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PROLONGATIONS OF CONNECTIONS TO TANGENTIAL

FIBRE BUNDLES OF HIGHER ORDER

AKIHIKO MORIMOTO

§ Introduction.

In the previous paper [3] we have studied the prolongations of G-

structures to tangent bundles of higher order. The purpose of the present

paper is to study the prolongations of connections to tangential fibre bundles

of higher order, and to generalize the results due to S. Kobayashi [1] for

the case of usual tangent bundle in fact, the arguments in [1] will be,

in a sense, more or less simplified and clarified by using the notion of

tangent bundles of higher order. In addition, as a consequence of our

results, we shall obtain the prolongations of linear (aίfine) connections to

tangent bundles of higher order.
s r r s

In §1, we construct a diffeomorphisrn arΰs of TTM onto TTM and

prove its naturality. In § 2, we give some properties concerning with the

linear parts of zero-preserving differentiable maps of a vector space into

another vector space. In § 3, we shall construct the prolongations of con-

nections by making use of the diffeomorphίsm arΰs and the results in § 2.

In § 4, we apply the results in § 3 for the case of linear connections and

construct the prolongation Γ ( r ) of a linear connection Γ of order r.

We shall investigate the relationships between Γ and Γ(r) in a future

paper.

In this paper, we keep the same notations as in [3] and all manifolds

and mappings are assumed to be differentiable of class C°°, unless otherwise

stated.

§ 1. Diffeomorphism arύs .

Let M be a manifold of dimension n. For any function f^C°°{M) we
r

define the y-extension / ( v ) of / to TM as follows:
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(i.i) f»<Lφir)=[ dV{f

d;
ψ)

for iφlr^TM and ^ 0 , l , ,r. It is easy to see that / ( y ) = /oo i s a w e u .
r

defined differentiable function on TM>

For any map φ: R2 — > M, we difine φt and ^w of R into M by the

following equalities:

φt(u) = φ(t,u) = φu(t)

for t9u<=R.

r r

LEMMA 1.1. Let φ: R—>TM be a differentiable map of R into TM.

Then* there exist a differentiate map φ: R2~—>M and a positive number

δ such that y>(f) « [^] r holds for |f | < 5.

Let ^(0) = X 0

e ^ - ^ and π l o = ^°eM. We take a coordinate

neighborhood £7 of #° with coordinate system {xx, ,xn] such that α (̂#°) = 0
00

(i = 1, f») and denote by {apjf = 1, , «; p = 0,1, , r] the induced

coordinate system on Ό = (JΓ)" 1 ^- Put F\(t) = x^φit)) for ί such that
U. Thus Fϊίί) is defined for | / | < € with some positive number ε.

Let Φ: U-+Rn be the diffeomorphism of U onto Φ(ί7) defined by Φ(φ)~

(ccj(p), ,ίcΛ(p)) for p&U. Now, define the map φ as follows:

ψ{t9u)=φ-'{- , Σ ^ Ϊ W K , •)

V!*0

(0)

for small |/ | and | M | . Since jFJ(ί) = Xiψ{t)) = ^^^(O), there is, for any given
r

βi > 0 , a positive number 5j such that | ΈlF\{t)uv\ < βi for any ί, w satisfying

|/ | , 1̂ 1 <^ j . Therefore, the map ψ is well-defined for any \t\, | ^ ] < ^ !

with some positive number δ^ Now, it is easy to find a map φ: R2^-M

such that Φ(tyU) = ψ{t,u) for any \t\9 \u\ <δ with some positive number

δ<δx. For this map ψ we have the following equalities:

L Ji

for a n y \t\ < δ, w h i c h proves {φt']r = ψ{t) for \t\ < δ. Q.E,D
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Take and fix two positive integers r and s. We shall prove the fol-

lowing.

