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In dense urban areas, conventional Global Navigation Satellite Systems (GNSS) positioning
can exhibit errors of tens of metres due to the obstruction and reflection of the signals by
the surrounding buildings. By using Three-Dimensional (3D) mapping of the buildings, the
accuracy can be significantly improved. This paper demonstrates the first integration of GNSS
shadow matching with 3D-mapping-aided GNSS ranging. The integration is performed in
the position domain, whereby separate ranging and shadow matching position solutions are
computed, then combined using direction-dependent weighting. Two weighting strategies are
compared, one based on the computation of ranging-based and shadow matching position error
covariance matrices, and a deterministic approach based on the street azimuth. Using experi-
mental data collected from a u-blox GNSS receiver, it is shown that both integrated position
solutions are significantly more accurate than either shadow matching or 3D-mapping-aided
ranging on their own. The overall Root Mean Square (RMS) horizontal accuracy obtained using
covariance-based weighting was 6·1 m, a factor of four improvement on the 25·9 m obtained
using conventional GNSS positioning. Results are also presented using smartphone data, where
shadow matching is integrated with conventional GNSS positioning.
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1. INTRODUCTION. The positioning performance of Global Navigation Satellite Sys-
tems (GNSS) in dense urban areas is poor because buildings block, reflect and diffract
the signals. Many applications would benefit from better positioning in cities. Examples
include vehicle lane detection for Intelligent Transportation Systems (ITS), location-based
advertising, augmented-reality, and step-by-step guidance for the visually impaired and for
tourists.
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Buildings and other obstacles degrade GNSS positioning in three ways. Firstly, where
signals are completely blocked, they are simply unavailable for positioning, degrading the
signal geometry. Secondly, where the direct signal is blocked (or severely attenuated), but
the signal is received via a (much stronger) reflected path, this is known as Non-Line-Of-
Sight (NLOS) reception. NLOS signals exhibit positive ranging errors corresponding to
the path delay (the difference between the reflected and direct paths). These are typically
a few tens of metres in dense urban areas, but can be much larger if a signal is reflected
by a distant building. Thirdly, where both direct Line-Of-Sight (LOS) and reflected signals
are received, multipath interference occurs. This can lead to both positive and negative
ranging errors, the magnitude of which depends on the signal and receiver designs. NLOS
reception and multipath interference are often grouped together and referred to simply as
“multipath”. However, to do so is highly misleading as the two phenomena have different
characteristics and can require different mitigation techniques (Groves, 2013b).

There are many different approaches to multipath and NLOS mitigation (Groves,
2013a). Receiver-based signal processing techniques dominate a lot of the literature. How-
ever, because they work by separating out the direct and reflected signals within the
receiver, they can only be used to mitigate multipath; they have no effect on NLOS recep-
tion at all. A good GNSS antenna is more sensitive to Right-Hand Circularly Polarised
(RHCP) signals than to Left-Hand Circularly Polarised (LHCP) signals. As direct LOS sig-
nals are RHCP while most reflected signals are LHCP or mixed polarisation, this reduces
errors due to multipath inference. It also enables most NLOS signals to be detected from the
Signal to Noise Ratio (SNR) measurements and eliminated from the position calculation.
However, cheaper antennae offer less polarisation discrimination and smartphone antennae
none at all.

Consistency checking is based on the principle that measurements from “clean” direct
LOS signals produce a more consistent navigation solution than those from NLOS and
severely multipath-contaminated signals. Conventional sequential testing approaches work
where the number of good measurements greatly exceeds the number of outliers. However,
it works poorly in dense urban areas where lots of signals are affected by NLOS reception
and multipath interference. Consistency checking using subset comparison is more robust
under these conditions, but still needs a minimum number of good signals to work (Groves
and Jiang, 2013).

Terrain height data is useful for outdoor positioning of both vehicles and pedestrians,
who can be assumed to be a fixed height above the terrain. This can be used to generate a
virtual ranging measurement that constrains the position solution (Amt and Raquet, 2006).
One might expect this to only improve vertical position. However, where the signal geome-
try is poor, it also improves the horizontal position. In dense urban areas, this terrain height
aiding improves the horizontal position accuracy by almost a factor of two (Adjrad and
Groves, 2017).

The increasing availability of Three-Dimensional (3D) mapping provides an opportunity
to improve GNSS positioning in dense urban areas. 3D models of buildings can be used to
predict which signals are blocked and which are directly visible at any location (Bradbury
et al., 2007; Suh and Shibasaki, 2007). This can be computationally intensive. However,
the real-time computational load can be reduced dramatically by using building boundaries
(Wang et al, 2012). These describe the minimum elevation above which satellite signals
can be received at a series of azimuths and are precomputed for each candidate position.
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A signal can then be classified as LOS or NLOS simply by comparing the satellite elevation
with that of the building boundary at the corresponding azimuth.

