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REARRANGEMENT INEQUALITIES
PETER W. DAY

1. Introduction. In recent years a number of inequalities have appeared
which involve rearrangements of vectors in R” and of measurable functions
on a finite measure space. These inequalities are not only interesting in them-
selves, but also are important in investigations involving rearrangement
invariant Banach function spaces and interpolation theorems for these
spaces [2; 8; 9].

The most famous inequality of this type for vectors is due to Hardy-
Littlewood and Polya [4, Theorem 368]:

(1.1) darh £ D abi £ Y, aXbF

i=1 i=1 =1
with equality on the left (right) if and only if a = (a4,...,a,) and
b = (by,...,b,) are oppositely (similarly) ordered. Here the a*(¢/) are

the numbers «; in decreasing (increasing) order.

An example involving more than two vectors is the following one of
H. D. Ruderman [12]:

(1.2) 4]1__7_1 Zn: Ay,

k=1 J

1\
s

n
Z a,
k=1

where a;,; > 0 for all %, j, and for each %k the a; ;* are the numbers
A1y - - - 5 Q. 10 decreasing order. A condition for equality was not given.

Other inequalities of these types are possible, and general theorems have
been given by G. G. Lorentz [7] and D. London [6].

Workers with inequalities generally recognize that many inequalities which
are proved f{or real numbers by real variable methods also hold in more general
systems. In Section 3 we let ¢ : 7'y X 1's — G where T, T’y are ordered sets,
and G is a partially ordered abelian group, and we give a necessary and suffi-
cient condition on ¢ so that

Il
-

jZl e(a* b)) = 21 e(a; b)) £ 2 ela* b*)
— j=

Jj=1

for all chainsa € 7'/*, b € T,". Also we give a necessary and sufficient condi-
tion on ¢ so that equality holds on the right (left) if and only if a and b are
similarly (oppositely) ordered. We give a sufficient condition so that
e(@*, b)) € ¢(a,b) € ¢(@a* b*), where € denotes a preorder relation of
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Hardy, Littlewood, and Polya. Similar results to these are given when ¢ is a
{unction ot # variables.

W. A. J. Luxemburg [9] has proved analogs of discrete rearrangement
inequalities for measurable functions on a finite measure space. In Section 5,
all our discrete results are generalized for real valued essentially bounded
measurable functions on a finite measure space. For specific choices of ¢ the
inequalities are shown to hold {or even larger classes of functions. The concept
of “‘similarly ordered” is generalized for measurable functions to give a neces-
sary and sufficient condition for equality.

Finally in Sections 4 and 6 we give numerous examples to show how to
obtain many known rearrangement inequalities. Our analysis gives conditions
for equality, in many cases for the first time.

2. Definitions and notation. Let T be a partially ordered set. If a =
(@1, ...,an) € T™, then a will be called a chain if {ai,...,a,} is linearly
ordered. If a is a chain, then a* = (a/*, ...,a,*)@ = (a/,...,a,))
denotes the vector obtained by rearranging the components of a in decreasing
(increasing) order. If a and b are chains in a partially ordered abelian group G
(written additively), thenb < a means >%5;0* < Y% ja* foralll £ &k £ m;
and b < a means b €a and Y.7b;* = > tiae.*. It will be notationally
simpler and should cause no confusion to denote every partial order under
consideration by =. A partial order is understood to be anti-symmetric, and
x < yisused to mean x < y and x # y.

Let 77 and T be partially ordered sets. Chains @ € 77y™ and b € T;™ are
said to be similarly (oppositely) ordered if {or every 1 =4, < m,a; < a;
implies b, < b; (b; = b,).

Let Ty, ..., T, be partially ordered sets, and let
ay = (@1, ..., 0m) € (T)™
It is sometimes necessary to substitute values for some of the variables x; in
(%1, ...,%,) and then consider the result as a function of the remaining x;.
Let I, J, and K be disjoint subsets of N = {1,...,n}. To denote the result
of substituting a@;,; for x; when ¢ € I, a; 4 for x; when ¢ € J, and «a;,, for x,
when 7 € K, we use the notation (a; ;, @sx, @x,1). In addition, (as, ..., a,)
denotes the sequence of vectors given by j+— (¢4, - .., @.;), and similarly
for (a;* a,’) when {I,J} is a partition of {1, ..., n}.
Leto: 71 X ... X T,— G.When [ and J are partitionsof N = {1, ..., n},

we define conditions (4) and (4*) on ¢ as follows.
4) [(A4%)] Hxy v, € Ty withx, < v, and & # 4,

then ¢(y,) — ¢(x;) is [strictly] increasing in #; when & and 7 are in the same
set I or J, and [strictly] decreasing in u; when k and 7 are in different sets I and
J,foralll £ 4,k = n.
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I G = R,if T}, = [ry, s] with 7, < sy, if the first partials of ¢ are separately
continuous on 77 X ... X 7,, and if the second partials of ¢ exist on
T = Jry, s1[X ... X]ra, sal, then [1, Theorems 5-7 and 5-10] implies that
condition (4) is equivalent to:

(4) 0%p/0u;0u; = 0, when 7 and j are in the same set I or J
= 0, when 7 and j are in different sets I and J

on T foralll =7 #j = n.
A sufficient differentiability condition for (4*) is (4%*)’:

¢ satisfies (4)" and in addition, {u; € Jry, s : 9%¢/0u;0u; = 0} contains no
open interval for all 7y, < u; < sp,and 1 =k # ¢ = n.

Let (X, A, n) be a finite measure space with a = u(X) < o0, and let
M = M (X, u) denote the set of all extended real valued measurable functions
on X. If f € M, then the decreasing rearrangement &, of f is defined by

6,(¢) =inf{s € R:u({x:f(x) >s}) =t} for0 £ ¢ = a.

Also ;(t) = 6;((a — t)—) denotes the wncreasing rearrangement of f, 1z
denotes the characteristic function of E € A; f |E denotes the restriction of f
to E; and we let I, = [ess. inf f, ess. sup f ].

If f,g € M then f~ g means §; = §,. This is equivalent to having
v f>8)=nun{g>1t)forall t € R. Let (b1, ..., ) > (u1,...,u, mean
t; > uy 1 =1 = n. For measurable f, g : X — R" we define f ~ g to mean
p({f >t}) = u({g > t}) forallt € R~

We will say that f, g € M are similarly ordered if ess.sup f |4 < ess.inf f |B
implies ess.sup g|4 < ess.inf g|B whenever 4, B € A are disjoint and each
has positive measure. Analogously, f, g € M are called oppositely ordered if
f and —g are similarly ordered.

3. The discrete case. This section is devoted to the proof of the following

theorem.

(8.1) THEOREM. Let ¢ : 17 X ... X 1T, > G, where each T (k = 1,...,n)
is linearly ordered, and G is a partially ordered abelian group. Let {I, J} be a
partition of N = {1,...,n}.

(i) ¢ satisfies condition (A) if and only if

m

(1) Z (@i4y e v oy Cnyj)

m
Z 99(&1,]-*, as,q)
j=1 j=1

forall ay = (ag1y .- axm) € (L) k=1,...,n.
(ii) ¢ satisfies condition (A*) if and only if the following are equivalent for all
a, € (Ty)™k=1,...,n.
(@) Equality occurs in (1).
(b) a, and a, are similarly ordered whenever p and q are in the same set

IIA
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I or J, and oppositely ordered when p and q are in different sets
Iand J, forall 1 < p,q < n.
(€) e(@y,...,a,) ~e(asa)).
(1) Suppose the range of ¢ 15 linearly ordered. If ¢ satisfies condition (A)
and 1is increasing (respectively decreasing) in uy for k € I and decreasing
(respectively increasing) in uy for k € J, then

2) e@y,...,a,) <e@rs*a;)
for all chains a, € T, (R =1,...,n).

Proof. To prove necessity of (4) for (1), let 1 < k4 < n, let x;,y, € T
with x; < v, let a; = (x4 ¥4 - .., ¥4), let uy, v, € T with u, < v, and for
j#E i, kletu; € T'yand a; = (uy,...,u;). Case 1: &, ¢ are in the same set
I or J. Let a; = (v, 4y, - .., uz). After cancelling terms in (1) we obtain

0@y, v) + o ) £ 0, ) + o (x4, uz),
SO

o, ux) — o4, up) = «:(yi, U) — (%, Ux),

and hence (4) is true in this case. Case 2: k, 7 are in different sets I and J.
Let a; = (ug, V%, - . ., 9;). The proof is similar to Case 1. This completes the
proof of necessity.

Before continuing we introduce some notation. For a; € T,™ write
by = S;ay if 1 £4<j =m are such that for P = {k € I: a;,; < ayj},
and Q = {k € J:ay,;> ay;} we have: b, for £ € P\U Q is the sequence
obtained from a; by interchanging a; ; and a4 ; while b, = a; for other k.