r

LEMMA 1.2. Let φ {resp. φf) be a map of R into TM. We take a map

Φ {resp. φr) of R2 into M and a positive number δ such that ψ{t) = [ψt]r and

Ψr{t) = [Φt\r for any \t\ <δ. Consider the map Ψ: R-^TM {resp. Ψr) defined by

Ψ{u) = [φu]s {resp. Ψr{u) = [ψfU]s) for u^R. Suppose <p~φr. Then Ψ~Ψr holds.
s r

Proof. By the assumption, we have / o ψs^f o φ' for any differentiable

~ r

function / on TM. Take a function / on M, then the y-extension f(v)=f^
r r

of / to TM is a differentiable function on TM for v = 0,1, , r. Hence
we get
(1.2) fv) o φ~fiv) ό φr

for any f&C*(M) and v = 0,1, ,r. In the same way,'we see that we

have to prove g o ψ~g o ψ' for any g^C°°{TM) and hence to prove g(fi)oψ~g^oψ'
r r

s

for every #eC°°(M), where g{μ) = gψ> is the ^-extension of g to TM with

μ^s. Now, we have the following equalities:

dr« o Ψ) (u) = φ

Therefore, we get the following

Π ^ Γ d'jg^ ° Ψ) 1 _

L duvdtμ9 J(o.o)'

and the similar equalities for Ψf. On the other hand, since

(f^ o φ) (t) a= y ^ ( [ ^ t ] r ) — \dvf ° Ψtlduv~\u=s$

= [dvfψ(t,u)lduv]u=0, it follows from (1.2) that

n ^ Γ ̂ ( / ( μ ) ° y) Ί = Γ ̂ " ( / ( v ) ° v'ϊ Ί
^ ; L dtμ Jί-o L rfί" Jί-o

and the left hand side is equal to

Γ d' (V dvf ψ(t,u)
L dtμ \L d#υ
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the right hand side being equal to

Γ d* (Y dvfψ'{t,u)
L dtμ \L du

Therefore, from (1.3) and (1.4) we obtain

Γ dv(g{ft) o Ψ) Ί = Γ dv(φμ)oψ'
L d&v Jw=o L duv

for every μ = 0,1, ,s and y = 0,1, ,r, which shows that g{μ)oψ^yg{μ)oψ
r

for any μ^s. Since g^C°°(M) is arbitrary, we see that goψs^goψ' for

every £eC°°(TM), and hence Ψ~Ψf. Q.E.D.

THEOREM 1.3. For any manifold M, there exists a cononical diffeomorphism
s r r s

aTtS — aru of TTM onto TTM for any positive integers r, s such that the following

diagrams are commutative

(1)

(2)

where π9 π, πf and πf are natural projections,

s r a' t u r s

TTN —> TTM

TTM -

*\

s r

TTM -

Tπ'\

a1 β

TM

ar.s

TM

> TTM

Jr,

r s

> TTM

J*

(3) {fψ>)

R

for any f^C°°{M) with any μ = 0,1, > , r «/zrf v = 0,1, , s .

s r

/. Take an element {φ]s of TTM, where ψ is a map of R into

TM. By Lemma 1.1., there is a map ψ : R2-+M and a positive number £

such that φ(t) = tΦtlr holds for U | < 3 . Consider the map Ψ:R~*TM

defined by Ψ(u) = [ψu]$ for u&R. Then, by Lemma 1.2, we see that the
r s

r-tangent [Ψ]r<=TTM is independent of the choice of the map φ. Therefore,

we can define the map aV of TTM into T T M by
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By this very definition of α r / we see that asΰr [[Ψ]r) = [φ]g and hence we

have the following relation

(1.5) atfoaV = l ί ή f

for any positive integers r and s.