Where the user position is already approximately known, it is straightforward to use a 3D
city model to predict the NLOS signals and eliminate them from the position solution (Obst
et al., 2012; Bourdeau and Sahmoudi, 2012; Peyraud et al., 2013). However, for most urban
positioning applications there is significant position uncertainty. A search area containing
the possible position solutions may be defined centred on the conventional GNSS position
solution and the proportion of these candidate positions at which each signal is receivable
via direct LOS may be predicted using the 3D mapping. This information can then be used
to re-weight a least-squares position solution and aid consistency checking, improving the
horizontal position accuracy by about 61% (Adjrad and Groves, 2017). A more advanced
approach is discussed under future work in Section 6.

Several research groups have taken the concept of 3D-Mapping-Aided (3DMA) GNSS
ranging a step further by using a 3D city model to predict the path delay of the NLOS sig-
nals across an array of candidate positions (Suzuki and Kubo, 2013; Kumar and Petovello,
2014; Hsu et al., 2016). A single-epoch positioning accuracy of 4 m has been reported (Hsu
et al., 2016). Kbayer et al. (2015) used 3D mapping to predict lower and upper bounds for
the biases due to NLOS reception and multipath interference, which were then used by
a robust estimator to determine the position solution. However, unless the search area is
small, these approaches are very computationally intensive as the path delay cannot easily
be pre-computed. The urban trench approach presented in Betaille et al. (2013) enables the
path delays of NLOS signals to be computed very efficiently, but only if the building layout
is highly symmetric.

Another way of using 3D city models to improve GNSS positioning in dense urban areas
is shadow matching (Groves, 2011). This determines position by comparing the measured
signal availability and strength with predictions made using a 3D city model over a range
of candidate positions. Since 2011, several research groups have experimentally demon-
strated shadow matching and similar techniques, using both single and multiple epochs of
GNSS data (Suzuki and Kubo, 2012; Wang et al., 2013; Isaacs et al., 2014; Wang et al.,
2015; Yozevitch and Ben-Moshe, 2015). Across-street positions within a few metres have
been achieved in environments where the error in the conventional GNSS position solution
is tens of metres, enabling users to determine which side of the street they are on. This
complements GNSS ranging, which is more accurate in the along-street direction in dense
urban areas because more direct LOS signals are received along the street than across it.
Shadow matching has also been demonstrated in real time on an Android smartphone.

Clearly, to get the best performance out of GNSS aided by 3D mapping, as much infor-
mation as possible should be used. Thus, both pseudo-range and SNR measurements from
a multi-constellation GNSS receiver should be used, together with both LOS/NLOS pre-
dictions and terrain height from 3D mapping. This concept is known as intelligent urban
positioning (Groves et al., 2012).

This paper presents the first integration of GNSS shadow matching with 3DMA ranging,
demonstrating its benefit. The shadow matching algorithm, based on the design presented
in Wang et al. (2015), uses the SNR measurements to compute a position solution. The
3DMA ranging algorithm, described in Adjrad and Groves (2017), uses the pseudo-ranges
to compute the position and incorporates the following techniques:

• Terrain height aiding;
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• Weighting of GNSS ranging measurements according to the proportion of candidate
positions at which each signal is predicted from 3D mapping to be direct LOS;

• Consistency checking by subset comparison.

Two new methods for integrating these two positioning techniques are presented and com-
pared. Both use position-domain integration, where separate ranging and shadow matching
position solutions are computed, then combined using direction-dependent weighting. The
first approach weights the position solutions according to their covariances, but modifies
the shadow matching covariance to account for multi-modality by computing the kurtosis.
The second technique is based on the principle that shadow matching works better in the
across-street direction and GNSS ranging in the along-street direction. It therefore uses the
street direction and building height to street width ratio to determine a suitable weighting
in each direction.

The different positioning and integration methods are compared using experimental data
collected in London using a u-blox consumer-grade GNSS receiver and a Sony smartphone.

Section 2 summarises the algorithms for computing position from shadow matching and
from 3DMA ranging. Section 3 describes the two algorithms for integrating shadow match-
ing and ranging. Section 4 presents experimental test results. Finally, Section 5 summarises
the conclusions and Section 6 discusses future work.

The algorithms presented here operate using a single epoch of GNSS measurements.
This is suitable for location-based services, emergency caller location and low-update-
rate tracking applications. For navigation and continuous tracking, the algorithms can be
applied to successive epochs of data. However, as with conventional GNSS positioning,
better performance can be obtained using a filtered approach. The aim of this paper is
to demonstrate the benefit of integrating GNSS shadow matching with 3DMA ranging.
Development of the best possible algorithms for shadow matching, 3DMA ranging and
their integration is a subject for future research.

2. POSITIONING ALGORITHMS. GNSS position solutions are computed using both
3DMA ranging and shadow matching. Each is described in turn.