Assume by = S, ;ay with P and Q as above, and let ¢ = ¢(ap 4, aq,:) —
o(ap j,aq,;). Also, for 0 = & < n let

P,=PN{0,...,k} and Q. =QMN{0,...,k}.
Then
n—1

v = ZO le(ap, i @i, @gri) — <P(ap.i,aQ—Qk+1,z‘yan+1,f)]
k=

n—1
+ Z le(ap—rr.i, @pr.j» @g,5) — (AP—Pri1,1) CpPr1,ir @, 5)]
k=0

is a sum of differences like that in (4), so

(3) ‘/’(aI—P,iy GJ—Q,i) = ¢(aI—P,jy aJ—Q,J’)~
On writing it out, this is the same as

4) elay,:) + olan,;) = ¢n,) + 00,1,
SO

(5) Z_:l GO(GN.r) = Z‘i §0(bN.r)-
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If (4%*) holds, inequality (3) and hence (5) will be strict unless P \U Q # @ or
ag: = ag forallk € (I — P)\U (J — Q).

There are b(1),...,b(q) such that b(1) = ay,b(¢q) = (a;* a,’) and for
each 1 <k < n — 1 there are 7 and j such that b(® + 1) = S, ;b(%). Hence
Timae((1);) = ... = Xiae(d(g);), which proves (1).

In (ii) it is clear that (b) = (c) = (a) always. We begin by assuming (4%*)
holds and show that (a) = (b). Suppose (b) does not hold. Then an examina-
tion of cases shows there are 1 < ¢ < j < m such that for P and Q as above
we have P\UQ % @, and there is a k€ (I — P)\U (J — Q) such that
ag.; # ar ;. Hence letting by = S, ;ay we have > Tme(ay.,) < Dielby.,) =
STelbr* bs)) = TTelar*, as,), since b* = a* k=1,...,n Con-
versely if (a) = (b), then the arguments used in proving necessity of (4) for
(1) show that (4*) holds.

We turn now to the proof of (iii). Since ¢(a;* a, ) ~e¢(a/, as*), it
suffices to prove (2) assuming ¢ is increasing in the /-variables and decreasing
in the J-variables. In this case let by = S, ;ay. Then

(6) ¢(bn,;) = ‘P(aN,i)y eay,;) = o(w,1).

We call ¢(ay,;) and ¢(ay,;) the “old terms”, and ¢(by,;) and ¢(by,;) the
“new terms’’. These are the only terms where ¢(ay) and ¢(by) differ.
Let 1 = & = m, define sequences

o= (play)*: 1 =7 2k), B=(ebn)*:1 =7 = k),

let ¥ a@ = Yh¢(ay),* and define Y 8 similarly. We show that 3" « < 3 6.

If exactly one of the old terms occurs in «, then (6) implies that the only
new term in B is ¢(by ;). For if ¢(by ;) isin B, then (6) implies that 3 contains
both new terms, so there are m — k terms of ¢(ay) which are <¢(by, ;), in
which case (6) implies that both old terms occur in «. Hence B is obtained
{from « by replacing an old term by the larger term ¢ (by,;). Thus > « < 3 8.

If both old terms occur in e, then (4) implies their sum is < the sum of the
new terms, which is < the sum of ¢(by,;) and any term =¢(by ;), in case
¢(by,;) is not in 8. Hence X~ « = 3 8.

If none of the old terms occur in e, then either « = (3, or 3 is obtained {from «
by replacing one term of e« by the larger term ¢(by ;). Thus - @« < > 8. The
proof of (iii) is finished as in (i). This completes the proof of the theorem.

When ¢ is a function of two variables, conditions (4) and (4%*) simplify,
and the arguments proving (3.1) have a symmetry which shows how small
the sums can get.

(3.2) COROLLARY. Let ¢ : T1 X T2 — G.
(i) The inequality

(1) Z ﬂp(aj*rbjl) = ; So(a.’hbj) = El ‘P(aj*1b7'*)

j=1 j=1 Jj=
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holds for alla € (T1)™andb € (T5)™if and only if A, a0 (y) = ¢(d,y) — o(c, ¥)
1s increasing iy € Ty whenever d > ¢, d, ¢ € T.

(i1) A, qp is stricily increasing whenever d > c if and only if the following are
equivalent: (a) Equality occurs in (1) on the left (right); (b) a and b are oppositely
(stmilarly) ordered; (c) ¢(a*, b’) ~ o(a,b) (e(a* b*) ~ o(a, b)).

