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SOME PROPERTIES OF FATOU AND JULIA SETS OF
TRANSCENDENTAL MEROMORPHIC FUNCTIONS

ZHENG JIAN-HUA, WANG SHENG AND HUANG ZHI-GANG

The radial distribution of Julia sets and non-existence of unbounded Fatou compo-
nents of transcendental meromorphic functions are investigated in this paper.

1. INTRODUCTION AND MAIN RESULTS

Let / : C -> C be a transcendental meromorphic function, where C is the complex
plane and C = C U {oo}. fn(z) denotes the n-th iterate of f(z), that is, f°(z) = z, fl(z)
— }(z),..., fn(z) = f(fn~l(z)), n is a non-negative integer. fn(z) is well defined for all
z € C, possibly except for an (at most) countable set of poles of f(z), f2(z),..., fn~1(z).
Denote by Ff the set of those points in C such that {fn{z)}™=1 is well defined and forms
a normal family in some neighbourhood of z. Ff is called the Fatou set of f(z) and its
complement Jf the Julia set of f(z). Ff is open and Jf is non-empty closed.

Nevanlinna theory is an important tool in the discussion of this paper, some standard
notations of which, such as the Nevanlinna deficiency 5(oo, f) with respect to oo and the
characteristic function T(r,f) of a meromorphic function f(z) and so on, come mainly
from [7]. The lower order /z(/) of a meromorphic function f(z) is defined as follows:

. . . . . . logT(r,/)
H(f) := hminf °

r-K» log r

Our first result is about the radial distribution of the Julia sets of transcendental
meromorphic functions. In the theory of meromorphic functions, a great deal of work
on the relations between the growth in terms of the order and the radial distribution of
some value-points of a transcendental meromorphic function were made, for references
see [4, 5, 10, 13].

For a 6 € [0, 2TT), we say that the Julia set Jf has the radial distribution with respect
to the radial argz = 8, if for any small positive number e > 0, Q(9 — e,9 + e) OJf is
unbounded, where

e,0 + e) = {z G C : a r g z € (6-£,8 + e)}.
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Define

E := {0 € [0, 2TT) : Jf has the radial distribution with respect to arg£ = 8).

It is easy to see that E is closed. By mesi? we stands for the linear measure of E.

THEOREM 1 . 1 . Let f{z) be a transcendental meromorphic function in C with

li = fi(f) < oo and 6 = 6(oo, / ) > 0. If \i = 0, then E = [0,2n); If fi > 0 and Jf has an

unbounded component, then

mesE ^ min< 2TT, — arcsin y - > .

We make some remarks on Theorem 1.1.

(1) If Jf has only bounded components, we do not know if Theorem 1.1 holds. In
this case, Ff has at most an unbounded component. If Ff has no unbounded components,
it is obvious that E = [0,2n). If Ff has only an unbounded component U, and if U is
wandering or periodic of period at least two, then / is bounded in U, from the proof of
Theorem 1.1 it follows that Theorem 1.1 holds. Then we are left with the case when U is
invariant. In this special case, if for some a S Jf, CF{(CL) > 0 (please see the statement
before Lemma 2.2 for its definition), then Theorem 1.1 still follows from Lemma 2.2 and
the proof of Theorem 1.1.

(2) The condition that 6(oo, f) > 0 is necessary. Observe f(z) = A tan 2, A g f i ,
the real axis. It is easy to get /*(/) = 1 and {(00, / ) — 0. It was proved in [3] that when
A > 1, Jf = 5ft, then E = {0, TT}, and mes.E = 0.

When 0 < A < 1, the Julia set of f(z) = A tans is a Cantor set and the Fatou set
consists of one unbounded component, but since f(z) has only two singularity values, it
was proved in [11] that for any a 6 Jf, Cpf(a) > 0.

(3) Baker [2] investigated the radial distribution of the Julia set of a transcendental
entire function and constructed an entire function with infinite lower order whose Julia
set lies in a horizontal strip. It is well known that an entire function / may only have
unbounded simply connnected components of the Fatou set and <5(oo, / ) = 1. Therefore,
the condition that / has a finite lower order is necessary in Theorem 1.1. A further
discussion on this subject of entire functions with finite lower order was-made in [9] after
Baker [2]. Their methods are not available for the case of meromorphic functions.

