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Abstract

Let X be any set and P(X) the set of all partial transformations defined on X, that is, all functionsa : A — B
where A, B are subsets of X. Then P(X) is a semigroup under composition. Let ¥ be a subset of X.
Recently, Fernandes and Sanwong defined PT (X, Y) = {@ € P(X) : Xa C Y} and defined /(X, Y) to be the
set of all injective transformations in PT(X, Y). Hence PT(X, Y) and I(X, Y) are subsemigroups of P(X).
In this paper, we study properties of the so-called natural partial order < on PT(X, Y) and I(X, Y) in terms
of domains, images and kernels, compare < with the subset order, characterise the meet and join of these
two orders, then find elements of PT(X, Y) and I(X, Y) which are compatible. Also, the minimal and
maximal elements are described.
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1. Introduction

The natural partial order on a semigroup has been developed in a number of steps. In
the terminology of Clifford and Preston [1], a band B is a semigroup in which every
element is an idempotent. On such a semigroup there is a natural (partial) order defined
by the rule

e<f ifandonlyif e=ef = fe.

If the partial order < is compatible with the multiplication in B, in the sense that e < f
implies that eg < fg and ge < gf for all g € B, we shall say that B is a naturally ordered
band. In 1966, Howie [4] described the structure of naturally ordered bands.
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[2] Semigroups of partial transformations with restricted range 101

In the year 1952, Vagner [13] defined the natural order on an inverse semigroup S
by
a<b ifandonlyif a=eb forsomeecE(S).

About thirty years later, Hartwig [3] and Nambooripad [9] independently discovered
the generalisation of the above order. They defined it on a regular semigroup S by

a<b ifandonlyif a=eb=>bf forsomee, f€E(S). (1.1)

In general < is not compatible with multiplication on S. In 1986, the natural order on a
regular semigroup was further extended to any semigroup S by Mitsch [8]. He defined

a<b ifandonlyif a=xb=by,xa=a forsomex,yeS].

The partial transformation semigroup on the set X, denoted P(X), is the set of all
functions from a subset of X into X, with the operation of composition. In addition,
the semigroups 7'(X) and /(X) are defined by

T(X) ={aeP(X):dom a=X},
I(X) = {a € P(X) : ais injective}.

These semigroups 7'(X) and /(X) are called the full transformation semigroup and the
symmetric inverse semigroup, respectively. It is well known that P(X) and T'(X) are
regular and that /(X) is an inverse semigroup.

In 1986, Kowol and Mitsch [6] studied the full transformation semigroup 7'(X) on
the set X with respect to the natural partial order which is defined by (1.1). They
characterised this order in terms of images and kernels. They also described the
maximal, minimal and covering elements. Additionally, they studied lower and upper
bounds for two transformations.

In 2003, Marques-Smith and Sullivan [7] studied the natural partial order on P(X)
and 7'(X). They also investigated the orders C, Q" and Q on P(X) which are defined as
follows.

(i) acpifandonlyif dom o Cdom S and xa = xB for all x € dom a.
(i) (a,B) €’ if and only if X C X3, dom @ C dom g and

aﬁ_l N (dom a x dom @) Caa”".

(iii) (a,B) € Qif and only if (@, 8) € " and

BB~ N (dom a x dom a)Caa'.
They proved that Q2 = C o < is a join of < and C. Moreover, they found elements of
P(X) and T'(X) which are compatible under < and C. Also, the maximal and minimal
elements were described. Recently in [11], the authors considered these orders on /(X)
and found that Q = Q' and C is always properly contained in Q for |X| > 1.
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Let Y be a nonempty subset of X. We consider a subsemigroup of 7'(X) defined by
TX,Y)={aeTX): XaCY}

where Xa denotes the range of @. In 1975, Symons [12] introduced and studied the
semigroup T(X, Y). He described all the automorphisms of 7(X, Y) and found that
the most difficult case occurs when |Y| =2. He also determined when T'(X, Y7) is
isomorphic to 7(X», ¥»). In 2008, Sanwong and Sommanee [10] obtained the largest
regular subsemigroup of 7(X, Y) and a class of its maximal inverse subsemigroups.
Further, they characterised the Green’s relations on T'(X, Y).

In [2], Fernandes and Sanwong introduced the partial transformation semigroup
with restricted range as follows.

Let Y be a subset of X. They considered the semigroup PT(X, Y) and I(X, Y) defined
by

PT(X,Y)={aeP(X): XaCY} and I(X,Y)=IX)NPT(X,Y).

Clearly, PT(X, X)=PX), T(X,X)=T(X), I(X,X)=I1(X) and PT(X,0)=1I1(X,0) =
{0}. Moreover, they proved that PF = {a € PT(X, Y) : Xa = Ya} is the largest regular
subsemigroup of PT (X, Y) and that I(Y) is the largest regular subsemigroup of /(X, Y).

In this paper, we characterise < and C on PT(X, Y) and I/(X, Y), and describe the
meet and join of < and C. Then we compare <, C with other partial orders and find
elements of PT(X,Y), I(X,Y) which are compatible with <. Also, the minimal and
maximal elements of PT (X, Y) with respect to < are obtained.