2.1. 3D-Mapping-Aided Ranging. Figure 1 shows the 3DMA ranging algorithm,
comprising the following six steps:

1. A search area is determined using the conventional GNSS position solution on the
first iteration and the previous solution on subsequent iterations. Here, we used
fixed-radius circles for simplicity. However, a search area based on an appropriate
confidence interval would be more efficient.

2. Using building boundaries precomputed from the 3D city model (Wang et al., 2012),
the proportion of the search area within which each satellite is directly visible is
computed, providing an estimate of the probability that the signal is direct LOS.

3. A consistency checking process is applied to the ranging measurements, making use
of the direct LOS probabilities from the 3D mapping.

4. The set of signals resulting from the consistency checking process is subjected to a
weighting strategy based on the previously determined LOS probabilities and carrier-
power-to-noise-density ratio, C/N0.
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Figure 1. 3D-mapping-aided GNSS ranging algorithm block diagram (Adapted from Adjrad and Groves
(2017)).

5. Digital Terrain Model (DTM) information is extracted from the 3D city model and a
virtual range measurement is generated using the position at the centre of the search
area.

6. Finally, a position solution is derived from the pseudo-ranges and virtual range
measurement using least-squares estimation.

The algorithm is then iterated several times to improve the position solution, reducing the
search radius each time from 100 m initially to 40 m on the final iteration. Full details are
presented in Adjrad and Groves (2017).

2.2. Shadow Matching. Figure 2 shows the shadow matching algorithm, comprising
the following five steps:

1. A circular search area of radius 40 m is defined with its centre at the 3DMA ranging
position solution. This value was determined empirically. Within this search area, a
grid of candidate positions at 1 m intervals is set up.

2. For each candidate position, the satellite visibility is predicted using the building
boundaries precomputed from the 3D city model (Wang et al., 2012). If the satellite
elevation is above the building boundary at the relevant azimuth, the LOS probability
predicted from the building boundary, p(LOS|BB), is set to 0·8. Otherwise, it is set
to 0·2. These values allow for diffraction and 3D model errors and were determined
empirically as described in Section 4.
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Figure 2. Shadow matching algorithm block diagram (adapted from Groves et al. (2015)).

3. The observed satellite visibility is determined from the GNSS receiver’s C/N0 or
Signal to Noise Ratio (SNR) measurements. From these, a probability that each
received signal is direct LOS, p(LOS|SNR = s) is estimated. The models used here
are described in Section 4.

4. The next step is to score each candidate position according to the match between the
predicted and measured satellite visibility. For a given satellite, the probability that
the predicted and measured satellite visibility match, Pm, is (Wang et al., 2015)

Pm = 1 − p (LOS|SNR = s) − p(LOS|BB) + 2p (LOS|SNR = s) p(LOS|BB). (1)

The overall score for each position, �S, is then the product of the individual satellite
probabilities.

5. Finally, a position solution is determined based on a weighted average of the candi-
date positions. The weighting factor for each candidate is the normalised score, which
is the relative probability of that candidate position. Thus, the position solution is

ÊS =

∑
p

�Sp Ep∑
p

�Sp
, N̂S =

∑
p

�Sp Np∑
p

�Sp
, (2)

where Ep , Np and �Sp are the easting coordinate, northing coordinate and score of
the pth candidate position.

Full details of steps 1 to 4 are presented in Wang et al. (2015).
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3. INTEGRATION ALGORITHMS. A position-domain approach to the integration of
ranging-based GNSS positioning with GNSS shadow matching is implemented here. Thus,
GNSS ranging and shadow-matching position solutions are computed separately and then
integrated together. Where pseudo-range information from the user device is available, the
conventional GNSS solution is enhanced using terrain height aiding, consistency checking
and weighting of the pseudo-range measurements based on the average NLOS reception
probability, as described in Adjrad and Groves (2017) and summarised in Section 2.1. This
solution is referred to as the “3DMA GNSS ranging solution” in the remainder of this paper
while “GNSS ranging solution” refers to either the conventional or the enhanced solutions.

An integrated position solution, xwav , may be obtained by computing the weighted
average of the GNSS ranging and shadow matching position solutions. Thus,

xwav = (WS + WR)−1 (WSxS + WRxR) , (3)

where xS and xR are respectively the shadow matching and GNSS ranging position
solutions and WS and WR are the weight matrices for the respective solutions.

The challenge is then to determine suitable weighting matrices. Two different
approaches are investigated here:

1. A covariance-based approach based on the computations of the ranging-based and
shadow matching position error covariance matrices. The weighting matrices are
then the inverses of the corresponding error covariance matrices.

2. A deterministic approach based on weighting the shadow matching and GNSS solu-
tion exploiting street azimuth information in a way such that shadow matching is
given higher weights across-street and lower weights along-street (and vice-versa for
the GNSS solution).

