonically a linear connection I'") on the tangent bundle TM of order r to
M.

Proof. Let o be the connection form on F(M) defining the connection

I'. The prolongation o™ of w is a connection form on TFM. By making

use of the bundle homomorphism j§ of TFM into FTM (cf. [3]1 §7), we

obtain canonically a connection I on the principal fibre bundle FTM.
Q.E.D.
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