2. Preliminary notations and results

In this section, we give some notations and results which are used in this paper.
Recall that the natural partial order on any semigroup S is defined by

a<b ifandonlyif a=xb=by, xa=a forsomex,yeS',
or equivalently
a<b ifandonlyif a=wb=>bz, az=a forsome w,zeS! 2.1

In this paper, we use (2.1) to define the partial order on the semigroup S = PT(X, Y)
or I(X, Y); that is, for each a, B € S

a<pB ifandonlyif a=yB8=Bu, a=au forsomey,ueS'.

We note that if Y C X, then PT(X, Y) and I(X, Y) have no identity elements. Thus, in
this case PT(X, Y)! # PT(X,Y) and I(X, Y)! # I(X, Y).
In this paper, the kernel equivalence of @ € PT (X, Y), ker «, is defined by

(x,y)ekera ifandonlyif xa=ya.

To describe the natural partial order on PT'(X, Y) and I(X, Y), we need the following
two lemmas which first appeared in [2]. For the sake of completeness, we present the
proofs here.
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Lemma 2.1. Let a,B€ PT(X,Y). Then
doma CdompB and kerB N (domgx dom @) Cker a
if and only if a = By for some y € PT(X, Y).

Proor. If @ = By, for some y € PT(X, Y), then it is clear that dom @ € dom 3. On the
other hand, consider (a, b) € ker 8 N (dom S X dom «). Then we have af = bB. Since
b € dom a = dom By, it follows that bBy exists, whence bBy = (bB)y = (aB)y = aBy,
and so we also obtain a € dom By =doma. Moreover, aa = (aB)y = (bB)y = ba,
whence (a, b) € ker a. Thus ker 8 N (dom 8 X dom «) C ker a.

Conversely, assume that the conditions hold. Let xe(dom «a)B. Then af =
x, for some a €doma. Notice that if b edomp is also such that 8= x then
(b, a) eker SN (dom S X dom @). Hence, by the hypothesis, we have ba = aa (and,
in particular, b € dom «). Thus, we consider the transformation y € PT (X, Y) with
dom y = (dom @)B defined by, for each x € (dom «)B, xy = aa, for some a € dom «

such that a8 = x. Hence, @ = By, as required. O
Lemma 2.2. Let a,B€ I(X,Y). Then dom a € dom g if and only if o =By for some
velX,Y).

Proor. If @ =gy, for some y € I(X, Y), then clearly, dom a Cdomg. Conversely,
suppose that dom o CdomfB. Then we can write a = (Z‘) and B = (;’ zf ), where
i i Vj
{ai, bi, bj} €Y. Now define y = (Z) € I(X, Y); we have @ = By, as required. m|
We have the following simple result on P7'(X, Y) which will be used throughout the
paper.
Lemma 2.3. IfA C B, then Aa C Ba for all € PT(X, Y).

The following convenient notation will be used: given @ € PT (X, Y), we write

and take as understood that the subscript i belongs to some (unmentioned) index set /,
that the abbreviation {a;} denotes {a; : i € I}, and that X = {@;} and g, ! = X;.
3. Partial orders

If we regard a, B € PT (X, Y) as subsets of X X Y, it is easy to see that
acpf ifandonlyif domaCdompf and xa=x8 forallxedoma. (3.1)

We also have C is a partial order on PT(X, Y) and @ C a for all @ € PT(X, Y). Similarly,
for a,B€I(X,Y) we have o C 8 if and only if dom @ € dom S and xa = xf for all
x € dom a; and C is a partial order on I(X, Y) with @ C a for all @ € I(X, ¥).

To characterise the natural partial order < and the subset order € on PT(X, Y) and
1(X, Y), we begin with the following lemma.
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Lemma 3.1. Let a, € PT(X,Y). Then Xa CYB if and only if a =y for some y €
PT(X,Y).

Proor. Assume that Xa C YB. Then for each x € dom @, we have xa = yB for some
y €Y, which implies that ye ¥ N (xa)B~' #0. Choose d, €Y N (xa)B~', so d, €Y
and d,8=xa. Now, define y:doma — Y by xy=d, for all xedoma. Thus
vyePT(X,Y) and xyB = (xy)B8 =d,5 = xa for all xedoma. In addition, we obtain
dom y8 = (imy Ndom B)y~' = (im y)y~! = domy = dom a. The converse is clearly
true since Xa = XyB = (Xy)B C YB. |

In the proof of Lemma 3.1, if @, B € I(X, Y), then vy is also in I(X, Y). Hence, we
obtain the following lemma immediately.

Lemma 3.2. Suppose that a, B € (X, Y). Then Xa C YB if and only if @ = yB for some
vyellX,Y).

By Lemmas 3.1 and 2.1, we obtain the characterisation of < on PT(X, Y) as follows.

Tueorem 3.3. Let o, € PT(X,Y). Then a < if and only if a = or the following
statements hold.

(1) Xacypg.

(2) dom a Cdom B and ker N (dom B X dom ) C ker a.

(3) Foreach x e dom B, if xB € Xa, then x € dom « and xa = x0.

Proor. Suppose that a <. Then there exist y, u € PT(X, Y)' such that & = y8 = Bu
anda=au. fy=1oru=1,thena=p4. If y,ue PT(X, Y), then conditions (1) and
(2) hold by Lemmas 3.1 and 2.1. If x € dom 8 and x8 € X, then x5 = ya for some
y € X, and thus

X6 =ya = yau = xpu = xa.