3.1. Covariance-based weighting approach. Weighting the GNSS ranging and
shadow matching position solutions using the inverses of their respective error covari-
ance matrices makes the implicit assumption that their error distributions are Gaussian.
However, this is not the case in reality. For GNSS ranging, NLOS measurements have a
skewed error distribution as the path delay is always positive, resulting in distortions to
the resulting position error distribution. By down-weighting those measurements predicted
more likely to be NLOS (Section 2.1), this effect is reduced but not eliminated. However,
the distribution at least remains unimodal. For shadow matching, the position error distri-
bution is sometimes multimodal as the predicted and observed satellite visibility can match
at more than one location. This must be compensated for, which is done by adjusting the
shadow matching covariance matrix according to the kurtosis of the underlying distribution
along its semi-major and semi-minor axes in order to overbound the distribution. Clearly,
this will not provide an optimal weighting; the aim here is to obtain a sufficiently good
approximation to provide a useful integrated position solution.

The first step is to derive the GNSS ranging position error covariance matrix. A position
solution may be computed from a set of pseudo-range measurements and a terrain height-
aiding measurement using least-squares estimation. This is given by (Groves et al., 2013)

x̂+ = x̂− +
(

He
G

TWρHe
G

)−1
He

G
TWρ

(
z̃ − ẑ−) , (4)
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where x̂+ is the estimated state vector, comprising the position and time solution, x̂− is the
prior predicted state vector, z̃ is the measurement vector, ẑ− is the vector of measurements
predicted from x̂−, Wρ is the weighting matrix and He

G is the measurement matrix.
The state vector is defined as

x =
(

re
ea

δρa
c

)
, (5)

where re
ea is the Cartesian position vector, resolved about and with respect to an Earth-

Centred Earth-Fixed (ECEF frame) and δρa
c is the GNSS receiver clock offset expressed as

a range. The GLONASS-GPS inter-constellation timing offset is corrected using data from
the GLONASS navigation message.

The measurement vector is

z =

⎛
⎜⎜⎜⎜⎜⎝

ρ1
a,c

ρ2
a,c
...

ρm
a,c

rea

⎞
⎟⎟⎟⎟⎟⎠ , (6)

where, ρ
j
a,c is the pseudo-range from satellite j , m is the number of satellites and rea is the

distance from the centre of the Earth to the user position, which forms the terrain height
aiding measurement.

The measurement matrix is given by

He
G =

⎛
⎜⎜⎜⎜⎜⎜⎝

−ue
a1,x −ue

a1,y −ue
a1,z 1

−ue
a2,x −ue

a2,y −ue
a2,z 1

...
...

...
...

−ue
am,x −ue

am,y −ue
am,z 1

ue
ea,x ue

ea,y ue
ea,z 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)

where ue
aj is the line-of-sight unit vector from the user antenna to satellite j and ue

ea is the
line-of-sight unit vector from the centre of the Earth to the predicted user position. These
are given by

ue
aj ≈ r̂e

ej − r̂e−
ea∣∣∣r̂e

ej − r̂e−
ea

∣∣∣ , ue
ea =

r̂e−
ea∣∣r̂e−
ea

∣∣ , (8)

where r̂e
ej is the position of satellite j and r̂e−

ea is the predicted user position. In conventional
GNSS ranging, the final row of He

G is omitted.
The weighting matrix for 3DMA GNSS ranging is

Wρ =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1σ
−2
ρ1 0 · · · 0 0

0 p2σ
−2
ρ2 · · · 0 0

...
...

. . .
...

...
0 0 · · · pmσ−2

ρm 0

0 0 · · · 0 σ−2
h

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9)
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where pj is the probability that the signal from the j th satellite is direct LOS, calculated
using the 3D city model as described in Adjrad and Groves (2017), σρj is the estimated
pseudo-range error standard deviation, modelled as a function of C/N0 as described in
Groves and Jiang (2013), and σh is the error standard deviation of the height aiding mea-
surement. In the conventional GNSS ranging equivalent, the pj terms and the final row and
column are omitted.

In least-squares estimation, the state estimation error covariance matrix is given by:

Cx =
(

HeT

G WρHe
G

)−1
. (10)

For integration with shadow matching, the ranging-based position solution can be
converted from Cartesian ECEF to projected coordinates, known as Eastings and
Northings, using

xEN
R ≈ xEN

ref + CEN
e (re

ea − re
ref ), (11)

where xEN
ref are the projected coordinates of a known local reference point, re

ref is the
Cartesian ECEF position vector of the same reference point and

CEN
e =

(
− sin λa cos λa 0

− sin La cos λa − sin La sin λa cos La

)
, (12)

where λa is the geodetic longitude and La is the geodetic latitude (Groves, 2013a).
The error covariance of the Easting and Northing form of the GNSS ranging position

solution is then obtained using

CREN = CEN
e CxCe

EN , (13)