To prove the defferentiability of the map arύs , we first prove the com-

mutativity of the diagram (3). Keeping the above notations we calculate

as follows:

= Γ d"((/(l>) o ̂  (u)) Ί = Γ d'(/( l>)([l t t].)) I
L d«* Jo L duμ Jo

Γ d' /ΓJ7'fWΊ \Ί ΓΓ/WM)
L dw" vL d r Jt=o/Ju=o L aMtt3ίy

_ Γ dy / Γ d V ^ ( M e ) Ί \ Ί _ Γ <Γ (V d'(f Q Φt) Ί \ Ί
L dΓ VL duμ Jw=.o/Jί=,o L dtv VL duμ X=o/Jt

_ Γ f / w M r ) Ί _ Γ dvfμ\ψ{t)) Ί
L dr Jo L d r JJo

for every [<p]s<=TTM, and hence we get (/<">)<"> o α ^ ([̂ >]s) = (/(/ί))

which shows the commutativity of the diagram (3). Since / is an arbitrary

function in C°°(M), the commutativity of (3) implies that f ° arnis is always
s r _ r s

a differentiable function on TTM for every f(=C°°{TTM), which proves

that the map α^s is differentiable. From (1.5) it follows that a^ is a

diffeomorphism oΐ TTM onto TTM.
Next we shall prove the commutativity of the diagram (1). Take an

s r r

element [ψ\s of T T M with φ : R-yTM. By making use of the above nota-

tions we have aV ([>].) = \Ψ\r. Since (τro?r) («) =7r([^L) = ̂ (0) = ̂ (0,^)=^0W,

we get πoψ = φQ. Therefore, we have (Tπ) {[Ψ]r) =[πoψ]r = [φo]r. On the

other hand, we have π([φ]s) = φ(0) = [ψ^r- Hence we obtain Tπ(arύs ([<P~ΪS)) =
r

{Tπ) ([Ψ]r) = π{[φ]s), which proves the commutativity of (1).

Finally we shall prove the commutativity of the diagram (2). Keeping

the notations as above, we have π'§Ψ\r) = W) = LΨ°1»- On the other hand,
we calculate as follows: (π' o φ) (t) = πf{ψ{t)) = π'{[ψt]r) = φt(0) = ψ(t,O) = Φ°(t)
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s

and hence we have πr o ψ = ψ°. Therefore, we get (7V) (|>]β) = \πr o ψ\ = [^°]s

and hence we obtain π'(arύs ([9].)) = π'{[Ψ]r) = (7V) ([9],), which shows the

commutativity of (2). Q.E.D.

COROLLARY 1.4. For any positive integers r and s we have the following

equality:

in particular, arάr o aru — 1^M.

Remark 1.5. The diffeomorphism α r / is, in fact, characterized by the

commutativity of the diagram (3). We also note that axuι is the same

automorphism as aM in [1],

PROPOSITION 1.6. Let Φ : M->N be a map of a manifold M into a manifold

N. Then, we have the following commutative diagram:

s r Λjif r s

TTM > TTM
\ s r I r s

(1.6) I TTΦ \TTΦ

s r Cίtf r s

TTN —> TTN.

$ r r

Proof Take, as before, an element [φ]s of TTM, where φ : R-+TM

is a map. By Lemma 1.1 there is a map ψ : R2-*M and a positive number

δ such that φ(t) = [ψt]r for \t\ < δ. Putting Ψ(u) = l</>u]g, we have

<*¥ ([ψ]*) - M r and hence

(1.7) TTΦ(aV (ί<pl)) * KTΦ) o r i r .

Now, we have TTΦ (|>L) = [(TΦ) o φ\. We define Θ:R2-+N by θ = Φoψ.
r r r

Then, we can calculate as follows: ((TΦ)o<p)(t) — TΦ{ψ{t)) — TΦ({φ^\r) =[Φ°Ψt\r = lθt}r

for l£| <δ. Putting Θ{u)=[θu']s, we have, by the very definition of the

map arris,

(1.8) ar

N

We shall show the following

(1.9)
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For, we compute as follows:

Finally form (1.7) ~ (1.9) the commutativity of (1.6) follows. Q.E.D.
r

Let G be a Lie group. We know that TG is again a Lie group with

the natural group multiplication (cf. [3] §2).