Therefore, x € dom « and xa = x8. Conversely, assume that the conditions (1)-(3)
hold. Again by Lemmas 3.1 and 2.1, there existy, u € PT (X, Y) such that @ = y8 = Su.
Now, we prove that im @ € dom g, by letting y € im @. Then there is x € dom a such
that xa = y. Since a =yf, we have y = xa = xyS. By condition (3), xy € dom « and
xya = xyB. Thus xyB = xya = xyBu = yu, which implies that y € dom u. Therefore,
im o € dom u. Hence

dom ey = (im @ Ndom w)a~! = (im @)a! = dom «.

For each x € dom @, xa = xyB. Again by condition (3), xy € dom @ and xya = xyp.
Thus

xa = xyB = xya = xyfu = xau.
Therefore, a = apu. O

Notice that ) < a for all « € PT(X, Y).
Now, we consider the semigroup /(X, Y).
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TueoreM 3.4. Let a,B€ (X, Y). Then a < if and only if o =f or the following
statements hold.

(1) XacYp

(2) doma Cdompg.

(3) Foreach x € dom B, if xB € Xa, then x € dom « and xa = x0.

Proor. Since o, € I(X,Y) C PT(X, Y) and @ <3, we have by Theorem 3.3 that @ =8
or the conditions (1)—(3) hold.

Using Lemmas 3.2 and 2.2 in the proof as given for Theorem 3.3, we obtain the
converse of the theorem. O

Clearly, if p and o are partial orders on X then the intersection of p and o, p N T,
is also a partial order on X. Now we have three partial orders on PT'(X, Y), namely,
<, Cand <N C. The following lemma shows that if |Y| > 2, then C\ < and <\ C on
PT(X, Y) are nonempty. Consequently, the meet of < and C cannot equal < or C, so
these three partial orders are different.

Lemwma 3.5. If|X]| = 2, then the following statements hold on PT(X, Y).
(1) <\ < isnonempty.
(2) <\ Cisnonempty if and only if |Y| = 2.

Proor. (1) Leta € X, b € Y be such that a # b and let

f) o)

Then @ C 5, and b8 = b € Xa while b ¢ dom a. Hence a £ §; that is, C \ < is nonempty.
(2) Suppose that |Y| > 2. Let a, b € Y C X be such that a # b, and define

_ [{a, b} _fa b
() o-(a 3)
Then a € 8. We see that Xa = {b} C {a, b} = Y8 and dom @ C dom 3. Also,

ker 8 N (dom B X dom «@) = {(a, a), (b, b)} C{(a, a), (b, b), (a, b), (b, a)} = ker a,

and b =b e Xa implies b edom « and ba =bB. Hence a <B; that is, <\ C is
nonempty.

Conversely, suppose that |Y|=1. Let a,8€ PT(X,Y) be such that @ <. Then
dom a € dom 8 and, if x € dom @, we have x € dom § and x& = x8 since |Y| = 1. Thus
a C B, and hence < C C, which implies that <\ C is empty. O

We now intend to determine their join.

LemMma 3.6. The join C o < is a partial order on PT(X, Y).
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Proor. It is clear that Co < is reflexive. Let a,8€ PT(X,Y) be such that
(a,B), (B, @) e Co <. Then there exist y,u € PT(X,Y) such that « Cy < and S C
u < a. Hence

dom @ € domy C dom 8 C dom u C dom «.

Therefore, dom @ = dom 3. Now, we prove that @ =. For each x € dom a, xa =
xy e Xy CYpB since «a Cy<fB. Hence xy=yB for some yec Y, and then yB € Xy,
which implies that y e domy and yB=yy, since ¥y <f. Since §Cu, we obtain
yB=yue€XucYa, soyu=za for some z€Y. Thus za € Xu, from which it follows
that z € dom u and za = zu since u < . Hence
2@ = yu =yB = xy = xa.

This means that (x, z) € ker @ N (dom @ X dom w) C ker 4, whence xu =zu. Since
B € u, we obtain xf3 = xu. Hence

XB =X =zu = za = xa.

Thus @ = S, and therefore C o < is antisymmetric.
Next, we prove the transitivity of C o <. Let (a, y), (y,8) € C o <. Then there are
u,é€PT(X,Y)suchthata Cu<yandyCé<g. Thus

dom @ C dom p € dom y C dom ¢ C dom 3,

and
XaeCXuCYyCcXyCXeECYB.

=i o=(2 %)

where (JA; € (U B) U (U Bj)and B;NY # 0 for all i. Let

Hence we can write

Ji={jeJ:BinA#0) and C;=| JiB;:je.
Define

9= A;UB; UC;
Xi '

To see that 8 is well defined, let ij, i, € I be such that i; #i, and suppose that
there exists jeJ; NJ;,. Then BjNA; #0+#B;NA;,. Let xeB;NA; and ye€
BinA;,. Hence xf=x;=yB and x,y€doma Cdomp. Since £<f and (x,y)€
ker 8 N (dom S X dom &) C ker &, we obtain x¢& = y&, from which it follows that xy = yy
since y € &. Using the condition o € u <7y, we obtain xu = yu and xa = ya. Thus
X;, = X = ya = x;,, which is a contradiction. Hence J;, N J;, = 0, which implies that 6
is well defined. It is clear that @ C 6. Also, by the definition of 6, we see that 8 and 8
satisfy conditions (1)—(3) of Theorem 3.3, and thus 6 < 8. Therefore, (¢, ) € Co <. O
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Since C, < and Co < are partial orders on PT(X,Y), we obtain the following

theorem immediately.
TueoreM 3.7. The partial order C o < is the join of € and < on PT(X, Y).