noting that Ce
EN = CEN T

e .
The next step is to obtain the error covariance of the GNSS shadow matching position

solution, given by Equation (2). This may be computed using

CSEN =

(
σ 2

SE cov(ES , NS)
cov(ES , NS) σ 2

SN

)
, (14)

where

σ 2
SE =

∑
p

�Sp

(
Ep − ÊS

)2

∑
p

�Sp
, σ 2

SN =

∑
p

�Sp

(
Np − N̂S

)2

∑
p

�Sp
,

cov(ES , NS) =

∑
p

�Sp

(
Ep − ÊS

) (
Np − N̂S

)
∑
p

�Sp
, (15)

noting that all symbols are defined in Section 2.2.
The shadow matching process can produce both unimodal and multimodal position like-

lihood distributions, depending on the local environment and the satellite positions. For the
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latter case, the shadow matching covariance should be increased in order to reduce the
weighting of shadow matching in the integrated solution. Multimodality can potentially be
detected using the kurtosis. A normal distribution has a kurtosis of 3, while a uniform dis-
tribution has a kurtosis of 1·8 (or an excess kurtosis of −1·2) (Collins, 2003). Therefore, a
distribution with a kurtosis less than 3 is likely to be multimodal and the shadow matching
covariance used for integration should be increased accordingly. If the coordinate system is
rotated such that the axes are aligned with the maximum and minimum of the error ellipse,
the two dimensions will be de-correlated, enabling the kurtosis to be determined indepen-
dently for each. If DSEN is defined as the diagonal matrix containing the eigenvalues of
CSEN and ESEN as the matrix containing the corresponding normalised eigenvectors, then

CSEN = ESEN DSEN ET
SEN . (16)

The coordinates are then transformed using

(
xp
yp

)
= ET

SEN

(
Ep
Np

)(
x̂S
ŷS

)
= ET

SEN

(
ÊS

N̂S

)
. (17)

Defining,

DSEN =

(
σ 2

Sx 0
0 σ 2

Sy

)
, (18)

the kurtoses are then given by

κSx =

∑
p

�Sp
(
xp − x̂S

)4

σ 2
Sx
∑
p

�Sp
, κSy =

∑
p

�Sp
(
yp − ŷS

)4

σ 2
Sy
∑
p

�Sp
. (19)

Scaling factors can then be defined as follows:

Sx =

⎧⎪⎪⎨
⎪⎪⎩

S0x, 1·8 ≥ κSx

(S0x − 1)
(3 − κSx)

1·2 + 1, 3 ≥ κSx ≥ 1·8,

1, κSx ≥ 3

Sy =

⎧⎪⎪⎨
⎪⎪⎩

S0y , 1·8 ≥ κSy(
S0y − 1

) (3 − κSy

)
1·2 + 1, 3 ≥ κSy ≥ 1·8,

1, κSy ≥ 3

(20)

where the parameters S0x and S0y were determined via trial and error using the shadow
matching calibration data (see Section 4), experimenting with a range of values between
1·5 and 3, with a step of 0·1. The interval [1·5 3] was selected as we observed that above
3 and below 1·5 performances deteriorated further the further we moved away from those
values which indicated that the optimum value resides in the selected interval.
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Figure 3. Building boundary definition (Wang et al., 2013).

The rescaled shadow matching covariance is then

C′
SEN = ESEN

(
Sxσ

2
Sx 0

0 Syσ
2
Sy

)
ET

SEN . (21)

The GNSS ranging and shadow matching solutions are then integrated using Equation (3)
with WEN

S = C′
SEN

−1 and WEN
R = CREN

−1.
3.2. Deterministic weighting approach. Given the limitations of covariance-based

weighting for non-Gaussian measurement distributions, an alternative approach has been
investigated. This approach exploits the fact that shadow matching is generally more accu-
rate in the across-street direction and ranging more accurate in the along-street direction.
Building boundaries (already used for shadow matching) are therefore used to determine
the street azimuth, which is then used to allocate a higher weighting to the shadow matching
solution across-street and less weighting along-street, and vice-versa for the GNSS rang-
ing solution. Greater weighting is applied where the building-height-to-street-width ratio is
higher.

Building boundaries are computed using the 3D city model and stored as text files con-
taining two columns. The first column represents the azimuth angle (measured clockwise
from grid north) and the second column the elevation angle (measured from the ground)
above which a GNSS satellite is visible for a particular azimuth direction. This is illustrated
by Figure 3.

Figure 4 shows typical building boundaries in the form of elevation versus azimuth plots
for a typical user at ten locations, randomly chosen on two adjacent straight-line streets
(effectively taking as an example the case where the search area, centred at the 3DMA
GNSS ranging-based solution, covers two different streets with different azimuths). For this
example, we limit the number of grid points to ten for clarity of presentation. However, in
the weighting algorithm, the process is performed for all outdoor grid points in the search
area.