PROPOSITION 1.7. Let G be a Lie group. Then, the diffeomorphism
s r r s

ar

G'
s : TTG -> TTG is an isomorphism of Lie groups.

s r

Proof. Take two elements [φ]s, [φ']s of TTG, where φ, ψf are maps of
r

R into TG. By Lemma 1.1, we find maps φ, φ' of R2 into G such that

ψ(t) = [φdr, φ'(t) = [ψ't]r for small t. Put Ψ(u) = [<ΓL and Ψ'(u) = [φ'u].. By

the definition of ar

G'
s, we get the following

(1.10) αj* (M.) = \Ψ]r, aG'
s fl>'],) = [ Π r .

Now5 we have (φ ̂ 0 (/) - φ(t) ^'(ί) = [ψt]r [^Πr = ίΦ ί̂ Πr = W71r, where we

have put ψ"{t,u) = φ(t, u) Φ'(t,u). Putting Ψ"{u) = [ψ"u]s, we have

(1.11) ar

G'
s'([<P <pΊs)=[Ψ'Ίr.

Since [9 p'], = [9]. [9Ί. and since r '(«) = [φ"ul = [0M ^ / w ] s = [0Ί* [^/UL =

Ψ(u) Ψ'(u) = (Ψ-Ψ'){u), it follows, from (1.10), (1.11), that ar

G

s (|>L [>']s) =

«G* (Mβ) ασ* ([9'L)> which shows that α£tS is a homomorphism and hence

an isomorphism. Q.E.D.

§2. Linear parts of zero preserving mappings.

DEFINITION 2.1. Let V be a finite dimensional real vector space. We

define the map Θv of V into the tangent space T0(V) to V at zero as follows:

θy{V) = [λυl.

for v^V, where the map λv : R-+V is defined by ^(ί) = ί t; for /ei?. It is

trivial to see that θv is a linear isomorphism of V onto T0(F).

DEFINITION 2.2. Let V and W be vector spaces and let ψ : V -> W be

a differentiable map such that 9(0) «= 0. Define the linear map <p° : V-±W

by <p° = θψι° (Toψ) o θv, where TQφ is the tangent to φ (or the differential of

φ) at zero, i.e, the following diagram is commutative:
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• W

>TJW).

The linear map φ* will be called the linear part of the map φ.

LEMMA 2.3. Let φ :V-+W be a linear map of V into W. Then, φ = ψ\

Proof. Since ψ is linear, we see that ψ o zv = χψ{v) for any v = V. There-

fore, we calculate as follows: φ*(v) = Θp ° (Toφ) o Θv{v) = θwι((Toφ) (UJJ) =

θwιiίΨ ° λ>]i) = ̂ (Uκ«)]i) = 'θwι(θw(φ{v))) = ψ{v) for Z G F , and hence we get

9 = ψ\ Q.E.D.

LEMMA 1.4. Let U, V, W be vector spaces, and let φ : U-+V and ψ :

be differentiable maps such that φ{0) — 0 and ψ{0) = 0. Then we have the following

(2.2) {ψoφγ = φθoφ\

Proof Since TQ(ψ o φ) = (T0Φ)o(T0φ)9 the equality (2.2) follows from the

following commutative diagram:

ψ*

Q.E.D.

LEMMA 2.5. Let φ \V-+W be a map of V into W. Suppose there is a

vector sub space Vx of V such that the restriction ψx of φ to V1 is a linear map of

Vx into W, in particular φ{0) = 0. Then, we have the following

(2.3) ψ'\V1 = ψ1.

Proof Let η : Vx-+V be the inclusion map. Since φx = φ 027, it follows

from Lemma 2 3 and 2.4 that φx = φ\ = {φ o 57)0 = <p° o rf — φ° o η = φ*\Vx.

Q.E.D.

§3. Prolongations of connections.