Since €\ < and <\ C on PT(X, Y) are nonempty, the join of C and < is equal to
neither C nor < when |Y| > 2, so we now have four different nontrivial partial orders
on PT(X, Y), namely CN<,C,<and Co <.

4. Comparable partial orders

Recall that in [7] the authors defined the partial orders Q0" and Q on P(X) as follows,
where a, 5 € P(X).
(1) (a, B) € Q' if and only if X € X3, dom o € dom 8 and

a,B_l N (dom @ x dom @) C ™"
(i) (a, B) € Q if and only if (@, B) € Q" and
BB~ N (dom @ x dom @) C aa™".
Since PT(X, Y) is a subset of P(X), we see that the relations 0’ and Q are also partial
orders on PT(X, Y) and Q € Q'. In [7], the authors showed that Q is a join and Q' is
an upper bound of C and < on P(X). By the following theorem, € is an upper bound
of Cand <on PT(X,Y).

TueoreM 4.1. The partial order Q is an upper bound of C and < on PT(X,Y).
Consequently, C o < is contained in Q.

Proor. Let a,8€ PT(X,Y). If @ €3, then Xa € XB and dom @ € dom 3. For (x, y) €
aB~' N (dom @ x dom @), we have xa = yB. Thus xa = yB = ya since a C 3, which
implies that (x, y) € aa~!. Similarly, we can show that

BB N (dom @ x dom a) C aa™".

Hence (a, B) € Q.
Now, if & < B, then Xa C YB C XB, dom a C dom § and ker 8 N (dom 8 X dom @) €
ker a. Let
(x,y) € a',B_1 N (dom a X dom a).

Then x, y € dom « and xa = yB, which implies that y5 € Xa. Since a <3, we have

ya =yB. Hence xa =ya, from which it follows that (x,y)€aa~!. Therefore,
(o, 8) € Q. Let
(p, q) € BB~ N (dom @ x dom @).
Then p, g € dom @ € dom 8 and pg = ¢S, which implies that
(p, g) eker N (dom B X dom @) C ker a.
Thus pa = ga and (p, ) € aa™". Therefore, (a, B) € Q. O
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The following two lemmas characterise when Q =Co <and ' =Qon PT(X, Y).
Lemma 4.2. The partial order Q=Co<on PT(X,Y) ifand only if Y =X or |Y| = 1.

Proor. If Y = X, then Q = C o < on PT(X, X) = P(X) by [7, Theorem 7]. Assume that
[Y|=1 and let (o, 8) € Q. Then doma Cdomp. If @ =0, then a C B, but if a #0,
then for each x € dom « it is true that xa = x8, since |Y| = 1. Hence @ C 3, and thus
a C B < B, which implies that (o, 5) € Co <.

Conversely, suppose that Y € X and |Y| > 2. Then there are three distinct elements
Xx,y,zsuchthat xe X\ Y and y, z € Y. Define «, 8 by

o=) e[ 2)

Then a, B € PT(X,Y), Xa C XB3, dom o C dom G,
a,B_l N (dom a x dom @) =0 C ea™!

and

,BB_I N (dom @ X dom @) = {(y, y)} = aa .
Hence (a, 8) € Q. Assume that (@, 8) € C o <. Then there is y € PT(X, Y) such that
aCy<B. If y=p, then y = ya = yy =B =z, which is a contradiction. Hence y # 8
and Xy C Y. Thus {y} = Xa C Xy C Y = {2}, which is also a contradiction. Therefore,
(@, B) ¢ C o <, which implies that Q\ C o < is nonempty. O
Lemma 4.3. The partial order Q' = Q on PT(X,Y) if and only if |Y| < 2.

Proor. Suppose that |Y| < 2 and let (o, 8) € Q. Then Xa C X3, dom @ C dom 8 and

a,B‘l N (dom @ x dom @) C aa™".

Let
(x,y) € 887! N (dom @ x dom a).
1

Then x5 =yB and x,y €edom a. If xa =ya, then (x,y) € aa”. However, if xa #
ya, then xa = yB or ya = xf since |Y| < 2. Hence (x,y) or (y, x) € a8~ N (dom a X
dom @) Caa!, and so (x, y) € aa~!. Therefore, B3~' N (dom & X dom a) C e~

Conversely, assume that |Y| > 3. If ¥ = X, then Q" \ Q is nonempty by [7, p. 110].
If Y € X, then we suppose {s, ¢, u, v} C X such that s, ¢, u € Y, and define

() )
Therefore, «, 8 € PT(X, Y), Xa C XB, dom @ C dom 8 and
B! N(doma xdoma)=0Caa™".
Hence (a, 8) € Q'. Since
BB~ N (dom @ x dom @) = {(s, 5), (¢, 1), (5, 1), (¢, )} L {(s, 5), (1, 1)} = @',

we have (a, B8) ¢ Q, and therefore Q' \ Q is nonempty. O

https://doi.org/10.1017/5S0004972712000020 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972712000020

[10] Semigroups of partial transformations with restricted range 109

By the two lemmas above, we conclude that if ¥ C X and |Y| > 3, then the three
partial orders Co <, Q and Q' on PT(X,Y) are different. Hence, we now have
six distinct nontrivial partial orders on PT (X, Y), with inclusions as indicated in the
following diagram.

Q/

N

S\

IA

%

N

Next, we compare the partial orders on /(X, Y). It is well known that the natural
order and the subset order are the same on I(X) [5, Proposition V.2.3], but in the
semigroup /(X, Y) we have the following result.