(iil) If the range of ¢ is totally ordered, and in addition to (i), ¢ is increasing
(or decreasing) in both variables, then ¢(a*,b’) € ¢(a, b) € p(a*, b*).

(8.3) Remarks. (i) In (3.2.1) above, replacing ¢ by — ¢ gives the condition
when the inequalities (1) reverse. The corresponding condition in (iii) is that
¢ be increasing in one variable and decreasing in the other, in which case,
p(a*,b*) K ¢(a,b) K ¢(a*,b’).

(ii) The inequalities in (3.1), (3.2) and (3.3.i) may be written equivalently
by interchanging primes and asterisks, since, for example, ¢ (a*,b’) ~ ¢(a’, b*).

4. Examples for the discrete case. In this section we illustrate the previous
theorems for particular choices of ¢. In all cases, G = R.

(41) T1=Ts=Rand o(x,y) =x+y:a*+ b <a+b <a*+b*

42) T.=Ty=Rande(x,y) =x—y:a*—b*<a—b<a*—->".

(4.3) o(x,y) =xy:For Ty =T,=R

we obtain (1.1) with the indicated condition for equality.
ForT, =T, = [0,0[or Ty = Ty =] —o0, 0] we obtain a*b’ € ab « a*b*

whenever

a,bc[0,0[™ or a,b¢c]—o,0]™
When TI,=[0,0[(k=1,...,n), I={1,...,n} and J =@ then
o(uy, ..., u,) = uy...u, satisfies (4) and we obtain a companion to (1.4),

also proved by Ruderman:

m n m n
> Ilaw= 2 [lau*

=1 i=1 =1 =1

-

If all a;; > 0, then the inequality is strict unless all of the sequences

a; = (ag.1, ..., arn) are similarly ordered.
(4.4) o(x,y) = log(1 + xy)
with Ty X Te C {(x,y) : xy > —1} gives:
[Ta+ae) ] +ad) ST] A+ aio#)
i=1 i=1 i=1

whenever a;*b;/ > —1 for ¢ = 1 and 7 = m. The inequality is strict except
as indicated in (3.2.ii). The choice Ty = T2 = [0, ©0[ or ] —o0, 0] gives:

log(1 + a*b’) K log(1 + ab) < log(1 4+ a*b*)
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whenever a,b € [0, 00 [" or ] —0, 0]™.

—log(@a* +b’) € —log(a + b) € —log(a* 4+ b*)

whenever ¢,* 4+ b,* > 0, and in particular we get an inequality of Minc [10]:

1:11 (a* +b*) éI:Il (a; +0b) = 1:11 (@a* +0b/).

The inequality is strict except as indicated by (3.2.i)). The example
a=(6,521)b= (-3, —4, —2,1) shows this inequality may fail under
the condition a; + b, = 0 for all < (but it will hold for vectors of length <3).
This inequality is also easily seen to hold for all a;, b; = 0.

Analogously, ¢ (41, ..., u,) = —log(u: + ...+ u,) with

T X ... XT,Clry oo tty) s+ ...+ u, > 0}

gives Ruderman’s Inequality (1.2) whenever Y ;_ia4,,* > 0. The inequality is
strict unless all the a; are similarly ordered.

(4.6) Suppose ¢ satisfies the hypotheses of (3.1.iii) and H is increasing and
convex on an interval containing the range of ¢. Then ¢; = H o ¢ satisfies
condition (4). In this way [11, p. 165, Theorem 2] and (3.1.i) may be used to
prove (3.L.ii). If in addition, ¢ satisfies (4*) and H is strictly convex, then
¢1 satisfies (4%*). The proof follows easily from [11, p. 164, the third inequality
from the bottom].

(4.7) Two theorems of D. London [6] may be obtained using (3.2) and (4.6).
Replace a; by 1/a;, so that his results are stated without quotients. His
conditions on F in both theorems are the same as saying that F is convex and
increasing on [0,00 [. Hence let H = F, let ¢(x,y) = log(1 + xy) for
Theorem 1, and let ¢(x, y) = xy for Theorem 2. If F is strictly convex, we
obtain his conditions for equality.