Let P(M,π,G) be a principal fibre bundle with bundle space P, base

M, projection π and structure group G. Consider a connection on P whose

connection form will be denoted by ω. For each point MGP, ω is a linear
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map of the tangent space TU(P) to P at u with values in the tangent space

Te{G) to G at unit element e. This form ω can be considered as a different-

iable map of TP into TG satisfying the following conditions (cf. [1]),

(3.1) ω(u s) = s-'-s,

(3.2) ω{ΰ s) = s-1 fl)(«) s

for every M G P , s e G , ΰ<=Tu{P) and s^Ts(G)9 where ^ s is, by definition,

(77?,) (#) with right translation Rs : P-+ P and where M 5 is defined as fol-

lows: Consider the map Lu: G-*P defined by Lu(a) = u a= Ra(u) for α e G ,

then u s is defined to be (TLU) (s).

DEFINITION 3.1. Let ω : TP-+ TG be a connection form on a principal

fibre bundle P{M,π,G) as above. Define the map ωr : TTP-+TTG as fol-

lows:

(3.3) ωr = aι

G

 r o (Tω) o a

r

P

Λ .

Let TP(TM, Tπ, TG) be the tangential principal fibre bundle of order

r to the bundle P{M, π, G) (cf. [3] §6). We shall prove, for ωr, equalities

similar to (3.1) and (3.2).

LEMMA 3.2. Let u^TP, SΪΞTG and 3<ΞT~S(TG). Then we have the following

equality:

(3.4) ωr{u s) = s-^s;

in particular, ωr(0z) = 0 for any zero tangent vector 0% at u.

1 r

Proof Since s is an element of TTG, there exist, by Lemma 1.1»

maps φ : R-+TG and ψ : R2-+G such that s = |>] l f φ(0) = s = [ψo]r and

= [φt1r for small t. Define ψ':R2-*G by Φr{t9u) = φ{^u)~ι ψ(t,u) for
r r

. Consider the left translation L~& of TG by the element s^TG, i.e.
r

Lg{x) = s x for x^TG. Then we have the following equalities: (Ls-.
L~s-Mt)) = r 1 y)(0 = [^rii WJi = [^VΛ= Wli. Put r(«) = [^Ίi for

1 v 1

Since we have s~1-s= TLs-^s) = TLs-i((I>]i) = [^?-i ° H , by the definition
of ara 1 , we get the following relation

(3.5) ^'Ms^ ^ - c r L .
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1

On the other hand, since u is an element of TP, there is a map

η : R-*P such that u = [η\. Define tf : R2-*P by η'(t9u) = y{u)-φ(t,u) for

t9u^R. Then we have the following equalities (is o y>) (t)~ϋ φ(t) = [ή]r ΊΦtir

= [y-Ψt']r = ίyΆr for small t. Put F W = fr'"^ for ue R. Then, since we

have u s = TLu(s) = TLdίvli) = [is ° H> we get, by the definition of ar

P

Λ ,

ar

P

Λ(u ί) = [F'] r . Therefore, we obtain the following relation

(3.6) (Tω o a

r

P

Λ ) (u s) = [ω o F ' ] r .

Now, since we have 5?'M(ί) = η'(t,u) = v(u) ψ(t,u) = y(u) Φu(t), we get D / " ] ^

[Lf(tt) o φ»\ = ΓL f ( u )([ni) = ^(«) WΊi, and hence we obtain (ω o 70 (tt) =

Λ>(b/U]i) = ωfe(κ) ίΨu1i) = ^ ( O ) " 1 - ^ ] ! , where we have used the condition

(3.1) in the last equality. On the other hand, we have ψfU{t) = Φr{t,u) =

^(0, u)'1 ψ(t, u) = Φ(0, u)-1 ψu{t) = ^(O)"1 φu{t). Therefore, we get Ψ'{u) =

Wtt]i = ^(O)-1 {φu\ = (ω o F ) (w) and hence Ψr = ωo γ\ Finally, by (3.5) and

(3.6) we obtain (Tω o ar

P

Λ ) (u s) = ar

G

Λ {s'1 f) and hence, by Corollary 1.4,

the equality (3.4) is proved. Q.E.D.

LEMMA 3.3. Let ω be a map of R into T{G) such that ώ(R)c.Te{G)9 and

let η be a map of R into G. Then the element a^ ([ω]r) is am elenent of
r γ

Ter{TG), where er is the unit element of TG, and we have the following relation:

(3.7) ah" (ίψι ω τβr) = [ηTr1 <*¥ M r ) Mr.