Tueorem 4.4. For a,Be I(X,Y), a < B implies a CB.

Proor. Let a,€I(X,Y) be such that @ <. By Theorem 3.4, we have dom « C
dom B, and for each x € dom @ we have xa € Xa C YB3, which implies that xa =y
for some y € Y, and hence yB € Xa. Again by Theorem 3.4, we have y € dom @ and
ya =yB. Hence xa = ya and x =y, since « is injective. Thus xa = x8 and therefore
aCp. O

Hence the meet and join of these two partial orders on I(X,Y) are < and C
respectively. Next, we determine when these two relations on I(X, Y) are equal.

TueorREM 4.5. On I(X,Y), C=<ifandonlyif X =Y or|Y| = 1.

Proor. If X =Y, then I(X, Y) = I(X), which implies that C = < by [5, Proposition
V.23]. If |Y| =1, let Y = {a}, and thus

IX,Y) = {(2) xe x} U {0).

Hence, we see that if o, 8 € I(X, Y) with o C 3, then @ < 8. We conclude that C = <.
Now, suppose that C = <. If Y C X and |Y| > 1, then there exista € X \ Yand b,c €Y

such that b # ¢. Define
a a b
R I
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Then it is clear that @ € 8. Since C = <, we obtain @ <, from which it follows that
{b} = Xa C YB = {c}, which is a contradiction. Therefore, X = Y or |Y]| = 1. O

As with PT (X, Y), the relations " and Q defined at the beginning of Section 4 are
also partial orders on I(X, Y). In [11], the authors showed that Q and Q' are equal
on /(X); thus, using the same proof as given for [11, Theorem 2.5], these two partial
orders are also equal on /(X, Y), and we also have C C Q. Finally, we characterise
when Q and C are equal on /(X, Y).

THEOREM 4.6. The partial order Q = C on I(X, Y) if and only if |Y| = 1.

Proor. Suppose that |Y| > 1. Then there are two distinct elements x, y € Y C X. Define

) o)

We can see that (o, ) ¢ C but (@, 8) € Q" = Q.

Conversely, suppose that |Y|=1 and let (o,8) € Q' =Q. If a=0, then a Cp.
However, if a #0 then, since |Y|=1, we have a=8. Hence a Cf and Q CC.
Similarly, we can show that C C Q. O

From Theorems 4.5 and 4.6, we conclude that if Y C X and |Y| > 1 then the three
partial orders C, <, Q are distinct.

S. Compatible elements in the partial orders

Let < be a partial order on a semigroup S. An element c € S is said to be left
(respectively, right) compatible if ca < cb (respectively, ac < bc) for each a,b€ S. In
this section, we characterise all elements in PT (X, Y) and /(X, Y) which are compatible
with respect to <. We note that C is always left and right compatible.

Lemmva 5.1. Let|Y|=1and a,B€ PT(X,Y). Ifa <, thena =B ora =0.

Proor. Suppose that « < and @ # 0. Hence 1 <|Xa|<|Y|=1, and then Xa =Y.
For each x € dom 3, we have x5 € X8 C Y = Xa and hence x € dom & and xa = x5 by
Theorem 3.3. Thus dom 8 € dom a. Since « < 3, we have dom « € dom . Therefore,
dom @ = dom S which implies that & = 8. m|

By this lemma, we conclude that if |Y| =1, then every element in PT(X, Y) and
I(X, Y) is left and right compatible with respect to <.
TueEOREM 5.2. Let |Y|> 1 andy e PT(X,Y).

(1) vy is left compatible with < if and only if Yy =Y.
(2) vy is right compatible with < if and only if (Y Cdomy and vyly is injective) or
YNndomvy=0.
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Proor. (1) Suppose that Yy C Y. Then there exists y e Y \ Yy. Choose a, b € Yy and

define o, 8 € PT(X, Y) by
_({b, ¥} _f[a by
“_( y ) B_(a b y)'

Then a <. If y € Xy, then Xya = {y} # {a, b, y} = XyB, so ya #yB. Also, if y ¢ X,
we then have Xya = {y} # {a, b} = XyB, that is ya # yB. Therefore, ya # yB. Since
y € Xya but y ¢ Yy, we conclude that ya £ y83.

Conversely, assume that Yy =Y. Let a,8 € PT(X, Y) be such that « <. Hence
Xya € Xa CYB =YyB and

dom ya = (imy N dom @)y™" C (imy N dom B)y~" = dom .

Let
(x,y) € ker yB8 N (dom yB X dom ya).

Then xyfB = yyB, x € dom B and y € dom ya. Thus xy € dom 8 and yy € dom @, and
hence
(xy, yy) € ker 8 N (dom B8 X dom «) C ker a.

Therefore, xya = yya implies (x,y) € ker ya. For each z € domyp, if zyB8 € Xya,
we have zyB € Xa; thus zy € dom « (that is, z € dom ya) and zyB = zya. Therefore,
ya <ypB.

(2) It is clear that if Y Ndomy =0, then ay=0=pgy for all a,fc PT(X,Y).
Assume that Y C dom y and vy is injective. Let «, 8 € PT(X, Y) be such that a <.
Then Xa C Y, which implies that Xay C YBy. Since Y C dom v,

dom @y = (im @ N'dom y)a~! € (¥ N dom y)a™"
=Ya'=doma CdompB=({mpBNY)8"
C (im 8 N domy)8~! = dom By.