(4.8) Ruderman [12] has observed that (1.2) generalizes the inequality
between the arithmetic and geometric means. Using (3.1) we may obtein the
following inequality for certain quasi-arithmetic symmetric means. Let U be
an open interval of R, let f, g: U— R be strictly monotone and let f o g~!
be convex on g[U]. If f is increasing then

gilglr) + ...+ g)l/n) = fHf() + ... + f(r)]/n)
for all »4,...,7, € U, while it f is decreasing, the inequality reverses. If
fogtis strictly convex, the inequality is strict unless 1 = ... = r,. To
prove this, in (3.1.i.1) let
a; = (rly Y2y o« ooy Tp—1, rn)y

Ay = (Poy T3y e e ey Puy 71)y e v oy By = Ty 71y« « o, Fu—s, Fue1)
and note that

Qo(ul’ oy Un) = fog—l({g(ul) + “ e + g(’btn)]/ﬂ)
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satisfies (4) with I = {1,...,n}. If f o g7!is strictly convex, then ¢ satisfies
(4*), and the inequality is strict unless all the a, are similarly ordered, in
which case r; = ... = 7,.

(4.9) For ¢(x,v) = (x + »)? with real p > 0 we have:
(i) @4+b)Y<@+b’<K@+b*ifp>1,

m

@by S X @0 YiEp <1,
2 2

m

(ii) ; (a* + 0" =

whenever a,,* + b,* = 0. The inequalities are strict except as indicated in
(38.2) and (3.3). If p is an integer, then (i) holds for alla, b € R™. The example
a=(1,23),b = (3,1, 2) shows that relation « cannot be used in (ii).

7

5. The continuous case. In this section we show how to generalize Theorems
(8.1) and (3.2) for L* functions on a finite measure space (X, A, x) when ¢

is jointly continuous. If fi,...,f, € L and ¢:I, X ... X I, =R is
bounded, then the function ¢(fy, . . ., f,) defined by x +— o (f1(x), ..., fo(x))
isin L=, If {I, J} is a partition ot {1, ..., n} then (5, «,) denotes (g1, ..., g,)
where g; = 6y, for 2 € I and g; = s, for ¢ € J.

(5.1) THEOREM. Let ¢ : T1 X ... X T, — R be continuous, where Ty, . .., T,
are intervals of R, and let {I, J} be a partition of {1, ..., n}.

(i) If ¢ satisfies condition (A) then

M Jeth - mins [ o)
for all f; € L such that I;; C T, i =1,...,n If (X, A, p) is non-atomic,

then (A) is necessary for (1).
(ii) If ¢ satisfies (A*) then the following are equivalent:
(@) Equality holds in (1).
(b) fiand f; are similarly ordered whenever © and j are in the same set I or
J, and oppositely ordered whenever © and j are in different sets I and J
foralll £1,7 = n.
) e(fi, - fa) ~ (B uy)-
(iii) If ¢ satisfies (A) and is increasing (respectively decreasing) in u, for
1 € I and decreasing (respectively increasing) for © € J, then for all f; as in (i)
we have

e(fry ooy fu) K 08 1)

(5.2) CoROLLARY. Let ¢ : T1 X Ty — R be continuous, where T1 and Ty are
intervals of R, and let f, g € L* with I, C Ty and I, C Ts.
1) If A, ap(y) is increasing in y € Ty whenever d > ¢ and d, ¢ € T, then

M I R O

0
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(i) If A,ap is strictly increasing, then the following are equivalent: (a)
Equality occurs in (1) on the left (right); (b) f and g are oppositely (similarly)
ordered; () ¢(5s, 1) ~ ¢(f, 8) (0@, 8,) ~ &(f, g)).

(i) If in addition to (i) ¢ is increasing tn both variables or decreasing in both
variables, then

(2) 0 ) L e(f, 2) K8y 8,)-

(5.3) Remark. The conditions that the inequalities in (5.2) reverse are the
same as in (3.3). If ¢ satisfies these conditions, then (5.2) may be applied to
o1(x,y) = o, 7+ s —y),f,and g1 = r + s — g, where I, = [r, s].

We begin by showing that it suffices to prove (5.1) and (5.2) tor non-
atomic measure spaces by embedding (X, A, u) in a non-atomic m.s.
(X*, A*, ut). (See [9] or [2] for details of this method.) If f € M (X, p), then
the corresponding member of M (X*, uf) is denoted by f #. Then o ( f+f, . . ., fut)
= o(f1, ..., )t ~e(fi,...,fn). In addition it is not hard to see that
f and g are similarly (oppositely) ordered if and only if f # and gt are similarly
(oppositely) ordered. Thus if (5.1) and (5.2) are true when (X, A, u) is non-
atomic, then they are true for any finite m.s.