Proof First, we shall show that aι

G'
r ([ω]r)e Tβr{TG). Applying Lemma

1.1. for ώ = ψ, we get a map σ:R2-+G such that ω(t)=[σt']ι and that

<τ((0) = e for small t. Since σ°(/) = σ(t,0) = σt(0) = β = rβ(0, we get a°(t) = rβ(ί)

for small ί, where we have used the notation of constant map ΐe9 i.e. Te{t) — e

for every t<=R. Put 2(«) = [σw]r. Then, by the definition of aιor, we see

that

\όm o) (XQ \[.ω]r) •

Now, since 2(0) = M r = IX]r = er is the unit element of TG, we see that
r

ΐΣίiί^Ter(TG), which proves our assertion.

Next, consider the map ψι ώ η : J?-> T(G). We have the following

equalities: (η'1 ω rj) (t) = ̂ "HO <δ(f) '^(O =37"1(O *[^c]i 3?(O = [37""1(O "̂ί 37(̂ )]i=[<?"ί]i

for small f, where we have put σ'(t,u) = η~ι(f) σ{t,u) η{t) for t,u^R. Put

2;(w) = Wu]r9 then we get the following
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(3.9) αέ r ( b " 1 S^]r) = [Σ/]i.

Now, since we have T!(u)=Wu^irl-σu-η\r^lη]7ι I>u]r •Mr=b]71 Σ(«) -Mr,

we get [ΣΊi = Mr1-[ΣL Mr, and hence, by (3.8) and (3.9) we obtain the

relation (3.7). Q.E.D.

LEMMA 3.4. Let s<^TG, u^TuTP. Then, ωr{u) is an element of Tβr{TG)

and we have the following relation

(3.10) ωr(u-s) = s-i-ωM-s.

r

Proof. Since s^TG, there is a map η : R-+G such that s = [η]r. Since
1 r r

U<ΞTTP, there are maps φ : R-+TP and ψ : R2-+P such that β = [ ^ and
r

9(0 = IΦtli for small ί. Consider the right translation i?? of TP by the

element s^TG. Then, we compute as follows: (/fjoy) W = M f M r =[Λ 7]r

= [Φϊ]r9 where we have put ψ'{t,u) = ψ{t,u) η(u) for t,u<=R. Define

r : Λ - * T j P by f W = [ Π for « e ί . Since we have u-s=TRs{iί) =

TRsiWi) = Iff? ° rti. and since (/?; o 9) (ί) = [^ί]r. we get the following
(3.11) α; t l (« 5 ) = [ r ] r .

In particular, we get αp1 («) = [Fl r, where Ψ(u) = [ψ^ for

Now, we calculate as follows: ( ω o f ) W = 4 Π i ) =

• ωliHi) V(u) = ̂ ί^)-1 ω(r(M)) v(u) = ̂ (w)-1 (ω o y) (M). 7(M) = fe'1 .(ωoψ).η) (u),

where we have used the condition (3.2) in the third equality. Therefore,

by (3.11) we get (Tω o ar

P

Λ ) {u s) = [ω o r ] r = fe""1 (ω o ψ). r[\r = fe];1. [ω o ?Πjr

[η\r = 5-1. [ω o r j r . s. In particular, we get Tω o αj ' 1 (β) = [ω o Ψ]r. Put

w — ωoψ and apply Lemma 3.3 for this ω and η. Then we can conclude

that ωr(u) = akr ([ώ]r) is an element of Tβr(TG) and that ωr{ΰ-s) = αέtr (b"1 •

0 7]r) = Mr 1 «έ>r M r ) ' Mr = S"1 ωr(β) S. Q.E.D.