As Figure 4 shows, the street azimuth angle, θStreet, can be extracted from the building
boundaries. The street azimuth is the angle at which the elevation of the building boundary
is at a minimum, i.e. there are no buildings directly in front. It is effectively the along-street
direction with respect to North. For a straight street, there will be another minimum at
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Figure 4. Building boundary representation - example of 10 grid points spread along two different
streets: dashed lines representing the points belonging to one street and dotted lines for the grid points
belonging to the second street, with a 57◦ difference in street azimuth (each colour represents a different
grid point; five points are selected on each street).

approximately θStreet + 180◦ if the viewpoint is in the middle of the street. There are many
possible viewpoints within the shadow matching search area, noting that indoor locations
are excluded. Therefore, a viewpoint for inference of θStreet is selected at which the two
azimuths at the two building boundary minima are 180 ± 1◦ apart. θStreet is set to whichever
of the two minima has the lowest elevation (if the elevations are the same, the minima
between 0 and 180◦ is selected).

In practice, there will usually be several streets in the search area and so each candidate
position needs to be associated with a particular street. Figure 5 illustrates the case of search
area grid points falling on two parallel streets. Firstly, a street azimuth angle is computed for
each point and points with similar azimuths are grouped together. This will separate streets
with different azimuths, but not parallel streets. Therefore, a second step is needed. For each
group of points with similar azimuths, a set of viewpoints is extracted (shown as orange-
filled circles on Figure 5). For each Easting coordinate, a maximum of two viewpoints
are selected that meet the viewpoint criterion (i.e., the two building boundary minima are
180 ± 1◦ apart) - this effectively selects viewpoints that fall in the middle of the street.
Where more than two candidates meet the viewpoint criterion, those within the search area
with the highest and lowest Northing are selected, providing viewpoints on different streets
(except where the parallel streets have an azimuth corresponding to north; in which case,
the two viewpoints with largest easting coordinate difference are selected). Then, for each
grid point in the group, the distance from each viewpoint in the across-street direction (i.e.,
θStreet + 90◦) is computed. Each grid point is then associated to the viewpoint that is closest
in the across-street direction, effectively allocating it to a particular street.

Weighting factors for the GNSS ranging and shadow matching position solutions are
determined in the along-street and across-street directions for each outdoor grid point, p ,
within the shadow matching search area based on the building-height-to-street-width ratio
at that point. To find this ratio, the neighbouring points nearest to the buildings on the two
sides of the street are first found by determining which points have the highest building
boundary elevation along the two azimuths perpendicular to the street azimuth (stopping
the search when an indoor point is encountered). The street width, wp , is the difference in
across-street coordinates of these two points on either side of the street. The building height,
hp

B, is then estimated using the building boundary angle, θp
BB, at the candidate position along
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Figure 5. Association of candidate positions with streets (example of search area grid points falling on two
parallel streets, shaded in grey).

the azimuth perpendicular to the street azimuth, together with the across-street distance,
	wp , to the point nearest the building determined previously. The building height-to-street-
width ratio is then estimated as δ

p
hw = hp

B/wp = (	wp/wp ) tan(θp
BB). In practice, both the

street azimuths and the height-to-width ratios can be pre-computed and stored with the
building boundaries.

The weighting matrices for point p are then

WEN
S,p = CEN

Ap

⎛
⎜⎜⎜⎜⎝

1

1 + δ
p
hw

2 0

0
δ

p
hw

2

1 + δ
p
hw

2

⎞
⎟⎟⎟⎟⎠CAp

EN WEN
R,p = CEN

Ap

⎛
⎜⎜⎜⎜⎝

δ
p
hw

2

1 + δ
p
hw

2 0

0
1

1 + δ
p
hw

2

⎞
⎟⎟⎟⎟⎠CAp

EN ,

(22)
where CEN

Ap is the coordinate transformation matrix from the point p (along-street, across-
street) frame to an (easting, northing) frame and is given by

CEN
Ap =

(
sin θ

p
Street cos θ

p
Street

cos θ
p
Street − sin θ

p
Street

)
, (23)

where θ
p
Street is the azimuth angle of the street to which point p belongs. Note that

CAp
EN = CEN

Ap
T.

The overall weighting matrices for the shadow matching and GNSS ranging position
solutions are then obtained by weighting the matrices for the individual points according
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to the shadow matching scores of each point. Thus,

WEN
S =

ns∑
p=1

�2
Sp WEN

S,p

ns∑
p=1

�2
Sp

, WEN
R =

ns∑
p=1

�2
Sp WEN

R,p

ns∑
p=1

�2
Sp

, (24)

where ns is the total number of grid points in the shadow matching search area and �Sp is
the shadow matching score of point p , as defined in Section 2.2.