Next we consider when mes E = 2TT. If mes E < 2n, then Ff must contain unbounded
angle domains. Now [12, Theorem 3] says that Ff contains no unbounded angle domains,
if for arbitrary positive integer m, the following holds

(1) ^ ^

where L{r,f) := min{ | / (z) |} . Thus we have
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THEOREM 1 . 2 . Let f(z) be a transcendental meromorphic function in C satisfy-

ing (I). Then E= [O,2TT).

REMARK. (1) above suggests a further discussion of non-existence of the unbounded
periodic components of Fj, which was investigated in Zheng [11, 12].

THEOREM 1 . 3 . Let fj (j = 1,2,.. .,N) be transcendental meromorphic functions.

Assume that there exists a sequence {rn} of positive numbers which tends to infinity such

that

(2) l i m^«Ji)= O O )
n-»oo rn

and for each j and sufficiently large n, there is a Rj>n ^ rn, such that

(3) L(Rj<n,fj)>rn, j = 2,...,N.

Define g(z) = fxo ••• o /AT(2). Let D be a hyperbolic domain in C such that for p > 0,
gp(z) : D -» D is analytic. If for some a € D, gnp{a) —t b € 3D, assume, in addition,

that b is not an essential singularity point ofg(z). Then D is bounded.

We make remarks on Theorem 1.3.

(i) Theorem 1.3 is a generalisation of results in [12]. For example it was proved in
[12] that a transcendental meromorphic function has no unbounded (pre)periodic Fatou
components if it satisfies (2).

(ii) If / is a transcendental meromorphic function of order A = A(/) < 1/2 and
6(oo, / ) > 1 — cos 7rA, then for arbitrarily large r > 0, we have a R ^ r such that
L(R,f) > r. In fact, we can take A(/) < a < 1/2 such that 6(oo,f) > 1 - cos7ra. From
[6], the set

F := {r > 1 : logL(r,/)

has lower logarithmic density at least 1 - (A( / ) ) / a > 0. Therefore, for all sufficiently
large r > 0, there exists a R e (r1 / d , r) such that

L(R, f) > eMM >Rd>r,

where ft — [(?ra)/(sin 7ra)] (COSTTQ; + <5(oo,/) - l ) > 0 and (a /A( / ) ) < d < +oo.

This paper was mainly completed by the first author.

2. P R O O F OF T H E O R E M 1.1

In order to prove the Theorem 1.1, we need the following results. The first result we
need is a special version of the main result in [1].
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LEMMA 2 . 1 . Let f(z) be transcendental and meromorphic in C with finite positive

lower order \i — fi(f) and such that S — <5(oo, / ) > 0. Define for r > 0

(4) D(r) := {e € [0, 2TT) : log+|/(rei8)| > ^T{r, / ) } .

Then there exists an unbounded sequence {r;} ofr such that for sufficiently small e > 0
we have a jo such that when j Js jo,

(5) mes D(rj) ^ min< 2TT, — arcsin y - | — e.

An open set is called hyperbolic if it has at least three boundary points in C. We
define the hyperbolic metric on an open set by the hyperbolic metrics of its components.
Let W b e a hyperbolic open set in C. For an a € C\W, define

Cw(a) = inf {\w{z)\z -a\:Vz€ W},

where \w{z) is the hyperbolic density on W. It is well-known that \w(z)S\v(z) ^ 1, z €
W, where 5w{z) is the Euclidean distance of z to dW and if every component of W is
simply connected, then Cw{a) ^ 1/2- For r > 0 and 8i,92 6 [0,2ir),8i < 62, define

ft(r;0i,02) := {z : aigz € (eu92), \z\ >r}.

LEMMA 2 . 2 . Let f(z) be analytic in ft(ro;#i,02), U a hyperbolic domain and

If there exists a point a € dU\{oo}, such that Cy(a) > 0, then there exists a constant
d > 0 such that for sufficiently small e > 0, we have

(6) | / ( z ) | = O ( | z | d ) , 2 ^ o o , 2ef i ( r o ;0 i+£ ,0 2 -e) .