Before proceeding with the proof when (X, A, u) is non-atomic, we require
some lemmas. The first two are needed when the measure space is not separable,
for otherwise it is measure theoretically [0, o].

(5.4) LEMMA. Let (X, A, p) be non-atomic. Suppose {Dy}ru is a partition of
X bymeasurable sets. If € > 0, then there is a partition { E ;)11 of X by measurable
sets such that w(E;) = p(X)/m @G =1,...,n) and u(J{E,: E, intersects
more than one Di}) < e.

Proof. Let @ = p(X). If @ =0, the lemma is trivially true. Otherwise,
rename the sets Dy so that u(D;) =0 for 1 <k < p and u(D;) > 0 for
p =k = N. There is a ¢:[0,a] = A such that u(¢(t)) = ¢, ¢ < u implies
o(t) Co(u), ¢0) = UisicpDr, and ¢ (Xizkzn(Dr)) = Uiz Dy for
g=2p,...,N (use [2, (5.6)]). For any # such that a/z < min{u(D;) :
p =k =N} and for E; = ¢(@i/n) — ¢t —1)/n) (=1,...,n) we
have that each E, intersects at most two sets D; of positive measure, and at
most N — 1 of these E; intersect more than one D;. To finish the proof, choose
n so that also (N — 1) /7 < e

(5.5) LEMMA. Suppose (X, A, p) is non-atomic. Let {s(k);}5m (B = 1,...,n)
be n sequences of simple functions. Then there are n sequences {t(k),;}%,
(B =1,...,n)of simple functions such that

(i) For each i, t(1),, ..., t(n); have the same sets of comstancy, and these
sets have equal measure;

(i) For each k=1,...,n, sk);— t(k);— 0 p-almost everywhere as
17— 00,

(iii) Foreachk =1,...,nand v = 1, |t(k),| = [s(k).
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Proof. For clarity of exposition, we prove the lemma in the case n = 2.
The proot for larger # will be readily apparent. Before considering sequences,
lets(1) = X %taaida, and s(2) = 2-5.1b,15; where {4} and {B,} partition X,
and let {Dy}ia = {A;NB;: 1 <i=<mn1=j=p}.Let e > 0. Then there
is a measurable partition {E,} ;-1 as in Lemma (5.4). For each ¢ = 1,...,7,
if E, intersects only 4, M B, then E, C A, M By, and for k = 1, 2 we define
1(R)|E, = s(k)|(4: M B;); we define t(k) = 0 elsewhere. Then |¢(k)| < |s (k)|
and pu({s(k) # t(k)}) < e. Hence given {s(k),}51 there are sequences
{t(k)} 5 satisfying (i) and (iii) such that u({s(k); 5 {(k),}) < 2=% Then

u({s(k); — t(k),» 0}) =
u ( U NF;\I igN{]s(kﬁ — (k)] > l/g}) < lim lim 3> 27% =0,

¢=1 ¢>0 N-owo =N
and the proof is finished.

(5.6) ProposITION. Suppose (X, A, p) is non-atomic, let fy, . .., f, € M(X, u),
let {1,J} be a partition of {1,...,n}, and let Fy, ..., F, € [0, o] with F,; right
continuous and decreasing (increasing) when 1 € I (¢ € J). Then the following
three conditions are equivalent.

@) (f1y .. sfu) ~(Fr, ..., F).

(ii) There is a measure preserving map o : X — [0, a] such that F; 00 = f;
u-almost everywhere, 1 < 1 < n.

(iii) f; and f; are similarly ordered when 1 and j are in the same set I or J,
oppositely ordered when © and j are in different sets I and J, and F; = &y, for
1 €1, F; =, forj€J.

Proof. Let A C B[u] mean u(A\B) = 0, i.e., 14 < 1 u-almost everywhere.

Writing £ = (fy, ..., fu), F = (Fr,..., F),and t = (&4, ...,1,), the proof
given in [2, Theorem (6.2)] shows (i) = (ii). Also, (ii) = (iii) is straight-
forward.

We prove (iii) = (i) first in the case J = @.

I. If f and g are similarly ordered, then for all ¢ € R, ess.supg|{ f <t} <
ess.inf g|{ f > ¢}. This follows from ess.sup g|{ f > ¢ + 1/n} — ess.sup g|{ f > #}
as n — 0.