Let (x,y) € ker By N (dom By X dom ay). Then xBy =yBy, x € dom By C dom § and
y € dom ay C dom . Since vy is injective, we obtain x8 = y3, from which it follows
that (x,y) € ker 8N (dom B x dom «) C ker @ since @ <. Hence, xa = ya implies
xay =yay, and so (x,y) € ker ay. For each z € dom By with z8y € Xay, we have
7By = yary for some y € X. Since Y|y is injective, we have z8 = ya € Xa, and thus
z € dom a and za = z8. Hence

zedoma=(manY)a ' C@imandomy)e ! =domaey and zay=zBy.

Therefore, ay < By.

Conversely, assume that ¥ N dom vy # 0 and (y|y is not injective or Y € dom ).

If Y Ndom y # 0 and 7|y is not injective, then there are a, b € ¥ N dom 7y such that
a#banday=>by . Definea,Be PT(X,Y)by

) oot
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Hence, we obtain a < 8 by Theorem 3.3 and ay # By since b € dom Sy but b ¢ dom ay.
We also have ay £ By since (b, a) € ker By N (dom By X dom ay) but (b, a) ¢ ker ay.
If YNndomy#0and Y € dom v, then there are a € Y Ndomvy and b€ Y \ dom y.

Define @, 8 € PT(X, Y) by
_ [{a, b} _f[a Db
‘= ( a ) ' ﬁ - (a b) '

Thus @ < 8 and ay # By. Also, ay £ By since
dom ay = {a, b} £ {a} = dom By.

Therefore, y is not right compatible. m|

It is clear that for each y € I(X, Y) it is the case that domy C Y if and only if
Yy = Xy. We use this fact to prove the following theorem.

TueOREM 5.3. Let |Y| > 1 andy € I(X, Y). Then we have the following results.

(1) vy is left compatible with respect to < if and only if domy C Y or vy is a constant
map.
(2) v is always right compatible with respect to <.

Proor. (1) Suppose that domy € Y and y is not a constant map. Then Yy C Xy
and |Xy| > 1, which implies that there exist ye Xy \ Yy and y #z€ Xy. Define

a,BelX,Y)by
[y [y =z
“_Qy ﬁ_@ J'

We can see that @ < 8. Since Xya = {y} # {y, z} = XyB, we obtain ya # yB. Since y €
Xya buty ¢ YyB, we have Xya € Yy, from which it follows that ya £ y8. Therefore,
v is not left compatible.

Conversely, let a,f€I(X,Y) be such that e <. If domyCY, then Yy = Xy.
Hence, we have Xya C XyB = Yy@ since a C 8 by Theorem 4.4 and

dom ya = (imy N dom @)y~ C (imy N dom B)y~" = dom y.

Let x € dom yB and xyB € Xya. Then (xy)B € Xa, from which it follows that xya =
xyp since a@ < . Therefore, ya < yB. Now, if y is a constant map, then we can write
Y= (2) If a ¢ dom «, then ya =0 <yp. If a € dom a, then a € dom 8 since dom a C
dom 8 and hence dom ya = {x} = dom yS. Furthermore, xya = aa = a3 = xyp since
a C B. Therefore, ya = yf.

(2) Let a, € I(X, Y) be such that @« <. Then a C B, from which it follows that
ay € By. Hence dom ay € dom Sy. Since a < 8, we have Xay C YBy. Let xBy € Xay.
Then xBy = yay for some y € X. Since 7 is injective, we obtain x5 = ya € Xa, which
implies that x8 = xa. Hence xBy = xay, and therefore ay < By. |
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6. Maximal and minimal elements

We aim now to find all maximal and minimal elements in PT(X, Y)\ {0} with
respect to the subset order. To do this, we first note that the empty set @ acts as a
minimum with respect to C and < for PT(X, Y).

THeoreM 6.1. In PT(X, Y) \ {0} with C, the following statements hold.

(1)  « is minimal with respect to C if and only if |[dom | = 1.
(2)  a is maximal with respect to C if and only if dom a = X.

Proor. (1) If |dom a| = 1, then for each 8 € PT (X, Y) with 0 # 8 C a, it is clear that
a =, and thus « is minimal with respect to C. If |[dom @|> 1, then there are
a, b € dom « such that a # b. Define 5= (a’;), so 0 # B8 ¢ «, which implies that « is
not minimal.

(2) If doma = X and a C 3, then X =dom a C dom 8 C X, from which it follows
that @ = 8, and hence « is maximal.

Conversely, assume that dom @ C X. Write a = (’2) and define

(Ai X \ dom a)
’y:

a; a
for some a € Y. It is clear that @ C 7y, so « is not maximal. m]

Next, we determine the maximal and minimal elements for P7T(X, Y) using the
partial orders <.

TraeoreM 6.2. In PT(X, Y) \ {0} with <, a is minimal if and only if « is a constant map
orY Ndoma = 0.

Proor. Let a,y € PT(X, Y) be such that @ # y < a. If @ is a constant map, then Xa =
{a} for some a € Y and Xy C Ya = {a} from which it follows that Xy = {a}. Suppose
that dom y € dom «; then |[dom «| > 2. Let p, g € dom @ be such that p € dom y and
q ¢ dom y. We can see that (g, p) € ker @ N (dom @ X dom v), but (¢, p) ¢ ker y, which
is a contradiction. Thus dom y = dom «, and hence @ =vy. Now, if ¥ N dom a = 0,
then y < & implies that Xy C Ya = 0, which contradicts y # (), so we obtain @ = y.