PROOF: Write Q = £l(ro;9i,02)- Since f(Q,) C U, from the Schwarz-Pick Lemma
we have

(7)

From the definition of Cu(d), we have

(8) Xu(f(z))\f'(z)\ > Cu(a) j*'W z € SI

On the other hand, since for e > 0 and z € QQ — Q(ro;6i + e,62 - e), 6Q(Z) ^ |z|sine,

we have

(9) An(z) ^ [l^lsine]"1, z
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Combining (7), (8) and (9) gives

where c = Cu(a) sine. We draw a curve 7 in QQ from a fixed point b to z by connecting
b and \b\elB, 6 = argz along the circle {w : \w\ = \b\} and \b\el6 and z along the radial
{•w : aigw = $}. Then integrating the both sides of (10) along 7 implies the desired
inequality (6). U

P R O O F OF T H E O R E M 1.1: If fi(f) — 0, from the remark (ii) on Theorem 1.3 we
know that / satisfies (1) and therefore from Theorem 1.2 we have E = [0, 2TT). NOW we
assume /i > 0. For the sake of convenience, put

= min< 2TT, — arcsin i / - > .

Now we conversely suppose that mes E < a. Take a t > 0 such that a — mes E > t > 0.
Since E is closed, S = [0, 2TT) \ E consists of (at most countablely many) open intervals
/ from which we can then find finitely many open intervals Ii (i = 1,2, ...,m) such

S \ U ̂ i) < -^72, where K = a — mes E — t > 0. Under the assumption of
i=l '

Theorem 1.1, an application of Lemma 2.1 implies that there exists a sequence {r;} of
positive numbers such that mesD(rj) > a — t > 0, where D(rj) is defined as in (4).
Obviously

mes(£>(r,) n 5) = mes(D(r7)) \ ( £ n £>(r;-)) ^ mes £>(r7-) -mesE^ K >0.

Thus for each j we have

mes I
t = l

=mes(5nD(rj)) -mes ( ( 5 \ ( J / 4 ) n £>(r,-))

2 ~ 2 '
so there exists an open interval / = J;o c 5 such that for infinitely many j ,

(11) mes(D(rj) n /) > ̂ - > 0.

It is easy to see that we can assume that for each j , (11) holds. Write / = (a,P). Take
a positive number e such that

(12) mes(£»(rJ) n he) > ~ > 0 (j = 1,2,...),

where we denote by Ii the interval (a + d, ft - d) for 0 < 2d < 0 - a. It is easy
to see from / n E = 0 that there exists a positive R such that Q(R;I£) = {z e C :
\z\ ^ R and argz e /£} c F/. Now by applying Lemma 2.2 to / in Cl(R; Ic), we have

(13) \f(z)\^co\z\", z

https://doi.org/10.1017/S000497270002061X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002061X


J-H. Zheng, S. Wang and Z-G. Huang [6]

where Co and p are both positive constants. Then

(14) J log+\f(rje
ie)\d6^JP\ogrjd9

/j«nD(r,-) I

On the other hand, applying Lemma 2.1 to / gives

Combining (14) with (15) gives

T(rjJ) = O((\ogrj)
2).

Then fj.(f) = 0. We get a contradiction. . D

Theorem 1.1 follows.

3. PROOF OF THEOREM 1.3

In order to prove Theorem 1.3, we need the following result.

LEMMA 3 . 1 . Let D be a domain with at least three boundary points and f be
meromorphic in C except possibly at most countably many essential sigularity points
such that f(D) C D. Then one of the following mutually exclusive possibilities can
occur.

(1) There is a subsequence of {fn{z)} which converges to z in D.

(2) fn(z) -*b&T),~D is the closure ofD.

Lemma 3.1 can be proved from the arguments of Heins [8]. We also need the following
result, which is due to Zheng [12] and of independent significance.

LEMMA 3 . 2 . Let U be an unbounded hyperbolic domain and f : U —> U analytic.

If

fn{z)\u -+oo, n->oo,

then there exists a curve 7 tending to infinity and a constant £ > 1, such that f(j)Cj
and

lA^\f(z)\^c\z\,Vzer

PROOF OF THEOREM 1.3: Suppose that D is unbounded. Take a point a e D and
a positive number M such that

(16) \a\ < M and f, o • • • o /^(ff'(a))| < M, for j = 1,2,..., N and i = 0 , 1 , . . . ,p.