4. EXPERIMENTAL RESULTS. Measurements using a Sony Xperia smartphone and
u-blox EVK M8T GNSS receiver were collected in January 2016. Two rounds of data col-
lection were performed at 14 and 18 sites in central London, using the smartphone and
u-blox receiver, respectively. All smartphone data collection was collocated with the cor-
responding u-blox data collection. The sites were paired with data collected on opposite
sides of the street on the edge of the footpath next to the road. The truth was established to
decimetre-level accuracy using a 3D city model to identify landmarks and a tape measure to
measure the distance of the user position from those identified landmarks. The two rounds
of data at each site were separated by approximately two hours, ensuring that the satellite
positions in the two datasets were independent. The first dataset was used for calibrating
the shadow matching algorithm for the smartphone and u-blox antenna and receiver char-
acteristics using the procedure described in Wang et al. (2015), while the second dataset
was used for testing the positioning algorithms. Four minutes of data (logging at 1 Hz) were
collected at each site on each round. Figure 6 illustrates the measurement sites (smartphone
data was not collected at sites 1N, 1S, 9N, 9S).

A 3D city model of the area, from Ordnance Survey (OS), was used to generate the
building boundary data used for the subsequent analysis (Adjrad and Groves, 2017). The
model is stored in the Virtual Reality Modelling Language (VRML) format. Figure 7
illustrates the 3D model used in this study.

Figure 8 (Left) shows the u-blox receiver LOS and NLOS SNR distributions averaged
across all of the experimental sites. Both direct LOS signals, shown in red, and NLOS
signals, shown in blue, were received at every test site. In Figure 8 (Right), the blue
crosses show the probability that a signal is direct LOS for each value of SNR derived from
the experimental data. Figure 9 shows the corresponding information for the smartphone
device.

For shadow matching satellite visibility scoring (see Section 2.2), the probability that
a received signal is direct LOS is modelled as a function of the received SNR, s, using
(Wang et al., 2015)

p (LOS|SNR = s) =

⎧⎪⎨
⎪⎩

po−min s < smin

a2s2 + a1s + a0 smin < s < smax

po−max smax < s
, (25)

where po−min and po−max are, respectively, the minimum and maximum probabilities of the
observed signal being LOS; smin and smax are, respectively, the minimum and maximum
SNRs at which the quadratic function applies and a0, a1, and a2 are the coefficients of
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Figure 6. Data collection sites in the City of London (GoogleTM Earth).

that function. New values of these coefficients for the u-blox EVK M8T receiver and Sony
Xperia smartphone were derived by fitting this function to the experimental data, using the
building boundaries at the true position to determine which measurements were direct LOS
and which NLOS. Table 1 lists the values used for the shadow matching results presented
here, while the red lines in Figure 8 (Right) and Figure 9 (Right) depict the functions for the
two receivers. Note that po−min and po−max take the values of the quadratic function at smin
and smax, respectively. Suitable values of smin and smax were determined by a combination
of visual inspection of the data and examination of the residuals of the quadratic function
fit to the data within these bounds.

The calibration data was also used to determine values for p(LOS|BB) by running
the shadow matching algorithm with different values. Best performance was obtained with
values between 0·75 and 0·85 for signals predicted to be direct LOS and between 0·15 and
0·25 for signals predicted to be NLOS.

Figure 10 shows the along-street, across-street and overall horizontal RMS position-
ing error using the testing data from both the u-blox GNSS receiver and the smartphone.
Tables 2 and 3 summarise these error statistics. The scaling factors values used in Equation
(20) to determine the covariance of the shadow matching position solution are S0x = 2·3,
S0y = 2·3 for the u-blox receiver and S0x = 2·2, S0y = 2·6 for the smartphone.
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Figure 7. The 3D model of City of London used in the experiments.
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Figure 8. Normalised SNR distribution of LOS and NLOS signals across all sites (Left) and probability of
LOS (Right) from the u-blox data.
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Figure 9. Normalised SNR distribution of LOS and NLOS signals across all sites (Left) and probability of
LOS (Right) from the smartphone.
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Table 1. Coefficients of LOS probability model.

Parameter u-blox receiver Smartphone

po−min 0·26 0·17
po−max 0·9 0·93
smin 22 dB-Hz 19 dB-Hz
smax 32 dB-Hz 37 dB-Hz
a0 −2·252 −0·6153
a1 0·1492 (dB-Hz)−1 0·04032 (dB-Hz)−1

a2 −0·001588 (dB-Hz)−2 0·00004 (dB-Hz)−2
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Figure 10. u-blox receiver and Smartphone along-street, across-street and overall horizontal RMS positioning
error using individual and integrated approaches.

Table 2. Summary of positioning results using u-blox EVK M8T receiver.

Along-street RMS Across-street RMS Horizontal RMS
Algorithm position error position error position error

Conventional GNSS 10·9 m 23·5 m 25·9 m
3D-mapping-aided GNSS ranging 4·1 m 7·9 m 8·9 m
Shadow matching 8·8 m 3·7 m 9·6 m
Integrated with covariance-based weighting 4·4 m 4·3 m 6·1 m
Integrated with deterministic weighting 5·4 m 5 m 7·4 m
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Table 3. Summary of positioning results using Sony Xperia smartphone.