Conversely, assume that @ is not a constant map and ¥ Ndom a # 0. Choose
a € Y Ndom « and define y : dom a — {aa}. Since | Xy| =1 < |X«a|, we obtain @ # y. It
is obvious that Xy C Y@, dom y C dom « and

ker @ N (dom @ X dom y) = ker @ N (dom y X dom )
C dom y x domy = ker y.

If xedoma and xa € Xy, then xa =aa =xy. Therefore, y<a and «a is not

minimal. m]
Recall that PF ={a € PT(X,Y):Xa=Ya} and that when Y =X we have
PF = P(X).
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Lemma 6.3. Ifa, 8 € PT(X, Y) such that « < 3 and a # 3, then a € PF.

Proor. Let @, € PT(X, Y) be such that @ <8 and @ # 5. Suppose that @ ¢ PF. Then
there exists x € X \ Y such that xa ¢ Ya. Since xa € Xa C Yf3, we have xa = yg for
some y € Y. Thus yB = xa € X implies y € dom « and ya = yB, and hence xa = ya €
Ya, which is a contradiction. m]

Since |Y| > 1, we then have 0 is not maximal in PT(X, Y).

THeOREM 6.4. Let 0 # a € PT(X, Y). Then « is maximal with respect to < if and only
if one of the following statements hold.

(1) a¢PF.
(2) «ais surjective.
(3) «ais injective and dom «a = X.

Proor. If Y = X, then the theorem holds by [7, Theorem 14]. Now, we consider the
case when Y € X. Assume that @ € PF and Xa C Y. Hence thereisa € Y \ Xa.

If « is not injective, then there exists b € Y such that |ba~!| > 1. Choose ¢ € ba™! if
ba~' C Y, otherwise choose ¢ € ba~! \ Y. Define 8 : dom @ — Y by

za ifz#c,
a ifz=c.
Hence «a # B, and it is clear that «, 8 satisfy conditions (1)—(3) of Theorem 3.3. Thus
a < B3, and therefore « is not maximal.
If dom a C X, then there exists b € X \ dom a. Define 8 : dom a U {b} — Y by

_Jza ifzedoma,
“la  ifz=b.

Hence o # B and « < 8 since «, 8 satisfy conditions (1)—(3) of Theorem 3.3, so « is not
maximal in PT (X, Y).

Conversely, let Be PT(X,Y) be such that a <fB. If a¢ PF, then = by
Lemma 6.3. If « is surjective, then x5 € Y = Xa for all x € dom 3, and thus x € dom «
and xa = xB, and hence @ =f. Now, consider the case when « is injective and
dom @ = X. Since a <, we obtain X = dom « C dom 8 C X from which it follows
that dom 8= X =dom a. For each x€ X, xa € Xa C YB3, that is, xa =y for some
y € Y, which implies that y5 = xa € Xa. Thus y € dom « and ya = yB. Then ya = xa,
from which it follows that x = y since « is injective; hence xa = xf and therefore @ = £.
O

THEOREM 6.5. Let a € PT(X,Y). Then there exists a maximal element € PT(X,Y)
such that a < S.

Proor. Suppose that @ is not maximal. Then there are two cases.
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Case I: « is not injective. Then @ € PF, « is not surjective and doma € X. Let
C(a)={xa™':x€Y and |xa~!'|>1}. Since a is not injective, we have C(a) is
nonempty. Since a € PF and « is not surjective, we obtain Ya = Xa C Y, which
implies that Y \ Xa # 0. For each C € C(a), we obtain C = xa! for some x € Y and
|xa~!| > 1. Since x € Xa = Ya, we have x = ya for some y € Y. Thus y € C N Y since
yexa~! =C. Hence C NY # 0; choose dc € C N'Y. We can see that C \ {dc} # 0 since
IC| = |xa~'| > 1. We consider two subcases.

Subcase I:
> Y\ Xal.

|J ©\tdeh ux\ doma)

CeC(a)

Then there is an injection

y: Y\ Xa - U (C\ {dc}h) U (X \ dom a).

CeCla)

For each z € im y, we have |zy~!| = 1, so let zy~! = {g.}. Define 8 € PT(X, Y) by

_Jg: ifzeimy,
" ze ifzedoma\imy.

Then S # @. To show that @ <, let x € Xa = Ya. Then x = ya for some ye Y. If
yedoma \ imvy, then x =ya =yB € YB. If y € im vy, then

ve | J @ \idehu X\ doma).
CceC(a)

Itis clear that y € dom @, and hence y € C \ {d¢} for some C € C(a). Since y € xa™!, we

conclude that C = xa™~!. Thus x = dca = d¢3 € Yf3 since dc ¢ im y. Hence Xa C Y. It
is clear that dom o € dom 8. Let (x,y) € ker 8 N (dom 8 X dom «). Then x8 =y, x €
dom 8 and y € dom @. Thus by the definition of 8, we have x, y €imvy or x,y ¢ im .
If x,y€imy, then g, = xB=)B =g,, which implies that xy l={g.}= {gy} = yy~ L
Hence x =y since vy is injective. Therefore, x=yc€dom « and xa =ya. If x,y¢
imy, then x,y € doma \ imy. Hence xa = x8 = yB = ya; that is, (x,y) € kera. Let
x € dom B and x8 € Xa. Thus, x e dom @ \ imy (forif x eimy, thenxf =g, € Y \ Xa,
which is a contradiction), from which it follows that xa = x83. Therefore, a < g.