From (2) and (3) for arbitrarily large K > 3 we can take a sufficiently large R> M such

that

(17) L(R,f1)>KR
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and for each j there exists a M ̂  Rj < R such that

(18) L(Rj,fj)>R.

Now we draw in D a curve 7 connecting a and a point in {\z\ — R} such that 7 C {\z\
^ R}. It is easy to see that {\z\ = RN}nj^ 0 and from (16), ^ ( 7 ) D {\z\ < M) / 0,
and then from (18) when j = N we have

(19) / jv(7)n{|z | = / ? } 7^0.

Obviously from (16), / N _ i o ^ ( 7 ) n {|z| < M} 7̂  0 and from (19), ^ ( 7 ) n {\z\
= RN-I } # 0- Again applying (18) when j = N - 1 gives that /yV_1 o ̂ ( 7 ) (~l {|z| = i?}
T̂  0. Inductively we get

(20) / 2 o • • • o / „ _ ! o fN(y) n {|z| - R} # 0.

Then there exists a point zi € 7 such that | /2 o • • • o / ^ . j o /N(ZI)\ = R, and from (17)
we have |<7(zi)| > KR. This implies that g(j) n {\z\ = R} ^ 0. Take a segment of 5(7),
denoted by 71, from g(a) to {\z\ = R} such that 71 C {|z| ^ R}. Repeating the above
process to 71 gives that g(ji) C\ {|z| = R}^ 0, so g2{j) D {\z\ = R} ^ 0. Inductively we
obtain <?p~1(7) n {|z| = i?} 7̂  0. Now take a curve 7p_i from ^p~1(7) connecting ^ " ' ( a )
and a point in {|z| = i?} such that 7p_i C {\z\ < R}. As we did for 7 in the first step,
we have (20) for 7P_i, so that we have (20) for <7P-1(7). Then there exists a point z* 6 7
such that / 2 o • • • o fN_x o fN(gp~l(z')) = R, and from (17) we have |5p(z*)| > KR.

If {gn(a)} is unbounded, then for some 0 < m < p — 1, gnp+m\o -> c>o(n -> 00). It
is easy to see from unboundedness of D and (2) and (3) that gm(D) is also unbounded.
Since gp(gm(D)) C gm{D), applying Lemma 3.2 to gp in gm(D) gives the existence of F
tending to 00 from gm(a) in gm(D) such that |<7p(z)| ^ L\z\, z € F, where L is a positive
constant. In the above discussion, we replace 7 by a segment curve of F in {|z| ^ R}, D
by gm(D) and K by 2L, then we have a point z* £ F such that \gp{z*)\ > 2LR. On the
other hand, |sp(z*)| ^ L\z*\ ^ LR, so that LR ̂  2L/2. We get a contradiction. Then
{</"(a)} is bounded.

If {<7"|D} has only constant limit functions, then from Lemma 3.1 gnp+m(a)
—> Pm (n -> 00), 0 ^ m ^ p - 1. If p0 € Z?, then p m € gm(£)),0 ^ m ^ p - 1 so
that we can reqiure that (16) also holds for i > p. If p0 € 9D, we can also do this under
the assumption of Theorem 1.3 about this case. Thus it is clear that <7np(7) cannot tend
to p0. A contradiction we get gives that {<?n|o} has a non-constant limit function. Then
all the limit points of {gn(a)} must be analytic points of /,- o • • • o fN(z), (j = 1,2,... ,p)
so that we can make (16) hold for i > p. Applying Lemma 3.1 implies that there is a
subsequence {gn"p} of {gnp} such that

<?"*p(z) - » * , ( * - > 0 0 )

https://doi.org/10.1017/S000497270002061X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002061X


8 J-H. Zheng, S. Wang and Z-G. Huang [8]

in D. When njt is sufficiently large, we have

(21) . \gn*'(z)\ < (K - l)\z\, z £ y.

On the other hand, from (21) and the discussion in the first paragraph, there is a znk s 7

such that

KR < \gnkP(znk)\ <(K- l)\znk\ ^(K- 1)R.

This is impossible. D

Theorem 1.3 follows.
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