II. If f and g are similarly ordered, and ¢, # € R, then { f > ¢} N\ {g > u} =
{f >t} or {g > u} [u]. Indeed, let

A={f=tN{g>u}, B={f>4N{g=ul

and suppose both u(4), u(B) > 0. Then ess.infg|B = u < ess.sup gl4,
while (I) implies ess.sup g|4 = ess.inf g|B, a contradiction. Hence u(4) = 0
or u(B) = 0.

I If { f > ¢} C{g > u} [p] then {8, > ¢} C {8, > u}. Indeed, {6, > ¢} =
[0, w{ f> ][ C [0, uig > u}[ = {8, > u}.

IV. It follows from (II) and (III) that for all t € R* u{f > t} =
p(N{fi>t)) =m(N {8y > t}) = m{F > t},sof ~F.
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To deduce the general case from this one, let ¢(t1, . . ., &) = (U1, ..., %),
where u; = t;if1 € I, = —t;if ¢ € T, let (fi/,...,f.") = o(f1,...,fn), and
let F,! = 6. By the J = @case, ' ~f',s0 F = o(F') ~ o(f') = f (because
5_f = —Lf).

We can now prove (5.1) and (5.2). For clarity of exposition we will only
present a proof of (5.2). The proof of (5.1) will then be clear. With regard to
(5.1.ii) we remark that (5.6) shows that (b) = (c) = (a) always. The proof
of (5.2) will illustrate the proof of (a) = (b) when n = 2.

Proof of (5.2). Let v = Y 7qa;ly;, and w = 2 70,15, where a; € T,
b; € Te (1 £j £ m)and p(E;) = a/m. In case (i), (3.2.i) gives

[

9 [ o0 = [otwin s [ o600

0

while in case (ii), (3.2.iii) gives for ¢t = ka/p (1 £ k < m)

t t ¢
(**) J:’ 6¢(5v,tw) = J:) 6<p(v,w) = L 6<p(5,,,8w)-

Now in (**) each of the integrands is constant on each of the intervals
[G — Da/n, ja/n[, so the integrals are linear functions of ¢ on these intervals,
and hence (**) holds for all 0 = ¢ < «. Using now (5.5) there are sequences v;
and w; of simple functions like v and w above such that v, —f, w; —g,
lvi] = |f]and |w,| = |g|, so 8,; — &, and 6,; — &, almost everywhere. Since ¢
is bounded on I, X I,, each integrand in (*) or (**) is bounded by a constant
depending only on f and g. Taking limits and using the dominated convergence
theorem, we have that (*) or (**) holds with » and w replaced by f and g
respectively.

We now show the condition for equality on the right in (3.2.i.1). Assume ¢
satisfies (4*), suppose f and g are not similarly ordered, and we will show that
the inequality on the right is strict. There are disjoint sets 4 and B of positive
measure such that

ess.sup f |4 < ess.inf f |B and t = ess.sup g|4 > ess.inf g|B = r.

Let7 < 51 < s2 < tand let
DCf{xed:gkx)=ss and EC{x € B:g) = s1}

with 0 < u(D) = p(E) = B. Then let 6p: D — [0, 8] and o5 : E — [0, 8] be
measure preserving and define

f'  =époagpon D, =0;z00z0n E, and = f elsewhere;

g =éggooponD, =4, p00go0n E, and = g elsewhere.
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Then f' ~f, g ~ g, 6,p < 645, and 8,z < 8, p. Hence
]
L o(f, g)du + fE e(frg)du = j; o1y 8510) + @ (8718 8512)]
8
< .f; le @iy 8412) + © (8712 8g1p)]

= et i+ [ o7 g2an

D

Adding

J o etoan= (s g
X—-(DUE) X—-(DUE)

we obtain

Jetroin < fets' 02 s [ o650 = [ 06,80,

0

and the proof is finished.

(5.7) Remark. Depending on the choice of ¢ and the intervals T;, Theorems
(5.1) and (5.2) may hold for a larger set of functions than L%. Indeed, the
proof shows that in (5.2) inequalities (1) or (2) will hold whenever limit and
integral can be interchanged in (*) or (**). The condition for equality holds
if (5.2.1) holds for f |4 and g|4 for all A € A whenever it holds for f and g.

For example, suppose f1, ..., fn € L? implies ¢(f1,...,fn) € L. Now it
follows from [9, p. 93] that [v| < | f| implies |8, = |6,] and |¢,| = |, so we
may use [3] and the dominated convergence theorem to conclude that (5.1.1)
and (5.2.1) hold for all L? tunctions. Finally, since fi, ..., f, € L? implies
fil4, ..., fu|4 € L7, the condition for equality also holds for all L? functions.
Other illustrations appear in the following examples.