To show that g is surjective, let ye Y. If ye Y \ Xa, then yy € imy, so we obtain
OY)B=gyy € (yy)y~! = {y} since y is injective. Hence y = (yy)B8. Now, if y € Xa, then
y = xa for some x € X. If x €im vy, then x € C for some C € C(a) and y = xa = dca =
dep. If x ¢ im 7y, then y = xa = xB. Therefore, 8 is maximal by Theorem 6.4.

Subcase 11:

U (C\ {dc)) U (X \ dom @)| <Y \ Xal.
CceCla)
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Then there exists an injection

y: | (€ \{deh u (X \doma) - ¥\ Xa.
CceC(a)

Define g € PT(X, Y) by

_Jzy ifzedomy,
" |ze ifzedoma )\ domy.

Then a # B. Let x € Xa = Ya. Then x = ya for some y € Y. If y € dom « \ dom v, then
x=ya=yBeYp. If yedomy, then

ve | @\tdehux\ doma.

CeC(a)

Since y € dom @, we obtain ye C \ {dc} for some C € C(a). Since ye€xa™!, so

C =xa~'. Hence x = dca = dcf3 € YB. Thus Xa C Y. It is clear that dom a C dom .
Let (x, y) € ker 8 N (dom S8 X dom «). Then x8 = yB3, x € dom S and y € dom «. Hence,
by the definition of 3, we conclude that x,yedomy or x,y €edoma \ domy. If
x,y €domy, then xy = xB =y =yy, which implies that x =y since y is injective.
Hence x =yedoma and xa =ya. If x,y € dom a \ dom y, then xa = x5 =y8 = ya.
Thus (x, y) e ker . Let x e dom 8 and x8 € Xa. If x e dom 1y, then x8=xy e Y \ Xq,
which is a contradiction. Hence x ¢ domy; so x € dom « \ domy, from which it
follows that x8 = xa. Therefore, @ < S.

To show that g is injective, let x, y € dom S be such that x5 = y8. Then x, y € dom y
or x,y €doma \ domy by the definition of 8. If x,y€domvy, then x =y by the
same proof as given above. If x,y € dom « \ dom vy, then xa = ya (see above). Let
xa =z =ya. Then x, y € za~! implies za~! = C for some C € C(a). We conclude that
x =dc¢ =y. We can see that dom § = dom @ U dom y = X. Therefore, 8 is maximal by
Theorem 6.4.

Case II: « is injective. Then a € PF, « is not surjective and dom @ C X. Hence
Y\ Xa#0#X)\ doma.

Subcase I: |X \ dom «| > |V \ Xa|. Then there is an injection
y:Y\ Xa— X\ doma.
For each z € imy, we have |zy~!| = 1 since v is injective, so let zy~' = {g.}. Define
BePT(X,Y)by
B g %fzeimy,
za ifz€dom a.

We see that @ # 5. Let x € Xa = Ya. Then x = ya for some y € Y, which implies that
y€doma. Thus x =ya =yB € YB. Thatis, Xa C YB. It is clear that dom o € dom 3.
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Let (x,y)ekerN (domfB x dom@). Then x8=yB, xedompB and y edom . If
x €imvy, then yo =yB =x6 =g, € Y\ Xa (since y € dom @), which is a contradiction.
Hence x edom a and xa = x8=yB8=ya. Thus (x,y)ekera. Let xedomg and
xB € Xa. Then x € dom a and xa = xf. Hence a < 8.

To show that g is surjective, lety € Y. If y € Y \ Xe, then by the same proof as given
for case I (subcase I), we have y = (yy)B. If y € Xa, then y = xa for some x € X. Hence
y = xa = xf3. Therefore, 8 is maximal by Theorem 6.4.

Subcase II: |X \ dom a| < |Y \ Xa|. Then there is an injection
y:X\doma — Y\ Xa.

Define 8 € PT(X, Y) by

_Jzy ifzedomy,
" |za ifzedome.

Therefore, @ # . Let x € Xa = Ya. Then x = ya for some y € Y, which implies that
yedoma. Hence x =ya=yBe€YB. Thus Xa C YB. It is clear that dom @ C dom j3.
Let

(x,y) eker 8 N (dom B X dom ).

Then x8=yB, xedompB and yedoma. If xedomvy, then ye =yB8=x8=xy€
Y \ Xa, which is a contradiction. Hence x € dom @ and xa = x8 = y8 =ya. Thus
(x,y) e ker @. Let x € dom 8 and x8 € Xa. If x € dom vy, then x8 = xy € Y \ Xa, which
is a contradiction. Therefore, x € dom @ and xa = x8. Hence a < .

To show that 8 is injective, let x, y € dom 8 be such that x5 = yB. If x,y € dom vy,
then x =y since 7 is injective. If x, y ¢ dom vy, then x, y € dom «, which implies that
xa=xB=yB=ya. Since « is injective, x =y. We can see that dom 8 =dom a U
dom vy = X. Therefore, 8 is maximal by Theorem 6.4. O

We end this section with the following remark.

REMARK 6.6. We believe that with some mild modifications of the proofs which are
given for PT(X, Y), we obtain all maximal and minimal elements for /(X, Y) with
respect to the orders < and C.
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