Summarizing Lemma 3.3 and 3.4, we obtain the following

PROPOSITION 3.5. The map ωr : TTP-+TTG defined by (3.3) have the fol-

lowing properties:

(0) ImωraTer{TG),

(1) ωr{u 5) = r 1 5,
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(2) ωr(u s) = s'1 ωr(u) s

for every s&TG, UΪΞTP, S^T~S(TG) and u^T^TP.

Now, consider a principal fibre bundle P{M,π,G) and a map η :TP-+ TG

such that η(TP)c.TeG and that τ?(0z) = 0 for every tangent zero vector 0z to

P at zeP. We note that the restriction ηz = η\Tz{P) of η to the tangent

space TZP is not necessarily a linear map of TZP into TeG. Take the linear

part ηl of ηz for each z&P (cf. §2)). It is easy to see that {rjl}z^P defines

a differentiate map η° of TP into TG.

DEFINITION 3.6. We call η* the linear part of η.

PROPOSITION 3.7. Let η be a map of TP into TG such that η{TP)aTeG

and that rj(Oz) = 0 for any z^P. Suppose that η satisfies the following conditions:

(3.12) y(z-s) = s^-s,

(3.13) η{z*s) = s-1-v(z)-s

for every S G G , Z<=P, S<=TSG and z^TzP. Then, the linear part ηQ of rj satisfies

the following conditions:

(3.14) 7]°(z s) = s-'-s

(3.15) η°(z*s) = s-1 3?°(£) s,

namely η° is a connection form on P.

Proof Fix z^P and s^G and consider the vector subspace Vx = {z-s\

s<=TsG] of the vector space TZ.SP. Since η(z s) = s"1- s for s<=TsG, the

restriction ηv of η to Vx is a linear map of Vλ into TeG. Therefore, by

Lemma 2.5, we have ^°l^i = 27i> which shows that (3.14) holds.

Next, from (3.12) it follows that rjz.so TRS = adis'1) oηz on TZP, where

we have defined ^ ( s ' ^ . b y ad{s~1)X= s~ι X s for X^Te(G). Since the maps

TRS : TZP^ TZ.SP and βdίs"1) : TeG -> TeG are both linear, we have by Lem-

ma 2.3 and 2.4 the following equalities: ΎJ\., o Ti?s = ayj, o (T/?,)° = fe.s o Ti?5)°

= (ΛdCs"1) 057J0 = β r f t Γ ψ o ^ = ad{s"ι)oη\y and hence 2?2 s o TRS = ad{s~l)oVzy

which shows the condition (3.15). Q.E.D.

DEFINITION 3.8. Let ω be a connection form on a principal fibre

bundle P(M,π,G). We denote by ω ( r ) the linear part of the map ωr, i.e.

# 1 a n c j 3 # 6 ) β
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By virtue of Proposition 3.5, we can apply Proposition 3.7 for ωr and
r r

TP and we conclude that ω ( r ) is a connection form on TP. Thus we have

proved the following

THEOREM 3.9. Let ω be a connection form on a principal fibre bundle P.

Then there exists canonically a connection form ω{r) on the tangential fibre bundle
r

TP to P of order r for every positive integer r. We shall call ω(r) the prolongation

of the connection ω of order r.

Remark 3.10. For the case r = l we see that ω(1) coincides with the

connection tangential to ω due to Kobayashi (cf. [1] p. 152). We note that

ωr itself is not in general a connection form for r^2, although ω1 = (ω1)° = ω(1\

§ 4. Prolongations of linear (afϊine) connections.

In this section we apply the result in the previous section to the linear

connections on a manifold. As in [2] we denote by FM{M,π,GL{n)) the

frame bundle of M.

THEOREM 4.1. Let Γ be a linear connection on a manifold M. Then, there
r

exists canonically a linear connection Γ ( r ) on the tangent bundle TM of order r to

M.

Proof Let ω be the connection form on F(M) defining the connection
r

Γ. The prolongation ω{r) of ω is a connection form on TFM. By making
r r

use of the bundle homomorphism j%> of TFM into FTM (cf. [3] §7), we
r

obtain canonically a connection Γ ( r ) on the principal fibre bundle FTM.
Q.E.D.
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