Along-street RMS Across-street RMS Horizontal RMS
Algorithm position error position error position error

Conventional GNSS 15·5 m 29·8 m 33·7 m
Shadow matching 18·7 m 4·2 m 19·2 m
Integrated with covariance-based weighting 16·0 m 5·5 m 16·9 m
Integrated with deterministic weighting 16·6 m 6·6 m 17·8 m

Comparing the 3DMA integrated GNSS solution with the conventional GNSS solution,
it can be seen that a substantial improvement in both along-street and across-street accu-
racy is achieved with the u-blox receiver. The smartphone GNSS receiver chip does not
output pseudo-range measurements to the Application Programming Interface (API), so
the 3DMA GNSS ranging algorithms cannot be implemented. Instead, shadow matching
was integrated with the smartphone’s conventional GNSS solution. As a result, the inte-
grated solution is only better than the conventional solution in the across-street direction,
not the along-street direction. Comparing the smartphone and u-blox results shows that a
new smartphone GNSS interface that provides pseudo-ranges would enable a substantial
improvement in position accuracy in dense urban areas.

5. CONCLUSIONS. Both 3D-mapping-aided GNSS ranging and shadow matching
were integrated to realise an intelligent urban positioning system, whereby the across-street
position is determined mainly by shadow matching and the along-street position mainly by
ranging-based GNSS positioning. To ensure that shadow matching information is weighted
correctly in the integrated position solution, a method to determine the covariance of the
shadow matching solution was developed. The covariance of the 3DMA GNSS ranging
solution was similarly determined. An alternative deterministic weighting algorithm, based
on street azimuth derived from the 3D city model, was also developed.

The first performance assessment of shadow matching integrated with GNSS ranging
has been conducted. GPS and GLONASS data were recorded at multiple locations within
central London using a u-blox EVK-M8T GNSS receiver and a Sony Xperia smartphone.
The results show that the Intelligent Urban Positioning integrated approach outperforms
both GNSS ranging-based positioning and shadow matching, with the covariance-based
weighting performing slightly better than the deterministic weighting. Using covariance-
based weighting, the overall RMS horizontal accuracy obtained using the u-blox receiver
was 6·1 m, compared to 25·9 m using conventional GNSS positioning, a factor of four
improvement.

For the smartphone, it was only possible to integrate shadow matching with con-
ventional GNSS positioning as pseudo-ranges were not output by this device so 3DMA
GNSS ranging algorithms could not be implemented. The RMS horizontal accuracy was
16·9 m using the integrated approach, compared with 33·7 m using conventional GNSS
positioning. The new smartphone GNSS receiver interface under development by Google
will enable 3DMA GNSS ranging to be implemented with a consequent improvement in
performance.

6. FUTURE WORK. The next stage of the current project is the development of a
new 3DMA GNSS ranging algorithm that scores an array of candidate position solu-
tions using separate LOS/NLOS predictions from the 3D city model at each individual
point. Thus, the position error distribution is no longer approximated to a multivariate
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Gaussian distribution. The scores from the new 3DMA GNSS ranging algorithm can then
be combined with the shadow matching scores for the same candidate positions and a joint
position solution derived from the ensuing distribution. This hypothesis-domain integration
approach does not need to make assumptions about the underlying position error distribu-
tions. Preliminary results were presented in Adjrad and Groves (2016) while this paper was
under review.

Other challenges to address include (Groves et al., 2015):

• Extension from single-epoch to multi-epoch positioning, including determination of
the optimum filtering strategy, e.g. a grid filter, a particle filter or a multi-hypothesis
Kalman filter;

• Determination of the effects on performance of out-of-date mapping, such as miss-
ing buildings, and unpredictable features, such as large passing vehicles, and
development of outlier detection techniques to mitigate them;

• Assessment of the impact on performance of 3D mapping quality, including different
roof representations and levels of detail;

• A full assessment of the error characteristics of shadow matching and 3DMA rang-
ing and appropriate adaptation of the candidate position scoring schemes and search
area determination.

In the long term, advanced GNSS should be integrated with other navigation and posi-
tioning technologies for maximum reliability across a range of different challenging
environments. This needs to be part of a paradigm shift. Instead of designing a single-
technology navigation or positioning system, the philosophy should be to use as much
information as can be cost-effectively obtained from many different sources to determine
a navigation solution that is as accurate and reliable as possible. This requires many
challenges to be addressed, including how to integrate many different navigation and posi-
tioning technologies when the necessary expertise is spread across multiple organisations
(Groves, 2014), and how to adapt a multi-sensor navigation system in real time to changes
in the environmental and behavioural context (Groves et al., 2013).
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