6. Examples for the continuous case.

6.1) @) oy + ¢ <f4+g<d,+ 6, forallf,g € L.
(i1) 6y — 8, <f—g<d;— forallf,g e LL
The (i) and (ii) are easily seen to be equivalent using [9, p. 93]. While
849 < 87+ 8, is well-known (see [9, p. 108]), the fact thaté, — 4§, < f — ¢
is new. Then a theorem of Luxemburg |9, p. 107] implies [6; — &,/ < |f — gl,
generalizing [8, Proposition 1, p. 34]. It then tollows that ||fs — f|[i— 0

implies ||87, — &,/[1 — 0, where { fs} is a net. Using [9, (9.1)], the inequality
8, — 8, < f — g can be written equivalently:

m(E)
Jort [aa—vas [ b
E E 0
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for all Lebesgue measurable E C [0, ], where m denotes Lebesgue measure.
This is an interesting generalization of [9, (10.1)].
(6.2) An inequality of Hardy-Littlewood-Polya-Luxemburg:

[ one = fredn< [ o0,
0 0

holds for all f, g € L”, and, using monotone convergence, it is easily seen to
hold for all 0 = f, g € M. Then as in [9, p. 102], it may be shown to hold
whenever 8,81, € L0, @]. The inequalities are strict except as indicated in
(5.2). Similarly, 6,1, < fg < 8,0, for all 0 = f, g € M such that 6,6, € L'[0, «].

©3) () [ tog(1 +30) = [log(1 + foyiu = [ o1 +5,)

holds for all f, g € L” satisfying both
(11) 5]'(0)(,”(0) > _1 and Bf(a_)l,g(a_) > '_].,

because (i) is equivalent to: I, X I, C {(x,y):xy > —1}. In addition,
using monotone convergence, (i) can be shown to hold if 0 < f,g € M or
0 =f,¢g € M. Then (i) can be shown to hold for all f, g € M satisfying (ii)
using the following observations. First, log(1 4 fg) = log(1 + f tgt) +
log(1 — f+g7) + log(1 — f—g*) + log(1 + f—g~). Next, when (ii) holds for
the pair f, g it also holds for each of the pairs: f+, g+; f+, —g—; —f—, gt;
—f—, —g~. Finally, when (ii) holds, then: f unbounded above implies g = 0;
f unbounded below implies g £ 0; and the same is true when f and g are inter-
changed. Clearly if f, g € M satisfy (ii) so do f|4 and g|4 for any 4 € A.
Hence the inequalities are strict as indicated in (5.2).

Similarly, log (1 + 8,¢,) K log(1 4 fg) <log(1 + 6,8,) for all 0 < f,g € M
or 0 = f, g € M such that log(1 4 6,6,) € L'[0, «].

64 @) [, 10g,+8) = flog( + gan = [ log(s,+ 1)
for all f, g € L such that
(i) @=) + dla=) > 0,

since (ii) is equivalent to I, X I, C {(x,y) : x + y > 0}. Actually, (i) holds
for all f, g € M satisfying (ii) since f and g are then bounded below, so we may
approximate them by increasing sequences of bounded functions satisfying (ii)
and use the B. Levi monotone convergence theorem [5, p. 172]. The inequalities
are strict except as indicated in (5.3). Similarly, if f, g € M satisfy (ii) and
log (3, + ) € L0, ] then —log(s, + ) K —log(f + g) K —log (s, + §,).

(6.5) We have the following continuous version of London’s Theorems.
Suppose 0 = f,g € Mor0 = f, g € M.
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(i) It H is convex, increasing and continuous on [0, oo [, then

S HG6) < [0 s [ HGw).

i1) If H(e*) is convex, increasing and continuous on [0, o[, then
g

j;aH(l + 8p10) = fH(l + fg)du = f:H(l o).

In either case, if H is strictly convex, then we have equality on the left (right)
if and only if f and g are oppositely (similarly) ordered if and only if

dpig ~ fg (8,8, ~ fg).
(6.6) For real p > 0 we have:

() @G+ )" <(f+9" <G +38,)ifp>1,

@ [ 6407 [G+erims [ 6+uwriir<t,

whenever (a) 6;(a—) + d(@—) =20 and f,g € L?; or (b) 0 < f,g € M; or
(c) p is an integer and f, g € L?. The (i) gives a lower bound to an inequality
of Chong and Rice [2, p. 88]. The inequalities are strict except as indicated
in (5.2) and (5.3).
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